scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Materials Chemistry in 2014"


Journal ArticleDOI
TL;DR: In this article, the authors summarize the design, fabrication, applications and recent developments of special wettable materials for oil/water separation and discuss the role of such materials on the separation.
Abstract: Oil/water separation is an important field, not only for scientific research but also for practical applications aiming to resolve industrial oily wastewater and oil-spill pollution, as well as environmental protection. Recently, research into the role of special wettability for oil/water separation has attracted much attention. In this review we summarize the design, fabrication, applications and recent developments of special wettable materials for oil/water separation. Based on the different types of separation, we organize this review into three parts: “oil-removing” type materials with superhydrophobicity and superoleophilicity (that selectively filter or absorb oil from oil/water mixtures), “water-removing” type materials with superhydrophilicity and superoleophobicity (that selectively separate water from oil/water mixtures), and smart controllable separation materials. In each section, we present in detail the representative work, introduce the design idea, outline their fabrication methods, and discuss the role of special wettability on the separation. Finally, the challenges and outlook for the future of this subject are discussed.

1,007 citations


Journal ArticleDOI
Guangda Niu1, Wenzhe Li1, Fanqi Meng1, Liduo Wang1, Haopeng Dong1, Yong Qiu1 
TL;DR: In this article, the degradation reaction of CH3NH3PbI3 was investigated using both UV-Vis spectra and XRD results, and it was shown that Al2O3 could protect perovskite from degradation.
Abstract: Degradation of perovskite has been a big problem in all-solid-state perovskite solar cells, although many researchers mainly focus on the high efficiency of these solar cells. This paper studies the stability of CH3NH3PbI3 films and finds that CH3NH3PbI3 is sensitive to moisture. The degradation reaction is proposed according to UV-Vis spectra and XRD results. In order to improve the degradation of CH3NH3PbI3, we introduce aluminum oxide as a post-modification material into all-solid-state perovskite solar cells for the first time. UV-Vis spectra show that Al2O3 modification could maintain the absorption of CH3NH3PbI3 after degradation. XRD results reveal that Al2O3 could protect perovskite from degradation. Moreover, the device post-modified by Al2O3 has shown more brilliant stability than that without modification when exposed to moisture. EIS results and dark current illustrate that the modification increased interface resistance in the dark, indicating the restrained electron recombination process.

941 citations


Journal ArticleDOI
TL;DR: In this article, an electron beam treatment of commercial TiO2 (p-TiO2) nanoparticles was used to obtain visible light-active nanoparticles, which exhibited a distinct red-shift in the UV-visible absorption spectrum and a much narrower band gap (2.85 eV) due to defects.
Abstract: Visible light-active TiO2 (m-TiO2) nanoparticles were obtained by an electron beam treatment of commercial TiO2 (p-TiO2) nanoparticles. The m-TiO2 nanoparticles exhibited a distinct red-shift in the UV-visible absorption spectrum and a much narrower band gap (2.85 eV) due to defects as confirmed by diffuse reflectance spectroscopy (DRS), photoluminescence (PL), X-ray diffraction, Raman spectroscopy, electron paramagnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and linear scan voltammetry (LSV). The XPS revealed changes in the surface states, composition, Ti4+ to Ti3+ ratio, and oxygen deficiencies in the m-TiO2. The valence band XPS, DRS and PL results were carefully examined to understand the band gap reduction of m-TiO2. The visible light-responsive enhanced photocatalytic activity of m-TiO2 was demonstrated by degrading methylene blue and brilliant blue G. The EIS and LSV in the dark and under visible light irradiation further support the visible light-induced photocatalytic activities of the m-TiO2 due to a decrease in electron transfer resistance and an increase in photocurrent. This study confirms that m-TiO2 can be used effectively as a photocatalyst and photoelectrode material owing to its enhanced visible light-induced photocatalytic activity.

