scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Materials Research in 1992"


Journal ArticleDOI
TL;DR: In this paper, the authors used a Berkovich indenter to determine hardness and elastic modulus from indentation load-displacement data, and showed that the curve of the curve is not linear, even in the initial stages of the unloading process.
Abstract: The indentation load-displacement behavior of six materials tested with a Berkovich indenter has been carefully documented to establish an improved method for determining hardness and elastic modulus from indentation load-displacement data. The materials included fused silica, soda–lime glass, and single crystals of aluminum, tungsten, quartz, and sapphire. It is shown that the load–displacement curves during unloading in these materials are not linear, even in the initial stages, thereby suggesting that the flat punch approximation used so often in the analysis of unloading data is not entirely adequate. An analysis technique is presented that accounts for the curvature in the unloading data and provides a physically justifiable procedure for determining the depth which should be used in conjunction with the indenter shape function to establish the contact area at peak load. The hardnesses and elastic moduli of the six materials are computed using the analysis procedure and compared with values determined by independent means to assess the accuracy of the method. The results show that with good technique, moduli can be measured to within 5%.

22,557 citations


Journal ArticleDOI
TL;DR: In this paper, Sneddon's analysis for the elastic contact between a rigid, axisymmetric punch and an elastic half space is used to show that a simple relationship exists between the contact stiffness, the contact area, and the elastic modulus that is not dependent on the geometry of the punch.
Abstract: Results of Sneddon's analysis for the elastic contact between a rigid, axisymmetric punch and an elastic half space are used to show that a simple relationship exists between the contact stiffness, the contact area, and the elastic modulus that is not dependent on the geometry of the punch. The generality of the relationship has important implications for the measurement of mechanical properties using load and depth sensing indentation techniques and in the measurement of small contact areas such as those encountered in atomic force microscopy.

1,363 citations


Journal ArticleDOI
TL;DR: In this paper, a new analysis of the deflection of square and rectangular membranes of varying aspect ratio under the influence of a uniform pressure is presented, and the influence on the residual stresses on the deformation of membranes is examined.
Abstract: A new analysis of the deflection of square and rectangular membranes of varying aspect ratio under the influence of a uniform pressure is presented. The influence of residual stresses on the deflection of membranes is examined. Expressions have been developed that allow one to measure residual stresses and Young's moduli. By testing both square and rectangular membranes of the same film, it is possible to determine Poisson's ratio of the film. Using standard micromachining techniques, free-standing films of LPCVD silicon nitride were fabricated and tested as a model system. The deflection of the silicon nitride films as a function of film aspect ratio is very well predicted by the new analysis. Young's modulus of the silicon nitride films is 222 ± 3 GPa and Poisson's ratio is 0.28 ± 0.05. The residual stress varies between 120 and 150 MPa. Young's modulus and hardness of the films were also measured by means of nanoindentation, yielding values of 216 ± 10 GPa and 21.0 ± 0.9 GPa, respectively.

680 citations


Journal ArticleDOI
TL;DR: In this article, a software-controlled hardness tester (Nanoindenter) operating in the load range 2-60 mN was used to characterize the deformation structures associated with these very small-scale hardness impressions.
Abstract: The ultra-low load indentation response of ceramic single crystal surfaces (Al2O3, SiC, Si) has been studied with a software-controlled hardness tester (Nanoindenter) operating in the load range 2–60 mN. In all cases, scanning and transmission electron microscopy have been used to characterize the deformation structures associated with these very small-scale hardness impressions. Emphasis has been placed on correlating the deformation behavior observed for particular indentations with irregularities in recorded load-displacement curves. For carefully annealed sapphire, a threshold load (for a given indenter) was observed below which the only surface response was elastic flexure and beyond which dislocation loop nucleation occurred at, or near, the theoretical shear strength to create the indentation. This onset of plasticity was seen as a sudden displacement discontinuity in the load-displacement response. At higher loads, indentations appeared to be accommodated predominantly by dislocation activity, though microcracks were observed to form at contact loads of only tens of milliNewtons. Possibly such cracks are the incipient slip-induced nuclei for the much larger, indentation-induced cracks usually apparent only on the surface at much higher loads and often used for estimating indentation toughness. By contrast, silicon did not show this behavior but exhibited unusually large amounts of depth recovery within indentations, resulting in a characteristic reverse thrust on the indenter during unloading. TEM studies of indentations in silicon revealed less evidence of obvious dislocation activity than in sapphire (particularly at the lowest loads used) but did show residual highly imperfect–and often amorphous–structures within the indentations, consistent with a densification transformation occurring at the very high hydrostatic stresses produced under the indenter. The reverse thrust is caused by the relaxation of densified material during unloading. Thus, it appears that the low-load hardness response of silicon is controlled by a pressure-sensitive phase transformation. Though SiC has been predicted to undergo a densification transformation similar to silicon, its load-displacement behavior was found to be similar to Al2O3 suggesting that, for these contact experiments at least, the critical resolved shear stress for dislocation nucleation is exceeded before the critical hydrostatic pressure for densification is reached. In all cases, residual, plastically formed indentations were measured to be smaller than the fully loaded indentation depths would suggest, confirming that a significant portion of the deformation is elastic surface flexure. However, there is some doubt as to whether silicon displays elastic-only deformation even at very small penetration depths. The use of microstructural studies to complement nanoindentation experiments is shown to be a key route not only to interpreting the recorded load-displacement responses, but also to examining the deformation mechanisms controlling the mechanical behavior of ceramics to surface contacts at these small spatial scales.