712 citations


Journal ArticleDOI
TL;DR: In this paper, the development and recent progress towards different synthesis strategies to generate both powder and membrane/film-based ZIF materials are analysed and summarised Their attractive and potential applications in gas separation, catalysis, sensing and electronic devices, and drug delivery in the past years are discussed and reviewed.
Abstract: Zeolitic imidazolate frameworks (ZIFs) represent a new and special class of metal organic frameworks comprised of imidazolate linkers and metal ions, with structures similar to conventional aluminosilicate zeolites Their intrinsic porous characteristics, abundant functionalities as well as exceptional thermal and chemical stabilities have led to a wide range of potential applications for various ZIF materials Explosive research activities ranging from synthesis approaches to attractive applications of ZIFs have emerged in this rapidly developing field in the past 5 years In this review, the development and recent progress towards different synthesis strategies to generate both powder and membrane/film-based ZIF materials are analysed and summarised Their attractive and potential applications in gas separation, catalysis, sensing and electronic devices, and drug delivery in the past years are discussed and reviewed In addition, the prospects and potential new development of ZIF materials are presented

680 citations


Journal ArticleDOI
TL;DR: In this article, the synthesis methods employed for the doping of different types of carbon materials with various elements and the characterization techniques used to investigate their physicochemical properties such as degree of graphitization, dopant content and surface area are reviewed.
Abstract: Carbon materials such as graphite, graphene, carbon nanotubes and ordered mesoporous carbon have attracted a lot of attention for their use in fuel cells, due to beneficial properties like high conductivity, high mechanical and chemical stability and, for the latter, high surface area. Doping these materials with nitrogen or, less commonly, other elements alters their (electronic) properties, making them particularly suitable for application as electrocatalysts for the oxygen reduction reaction (ORR) in a fuel cell. This paper reviews the synthesis methods employed for the doping of these different types of carbon materials with various elements and the characterization techniques used to investigate their physicochemical properties such as degree of graphitization, dopant content, dopant configuration and surface area. Furthermore, their application as electrocatalysts for the oxygen reduction in a fuel cell is reviewed. Finally, the possible mechanisms for the ORR on N-doped carbon materials are critically discussed and compared to the mechanisms of commercial Pt/C electrocatalysts.

594 citations


Journal ArticleDOI
TL;DR: A facile hydrophilization method via co-deposition of mussel-inspired polydopamine (PDA) and polyethyleneimine (PEI) on a polypropylene microfiltration membrane is reported, allowingmicrofiltration separation of oil-in-water emulsions under atmospheric pressure.
Abstract: The surface structures and properties of a membrane largely determine its in-service performance during a filtration process. Here we report a facile hydrophilization method via co-deposition of mussel-inspired polydopamine (PDA) and polyethyleneimine (PEI) on a polypropylene microfiltration membrane. The deposition time is greatly shortened and the surface hydrophilicity is significantly improved compared to those membranes decorated only by PDA. The dopamine/PEI deposition solution can be reused several times with negligible effect on the surface hydrophilicity of membranes. Moreover, the PDA/PEI coating endows the membranes with ultra-high water permeability, allowing microfiltration separation of oil-in-water emulsions under atmospheric pressure.

590 citations


Journal ArticleDOI
TL;DR: In this paper, a conductive polypyrrole (PPy) hydrogel was synthesized via an interfacial polymerization method, and the unique 3D porous nanostructure constructed by interconnected polymer nanospheres endows PPy hydrogels with good mechanical properties and high performance acting as supercapacitor electrodes.
Abstract: Electrochemically active conducting polymers are an important class of materials for applications in energy storage devices such as batteries and supercapacitors, owing to their advantageous features of unique three-dimensional (3D) porous microstructure, high capacitive energy density, scalable synthesis and light weight. Here, we synthesized a nanostructured conductive polypyrrole (PPy) hydrogel via an interfacial polymerization method. The simple synthesis chemistry offers the conductive hydrogel tunable nanostructures and electrochemical performance, as well as scalable processability. Moreover, the unique 3D porous nanostructure constructed by interconnected polymer nanospheres endows PPy hydrogels with good mechanical properties and high performance acting as supercapacitor electrodes with a specific capacitance of ∼380 F g−1, excellent rate capability, and areal capacitance as high as ∼6.4 F cm−2 at a mass loading of 20 mg cm−2.

584 citations


Journal ArticleDOI
TL;DR: In this article, carbon quantum dots modified P25 TiO2 composites (CQDs/P25) with a "dyade"-like structure were prepared via a facile one-step hydrothermal reaction.
Abstract: Carbon quantum dots modified P25 TiO2 composites (CQDs/P25) with a “dyade”-like structure were prepared via a facile one-step hydrothermal reaction. CQDs/P25 exhibited improved photocatalytic H2 evolution under UV-Vis and visible light (λ > 450 nm) irradiation without loading any noble metal cocatalyst, compared to pure P25. A possible mechanism of the photocatalytic H2 production activity over CQDs/P25 was proposed based on detailed measurements of the transient photocurrent response, surface photovoltage and hydroxyl radicals. CQDs play dual roles on the improved photocatalytic activity of CQDs/P25. Under UV-Vis light irradiation CQDs act as an electron reservoir to improve the efficient separation of the photoinduced electron–hole pairs of P25. However, under visible light irradiation CQDs act as a photosensitizer to sensitize P25 into a visible light response “dyade” structure for H2 evolution.

573 citations


Journal ArticleDOI
TL;DR: In this article, a porous hard carbon material was synthesized by simple pyrolysis of H3PO4-treated biomass, i.e., pomelo peels, at 700 °C in N2.
Abstract: A porous hard carbon material was synthesized by the simple pyrolysis of H3PO4-treated biomass, i.e., pomelo peels, at 700 °C in N2. The as-obtained hard carbon had a 3D connected porous structure and a large specific surface area of 1272 m2 g−1. XPS analysis showed that the carbon material was functionalized by O-containing and P-containing groups. The porous hard carbon was used as an anode for sodium ion batteries and exhibited good cycling stability and rate capability, delivering a capacity of 181 mA h g−1 at 200 mA g−1 after 220 cycles and retaining a capacity of 71 mA h g−1 at 5 A g−1. The sodium storage mechanisms of the porous hard carbon can be explained by Na+ intercalation into the disordered graphene layers, redox reaction of the surface O-containing functional groups and Na+ storage in the nanoscale pores. However, the porous hard carbon demonstrated a low coulombic efficiency of 27%, resulting from the formation of a solid electrolyte interphase film and the side reactions of surface phosphorus groups.

548 citations


Journal ArticleDOI
TL;DR: In this paper, the adsorption and photocatalytic decomposition of organic molecules in aqueous environments containing Ti3C2Tx, a representative of the MXene family, was reported.
Abstract: Recently a large family of two-dimensional (2D) layered early transition metal carbides and carbonitrides – labelled MXene – possessing metallic conductivity and hydrophilic surfaces was discovered. Herein we report on the adsorption and photocatalytic decomposition of organic molecules in aqueous environments containing Ti3C2Tx, a representative of the MXene family. This material possesses excellent adsorption toward cationic dyes, best described by a Freundlich isotherm. We also found that the material may undergo structural changes in aqueous media.

529 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that the Gibbs free energy for atomic hydrogen adsorption (ΔG0H) on MoSe2 edges is closer to thermoneutral than that on MoS2, with an H coverage of about 75% on the edge under operating conditions.
Abstract: MoSe2 nanosheets and MoSe2/graphene hybrids have been prepared by a facile hydrothermal method. The number of layers of the MoSe2 nanosheets is typically <10 as confirmed directly by transmission electron microscopy and indirectly by a red shift of the characteristic A1g Raman peak. The hydrogen evolution reaction (HER) studies show that the onset potentials of MoSe2 and MoSe2/RGO hybrids are only ∼0.15 V vs. RHE and ∼0.05 V vs. RHE, respectively, about 20–30 mV lower than those of MoS2 and its graphene hybrids reported previously. Density functional theory calculations reveal that the Gibbs free energy for atomic hydrogen adsorption (ΔG0H) on MoSe2 edges is closer to thermoneutral than that on MoS2, with an H coverage of about 75% on the edge under operating conditions, which is also higher than that of MoS2 reported in the literature. The consistency between the experimental and computational results indicates that MoSe2 nanosheets have potential to be a better HER catalyst than their MoS2 counterpart.

Journal ArticleDOI
TL;DR: In this article, the authors highlight the diverse electrochemical applications of MoS2, a representative and well-studied TMD, which range from its use as catalysts in hydrogen evolution reactions to its adoption in supercapacitors, batteries, solar cells, and hydrogen storage.
Abstract: Layered transition metal dichalcogenides (TMDs) (MoS2, MoSe2, WS2, WSe2, etc.) are a chemically diverse class of compounds having band gaps from 0 to ∼2 eV and remarkable electrochemical properties. The band gaps and electrochemical properties of TMDs can be tuned by exchanging the transition metal or chalcogenide elements. After a brief description of the most commonly followed synthetic routes to prepare TMDs, we wish to highlight in this review the diverse electrochemical applications of MoS2, a representative and well-studied TMD, which range from its use as catalysts in hydrogen evolution reactions to its adoption in supercapacitors, batteries, solar cells, and hydrogen storage.