509 citations


Journal ArticleDOI
TL;DR: In this article, the deformation process causes a decrease of the grain size of the fcc metals to 6-22 nm for the different elements, and the final grain size scales with the melting point and the bulk modulus of the respective metal.
Abstract: Nanocrystalline fcc metals have been synthesized by mechanical attrition. The crystal refinement and the development of the microstructure have been investigated in detail by x-ray diffraction, differential scanning calorimetry, and transmission electron microscopy. The deformation process causes a decrease of the grain size of the fcc metals to 6–22 nm for the different elements. The final grain size scales with the melting point and the bulk modulus of the respective metal: the higher the melting point and the bulk modulus, the smaller the final grain size of the powder. Thus, the ultimate grain size achievable by this technique is determined by the competition between the heavy mechanical deformation introduced during milling and the recovery behavior of the metal. X-ray diffraction and thermal analysis of the nanocrystalline powders reveal that the crystal size refinement is accompanied by an increase in atomic-level strain and in the mechanically stored enthalpy in comparison to the undeformed state. The excess stored enthalpies of 10–40% of the heat of fusion exceed by far the values known for conventional deformation processes. The contributions of the atomic-level strain and the excess enthalpy of the grain boundaries to the stored enthalpies are critically assessed. The kinetics of grain growth in the nanocrystalline fcc metals are investigated by thermal analysis. The activation energy for grain boundary migration is derived from a modified Kissinger analysis, and estimates of the grain boundary enthalpy are given.

434 citations


Journal ArticleDOI
TL;DR: In this article, the authors measured stress variations with temperature as a function of film thickness and a given grain size in pure Al and Al-0.5% Cu films on Si substrates.
Abstract: We have measured stress variations with temperature as a function of film thickness and a given grain size in pure Al and Al–0.5% Cu films on Si substrates. The variation in thickness for a given grain size is brought about by using the same film and the repeated controlled growth and dissolution of a barrier anodic oxide which can be grown uniformly on the film. Stress measurements were made as a function of temperature by measuring wafer curvature after successively removing each 0.1 μm of Al film. The components of strengthening due to the film thickness and the presence of grain boundaries were separated by assuming that the flow stress of the film is simply the sum of these two components. It is found that strengthening due to film thickness varies inversely with the thickness, which is consistent with results obtained by us using laser-reflowed films in an earlier work. The Hall–Petch coefficients calculated from the strengthening due to the grain boundaries are slightly higher than those reported for bulk Al. However, it is also recognized that the variation of the flow stress as g−1, where g is the grain size, is more plausible than that predicted by the Hall–Petch relation (i.e., as g−1/2). The variations of these two components with temperature, and under tension and compression, are discussed.

344 citations


Journal ArticleDOI
TL;DR: In this article, the first-order x-ray superlattice reflection intensities indicated that the composition modulation amplitude increased and the coherency strains decreased for Λ increased from 2 to 10 nm.
Abstract: Epitaxial TiN/NbN superlattices with wavelengths/ranging from 1.6 to 450 nm have been grown by reactive magnetron sputtering on MgO(100). Cross-sectional transmission electron microscopy (XTEM) studies showed well-defined superlattice layers. Voided low-angle boundaries, aligned perpendicular to the film plane, were also present. High-resolution images showed misfit dislocations for Λ = 9.4 nm, but not Λ = 4.6 nm. Up to ninth-order superlattice reflections were observed in diffraction, indicating that the interfaces were relatively sharp. Analysis of the first-order x-ray superlattice reflection intensities indicated that the composition modulation amplitude increased and the coherency strains decreased for Λ increased from 2 to 10 nm. Vickers microhardness H was found to increase rapidly with increasing Λ, from 1700 kg/mm2 for a TiN–NbN alloy (i.e., Λ = 0) to a maximum of 4900 kg/mm2 at Λ = 4.6 nm. H decreased gradually for further increases in Λ above 4.6 nm, to H = 2500 kg/mm2 at Λ = 450 nm. The hardness results are compared with theories for strengthening of multilayers.