Journal ArticleDOI
TL;DR: Graphene-wrapped ZnO hollow spheres were synthesized by a two-step process, which combined a hydrothermal reaction with surface modification as discussed by the authors, which effectively decreases the density of the composite without sacrificing the contact between graphene and the nanoparticles.
Abstract: Graphene-wrapped ZnO hollow spheres were synthesized by a two-step process, which combined a hydrothermal reaction with surface modification. The experimental results show that reduced graphene oxide sheets adhere entirely to the surface of the ZnO hollow spheres consisting of nanoparticles. The unique structure effectively decreases the density of the composite without sacrificing the contact between graphene and the nanoparticles. Different mass ratios of graphene to ZnO hollow spheres mixed in a paraffin wax matrix (50 wt%) were prepared to investigate the electromagnetic wave absorption properties in the X-band region. When the mass ratio of graphene oxide to ZnO is 12 : 88, the composite exhibits a maximum absorption of −45.05 dB at 9.7 GHz with a sample thickness of only 2.2 mm. The fundamental mechanism based on electrical conductivity and the polarization between the graphene sheets and ZnO nanoparticles is discussed. The hierarchical structure of graphene-wrapped ZnO hollow spheres exhibits a promising designable approach to lightweight electromagnetic wave absorbing materials.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the synthesis of highly efficient Fe-doped graphitic carbon nitride (g-C3N4) nanosheets via a facile and cost effective method.
Abstract: Herein, we demonstrate the synthesis of highly efficient Fe-doped graphitic carbon nitride (g-C3N4) nanosheets via a facile and cost effective method. The synthesized Fe-doped g-C3N4 nanosheets were well characterized by various analytical techniques. The results revealed that the Fe exists mainly in the +3 oxidation state in the Fe-doped g-C3N4 nanosheets. Fe doping of g-C3N4 nanosheets has a great influence on the electronic and optical properties. The diffuse reflectance spectra of Fe-doped g-C3N4 nanosheets exhibit red shift and increased absorption in the visible light range, which is highly beneficial for absorbing the visible light in the solar spectrum. More significantly, the Fe-doped g-C3N4 nanosheets exhibit greatly enhanced photocatalytic activity for the degradation of Rhodamine B under sunlight irradiation. The photocatalytic activity of 2 mol% Fe-doped g-C3N4 nanosheets is almost 7 times higher than that of bulk g-C3N4 and 4.5 times higher than that of pure g-C3N4 nanosheets. A proposed mechanism for the enhanced photocatalytic activity of Fe-doped g-C3N4 nanosheets was investigated by trapping experiments. The synthesized photocatalysts are highly stable even after five successive experimental runs. The enhanced photocatalytic performance of Fe-doped g-C3N4 nanosheets is due to high visible light response, large surface area, high charge separation and charge transfer. Therefore, the Fe-doped g-C3N4 photocatalyst is a promising candidate for energy conversion and environmental remediation.

Journal ArticleDOI
TL;DR: In this article, a band-gap tuning of mixed anion lead halide perovskites (MAPb(I1−xBrx)2 (0 ≤ x ≤ 1)) has been demonstrated by means of a sequential deposition process.
Abstract: Band-gap tuning of mixed anion lead halide perovskites (MAPb(I1−xBrx)2 (0 ≤ x ≤ 1)) has been demonstrated by means of a sequential deposition process. The optical properties of perovskite hybrids can be flexibly modified by changing (mixing) the concentration of halogen precursors. The concentrations of precursor solution as well as the conversion time play an important role in determining the band-gap of perovskites. A systematic shift of the absorption band edge to shorter wavelengths is observed with increasing Br content in the perovskite films, which results in the decrement of the photocurrent. Nanorod like morphological features are also observed for perovskite films with an iodide to bromide molar ratio of <0.7.

Journal ArticleDOI
TL;DR: In this paper, the p-type polycrystalline SnSe doped with Ag, prepared by melting and hot pressing, has been studied and shown to have anisotropic properties with hysteresis observed in resistivity between 300 and 650 K.
Abstract: Many IV–VI semiconductors tend to be good thermoelectric materials, these include all Pb chalcogenides as well as Pb-free SnTe: all of which crystallize in a NaCl cubic structure. Another group of IV–VI compounds form layered orthorhombic structures. SnSe is one of these compounds, whose transport properties as a polycrystalline thermoelectric material have rarely been studied. Here we present our study of p-type polycrystalline SnSe doped with Ag, prepared by melting and hot pressing. SnSe has anisotropic properties with hysteresis observed in resistivity between 300 and 650 K regardless of doping. Ag is not an ideal dopant but is able to increase the carrier density significantly, as a result a peak zT of 0.6 was observed at 750 K. Transport properties of doped SnSe can be explained with a single parabolic band model, which suggests promising potential for this compound together with its challenges.

Journal ArticleDOI
TL;DR: In this paper, reduced graphene oxide (RGO)-CdS nanorod composites were successfully prepared by a one-step microwave-hydrothermal method in an ethanolamine-water solution.
Abstract: Solar-fuel production has attracted considerable attention because of the current demand to find alternative transportation fuels with particular emphasis on those fuels obtained photocatalytically from water and CO2. In this work, reduced graphene oxide (RGO)–CdS nanorod composites were successfully prepared by a one-step microwave-hydrothermal method in an ethanolamine–water solution. These composite samples exhibited a high activity for the photocatalytic reduction of CO2 to CH4, even without a noble metal Pt co-catalyst. The optimized RGO–CdS nanorod composite photocatalyst exhibited a high CH4-production rate of 2.51 μmol h−1 g−1 at an RGO content of 0.5 wt%. This rate exceeded that observed for the pure CdS nanorods by more than 10 times and was better than that observed for an optimized Pt–CdS nanorod composite photocatalyst under the same reaction conditions. This high photocatalytic activity was ascribed to the deposition of CdS nanorods onto the RGO sheets, which act as an electron acceptor and transporter, thus efficiently separating the photogenerated charge carriers. Furthermore, the introduction of RGO can enhance the adsorption and activation of CO2 molecules, which speeds up the photocatalytic reduction of CO2 to CH4. The proposed mechanism for the observed photocatalytic reaction with the RGO–CdS nanorod composite was further confirmed using transient photocurrent response and electrochemical impedance spectra. This work not only demonstrates a facile microwave-assisted hydrothermal method for fabricating highly active RGO–CdS nanorod composite photocatalysts, but also demonstrates the possibility of utilizing of an inexpensive carbon material as a substitute for noble metals in the photocatalytic reduction of CO2.

Journal ArticleDOI
TL;DR: In this article, a review gives an overview of recent advances in the potential applications of superhydrophobic materials, which are characterized by extremely high water contact angles and various adhesion properties.
Abstract: This review gives an overview of recent advances in the potential applications of superhydrophobic materials. Such properties are characterized by extremely high water contact angles and various adhesion properties. The conception of superhydrophobic materials has been possible by studying and mimicking natural surfaces. Now, various applications have emerged such as anti-icing, anti-corrosion and anti-bacterial coatings, microfluidic devices, textiles, oil–water separation, water desalination/purification, optical devices, sensors, batteries and catalysts. At least two parameters were found to be very important for many applications: the presence of air on superhydrophobic materials with self-cleaning properties (Cassie–Baxter state) and the robustness of the superhydrophobic properties (stability of the Cassie–Baxter state). This review will allow researchers to envisage new ideas and industrialists to advance in the commercialization of these materials.

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview and perspective on the field of textile energy storage with a specific emphasis on devices made from textiles or made as a fabric themselves. And the focus is on coated, fibre, woven as well as knitted supercapacitors and batteries.
Abstract: Research on flexible and wearable electronics has been gaining momentum in recent years, ranging in use from medical to military and everyday consumer applications. Yet to date, textile electronics still lack integrated energy storage solutions. This paper provides an overview and perspective on the field of textile energy storage with a specific emphasis on devices made from textiles or made as a fabric themselves. While other types of flexible energy storage devices are discussed, the focus is on coated, fibre, woven as well as knitted supercapacitors and batteries.

Journal ArticleDOI
TL;DR: In this paper, a hierarchical NiCo2O4 nanosheets@hollow microrod arrays (NSs@HMRAs) are fabricated by a simple and environmental friendly template-assisted electrodeposition followed by thermal annealing.
Abstract: Novel hierarchical NiCo2O4 nanosheets@hollow microrod arrays (NSs@HMRAs) are fabricated by a simple and environmental friendly template-assisted electrodeposition followed by thermal annealing. Due to their unique nanostructures, the NiCo2O4 NSs@HMRAs, as electrodes, exhibited a high specific capacitance (Csp) (678 F g−1 at 6 A g−1) and outstanding cycle stability (Csp retention of 96.06% after 1500 cycles). The desirable superior capacitive performance of the NiCo2O4 NSs@HMRAs can be attributed to the large specific surface area, fast ion diffusion, and perfect charge transmission in the hierarchical NSs@HMRAs. The asymmetric supercapacitor (ASC) based on the NiCo2O4 NSs@HMRAs as a positive electrode and active carbon (AC) as a negative electrode was assembled and it exhibited a Csp of 70.04 F g−1 at 5 mV s−1 and a high energy density of 15.42 W h kg−1. Moreover, the NiCo2O4 NSs@HMRAs//AC ASC has an outstanding cycle stability (almost no Csp loss after 2500 cycles), making it promising as one of the most attractive candidates for electrochemical energy storage.

Journal ArticleDOI
Jie Yang1, Peixun Xiong1, Cheng Zheng1, Heyuan Qiu1, Mingdeng Wei1 
TL;DR: In this paper, a layered Ni-based MOF was synthesized and used as the electrode material for a supercapacitor, which exhibited large specific capacitance, high rate capability and cycling stability.
Abstract: A layered structure Ni-based MOF was synthesized and, for the first time, was used as the electrode material for a supercapacitor. It exhibited large specific capacitance, high rate capability and cycling stability. Capacitances of 1127 and 668 F g−1 can be achieved at rates of 0.5 and 10 A g−1, respectively. At the same time, over 90% performance was retained after 3000 cycles. These excellent electrochemical properties may be related to the intrinsic characteristics of Ni-based MOF materials.

Journal ArticleDOI
TL;DR: In this paper, a review of the materials in use as counter electrodes in dye-sensitized solar cells is presented, along with a conclusion and future prospects section, with a succinct summary.
Abstract: Dye-sensitized solar cells (DSCs) present promising low-cost alternatives to the conventional silicon (Si)-based solar cells. A DSC consists of several components, the most prominent being a titanium dioxide/metal oxide-based photoanode, a dye, an electrolyte and a counter electrode. The photoexcited electrons from the dye diffuse through the TiO2 network in the photoanode and go to the counter electrode which generally consists of platinum (Pt) sputtered onto a fluorine-doped tin oxide (FTO) plate. The Pt in the counter electrode helps in the regeneration of dyes by catalysing the I− regeneration from the I3− species in the redox couple. The morphology of Pt, its surface roughness, nature of the exposed facet, etc. play a crucial role in determining the overall efficiency of a DSC device. With Pt being a costly noble metal, reasonable efforts have been made to find cheaper alternatives. The review presented below gives a succinct summary of the materials in use as counter electrodes in DSCs, with a conclusion and future prospects section.

Journal ArticleDOI
Jun Di1, Jiexiang Xia1, Sheng Yin1, Hui Xu1, Li Xu1, Yuanguo Xu1, Minqiang He1, Huaming Li1 
TL;DR: In this paper, a nanostructured heterojunction was formed with g-C3N4 covering the surface of BiOI microspheres uniformly, which contributed to improved electronhole separation and enhancement in photocatalytic activity.
Abstract: Novel sphere-like g-C3N4/BiOI composite photocatalysts were prepared by a one-pot EG-assisted solvothermal process in the presence of reactable ionic liquid 1-butyl-3-methylimidazolium iodine ([Bmim]I). The nanostructured heterojunction was formed with g-C3N4 covering the surface of BiOI microspheres uniformly. Multiple techniques were applied to investigate the structure, morphology and photocatalytic properties of as-prepared samples. During the reactive process, the ionic liquid acted as solvent, reactant, template and dispersing agent at the same time, leading to g-C3N4 being uniformly dispersed on the sphere-like BiOI surface. Three different types of dyes rhodamine B (RhB), methylene blue (MB), methyl orange (MO) were chosen as model pollutants to evaluate the photocatalytic activity of g-C3N4/BiOI composite. The as-prepared g-C3N4/BiOI composite exhibited much higher photocatalytic activity than the pure BiOI. At the same time, colourless endocrine disrupting chemical bisphenol A (BPA) and phenols 4-chlorophenol (4-CP) were chosen to further evaluate the photocatalytic activity of g-C3N4/BiOI composite. The g-C3N4/BiOI composite also exhibited much higher photocatalytic activity than the pure BiOI, which showed a broad spectrum of photocatalytic degradation activities. The results indicated that the formed heterojunction of g-C3N4 covers the BiOI microspheres contributed to improved electron–hole separation and enhancement in photocatalytic activity. A photocatalytic mechanism of g-C3N4/BiOI composites is also proposed.

Journal ArticleDOI
Wei Xia1, Jinghan Zhu1, Wenhan Guo1, Li An1, Dingguo Xia1, Ruqiang Zou1 
TL;DR: In this article, a nanostructured electrocatalyst engineered from molecular design and morphology evolution is reported, which is based on a typical Co-based metal-organic framework.
Abstract: We report a nanostructured electrocatalyst engineered from molecular design and morphology evolution. Using a typical Co-based metal–organic framework, ZIF-67, nanocrystals were precisely synthesized with tunable size and morphology. Nitrogen-doped carbon nano polyhedrons decorated with cobalt nanoparticles were fabricated via pyrolysis of ZIF-67 and the carbonized products inherited the nano-size and shape of the MOF precursor. The intense effect of size on the electrocatalytic activity and transport properties was systematically investigated. The catalyst derived from the smallest MOF (300 nm), exhibited superior performance towards oxygen reduction with an onset potential of 0.86 V and a half-wave potential of 0.71 V in acidic solution, which are comparable to the best carbon-based oxygen reduction reaction (ORR) catalysts. This work will pave the way for the development of MOF-derived energy materials in various fields such as fuel cells and Li-air batteries, and opens new avenues for the design of MOFs in electrochemical applications.

Journal ArticleDOI
TL;DR: In this paper, a review summarizes the recent significant progress in the design and fabrication of novel carbon-based anode catalysts via various strategies and their applications in methanol oxidation reaction.
Abstract: With the continuously increasing demand of energy along with depletion of conventional fossil fuel reserves and the rapidly escalating environmental problems, direct methanol fuel cells (DMFCs) as alternative green and sustainable power sources have aroused tremendous research interest in academic and engineering circles. In order to achieve high power density as well as low production cost of DMFCs, the well-designed and fabricated anode catalysts with controllable composition, architecture and morphology have been regarded as a key point for realizing high-performance. In this aspect, carbon materials, as building blocks, offer a great potential to play a key role in constructing advanced hybrid catalysts due to their exceptional physicochemical properties, such as high specific surface area, superior electronic conductivity, excellent stability and so on. This review summarizes the recent significant progress in the design and fabrication of novel carbon-based anode catalysts via various strategies and their applications in methanol oxidation reaction. Finally, perspectives on the challenges and research trends in this emerging area are also discussed.

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the recent advances in the synthesis and applications of graphene and its derivatives in the fields of energy storage (lithium ion, lithium air, lithium-sulphur batteries and supercapacitors) and conversion (oxygen reduction reaction for fuel cells).
Abstract: Due to their unique properties, together with their ease of synthesis and functionalization, graphene-based materials have been showing great potential in energy storage and conversion. These hybrid structures display excellent material characteristics, including high carrier mobility, faster recombination rate and long-time stability. In this review, after a short introduction to graphene and its derivatives, we summarize the recent advances in the synthesis and applications of graphene and its derivatives in the fields of energy storage (lithium ion, lithium–air, lithium–sulphur batteries and supercapacitors) and conversion (oxygen reduction reaction for fuel cells). This article further highlights the working principles and problems hindering the practical applications of graphene-based materials in lithium batteries, supercapacitors and fuel cells. Future research trends towards new methodologies to the design and the synthesis of graphene-based nanocomposite with unique architectures for electrochemical energy storage and conversion are also proposed.

Journal ArticleDOI
TL;DR: In this article, the authors discuss the use of either selective local doping or the introduction of disorder together with doping, which aims to facilitate charge separation while preserving the visible-light response.
Abstract: Semiconductor photocatalysis is a promising approach to combat both environmental pollution and the global energy shortage. Advanced TiO2-based photocatalysts with novel photoelectronic properties are benchmark materials that have been pursued for their high solar-energy conversion efficiency. In general, the photocatalytic efficiency is affected by the degree of light absorption, charge separation, and surface reactivity. Consequently, in this review we first discuss a series of interesting studies that aim to extend the light absorption of TiO2 from UV wavelengths into the visible or even the near-infrared region. We next focus on attempts to overcome the drawback that dopants usually act as charge recombination centres. We discuss the use of either selective local doping or the introduction of disorder together with doping, which aims to facilitate charge separation while preserving the visible-light response. We also show that crystal facet engineering can endow TiO2 with superior physicochemical properties, thus yielding high surface reactivity in photocatalytic reactions. Finally, we examine the recent theoretical advances of TiO2-based photocatalysis.

Journal ArticleDOI
TL;DR: In this paper, density functional calculations are performed to study the electronic structure, dielectric properties, and defect properties of β-CH3NH3PbI3, showing that Pb chemistry plays an important role in a wide range of material properties, i.e., small effective masses, enhanced Born effective charges and lattice polarization, and the suppression of the formation of deep defect levels.
Abstract: Halide perovskites have recently been shown to exhibit excellent carrier transport properties. Density functional calculations are performed to study the electronic structure, dielectric properties, and defect properties of β-CH3NH3PbI3. The results show that Pb chemistry plays an important role in a wide range of material properties, i.e., small effective masses, enhanced Born effective charges and lattice polarization, and the suppression of the formation of deep defect levels, all of which contribute to the exceptionally good carrier transport properties observed in CH3NH3PbI3. Defect calculations show that, among native point defects (including vacancies, interstitials, and antisites), only iodine vacancy is a low-energy deep trap and non-radiative recombination centre. Alloying iodide with chloride reduces the lattice constant of the iodide and significantly increases the formation energy of interstitial defects, which explains the observed substantial increase in carrier diffusion length in mixed halide CH3NH3PbI2Cl compared to that in CH3NH3PbI3.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the energy storage mechanism of NiCo2O4, summarized the methodologies and nanostructures discovered in recent years, and pointed out the potential problems and future prospects of utilizing NiCo 2O4-based materials as supercapacitor electrodes.
Abstract: Nickel cobaltite (NiCo2O4), with excellent electrochemical performance, has become a new class of energy storage material for electrochemical supercapacitors, which facilitates to relieve the pressure of energy crisis and environmental pollution. It possesses richer electroactive sites and at least two magnitudes higher electrical conductivity than that of NiO and Co3O4, which exhibit not only large power density, but also high energy density of up to 35 W h kg−1. Furthermore, it shows comparable capacitive performances with noble metal oxides of RuO2, but with much lower cost and more abundant resources. This feature article briefly analyses the energy storage mechanism of NiCo2O4, summarizes the methodologies and nanostructures discovered in recent years, and points out the potential problems and future prospects of utilizing NiCo2O4-based materials as supercapacitor electrodes. Moreover, composite electrodes based on nickel cobaltite are also elaborated with considerable interest. Since the pioneering work of Hu and his group in 2010, numerous research studies have also demonstrated NiCo2O4 electrodes to show remarkable supercapacitive performances; however, more specialized work should be performed to further develop the potential of this novel electrode material so as to realize their massive commercial applications.

Journal ArticleDOI
TL;DR: In this article, the high-temperature dielectric and microwave absorption properties of SiO2-based composites loaded with ZnO@MWCNTs (ZnO/MWcNTs/SiO2) were investigated in 8.2-12.4 GHz and in the 373-673 K temperature range.
Abstract: Light weight and high efficiency are two key factors for microwave absorption materials. In particular, it is extremely important that absorption materials meet the harsh requirements of thermal environments. In this work, multi-wall carbon nanotubes decorated with ZnO nanocrystals (ZnO@MWCNTs) were synthesized by a mild solution-process synthesis. The high-temperature dielectric and microwave absorption properties of SiO2-based composites loaded with ZnO@MWCNTs (ZnO@MWCNTs/SiO2) are investigated in 8.2–12.4 GHz and in the 373–673 K temperature range. The imaginary permittivity e′′ of the composite with 5 wt% loading presents a weak downward trend, while those of the composites with 10 and 15 wt% loading show an upward trend with increasing temperature, which reveals different temperature dependences of e′′. The e′′ for 15 wt% loading is about 10 times that for 5 wt% loading. The maximum loss tangent tan δ values of the composites with 10 and 15 wt% loading exceed 0.8, while that of the composites with 5 wt% loading is less than 0.3. High tan δ is mainly attributed to the conductivity of ZnO@MWCNTs, which is dominated by the hopping of electrons in the ZnO@MWCNT network, which increases with elevated temperature. The addition of ZnO properly adjusts the complex permittivity to endow the ZnO@MWCNT/SiO2 composites with highly efficient and thermally stable microwave absorption coupled with a broad attenuation bandwidth, which almost covers the full X-band for RL ≤ −10 dB. A series of outstanding properties of ZnO@MWCNTs imply that it is a promising functional material in the world of microwave absorption.