333 citations


Journal ArticleDOI
TL;DR: The properties of the Y1−xPrxBa2Cu3O7 (YPrBCO) system are reviewed in this paper, including superconducting, normal state, structural, chemical, optical, magnetic, and thermal properties.
Abstract: The properties of the Y1−xPrxBa2Cu3O7 (YPrBCO) system are reviewed. These include superconducting, normal state, structural, chemical, optical, magnetic, and thermal properties. The destruction of superconductivity with Pr doping is discussed in view of possible models such as hole filling, localization, magnetic pair-breaking, and the role of hybridization. Applications to electronic devices using YBCO/PrBCO/YBCO multilayers are also reviewed.

327 citations


Journal ArticleDOI
TL;DR: In this article, the authors review several existing models for describing the deformation behavior of a circular thin film in a bulge test, and then analyze these models in light of the finite element results.
Abstract: Since its first application to thin films in the 1950's the bulge test has become a standard technique for measuring thin film mechanical properties. While the apparatus required for the test is simple, interpretation of the data is not. Failure to recognize this fact has led to inconsistencies in the reported values of properties obtained using the bulge test. For this reason we have used the finite element method to model the deformation behavior of a thin film in a bulge test for a variety of initial conditions and material properties. In this paper we will review several of the existing models for describing the deformation behavior of a circular thin film in a bulge test, and then analyze these models in light of the finite element results. The product of this work is a set of equations and procedures for analyzing bulge test data that will improve the accuracy and reliability of this technique.

296 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the finite element method to explore the mechanics of the microindentation process and provided a more critical examination of the amount of pileup or sink-in around the indenter in the fully loaded configuration, as well as the variation of the actual contact area during indenter withdrawal.
Abstract: In this paper the finite element method is used to explore the mechanics of the microindentation process. In the simulations discussed, aluminum and silicon are investigated both in their bulk forms and in thin film-substrate combinations. Among the quantities readily computed using this approach and given in this paper are hardness (computed using actual contact area), contact stiffness, effective composite modulus, and surface profile under load. Importantly, this investigation builds on previous work by providing a more critical examination of the amount of pileup (or sink-in) around the indenter in the fully loaded configuration, as well as the variation of the actual contact area during indenter withdrawal. A key conclusion of this study is that finite element simulations do not support the widely used assumption of constancy of area during unloading (for either bulk materials or thin film systems). Furthermore, the amount of pileup or sink-in can be appreciable. The implication of these findings is that for many situations the commonly used straight-line extrapolation of a plastic depth may render an estimate for the contact area that is quite distinct from the actual area. This assertion is demonstrated herein through comparison of hardnesses calculated using actual contact area with values calculated using the straight-line extrapolation of plastic depth.

209 citations


Journal ArticleDOI
TL;DR: In this paper, the formation of a polyester between citric acid and ethylene glycol was found to be a decisive factor for the foaming of resin intermediates in a Pechini-type powder process.
Abstract: The formation of a polyester between citric acid (CA) and ethylene glycol (EG) was found to be a decisive factor for the foaming of resin intermediates in a Pechini-type powder process. This process was modified by changing the organic mass ratio of CA/EG which results in ceramic powders with different morphologies. The most porous resin intermediate (with or without chelated cations) was prepared using a polymeric gel made of equimolar citric acid and ethylene glycol. It was also found that a premixing of organic components, prior to adding constituent nitrate solutions, makes the whole process more controllable.

Journal ArticleDOI
TL;DR: In this paper, the current state of the art for producing semiconductor devices from these materials is evaluated, and recommendations for areas needing further research are outlined, as well as a review of current state-of-the-art techniques for these materials.
Abstract: Diamond, silicon carbide, gallium nitride, aluminum nitride, and boron nitride are currently under development for both electronic and optoelectronic semiconductor devices. Predictions based on their physical properties indicate that devices made from these materials should be far superior to currently available devices in high power, high frequency, and short wavelength applications. Yet actual device implementation requires that adequate materials processing technology exists. In this review, the current state of the art for producing semiconductor devices from these materials is evaluated, and recommendations for areas needing further research are outlined.

Journal ArticleDOI
TL;DR: In this article, a careful analysis of the available results on the basis of existing models suggests that there is a critical grain size below which the triple junction volume fraction increases considerably over the grain boundary volume fraction and this is suggested to be responsible for the observed softening at small grain sizes.
Abstract: Nanocrystalline materials have a grain size of only a few nanometers and are expected to possess very high hardness and strength values. Even though the hardness/strength is expected to increase with a decrease in grain size, recent observations have indicated that the hardness increases in some cases and decreases in other cases. A careful analysis of the available results on the basis of existing models suggests that there is a critical grain size below which the triple junction volume fraction increases considerably over the grain boundary volume fraction and this is suggested to be responsible for the observed softening at small grain sizes.

Journal ArticleDOI
TL;DR: In this paper, the LaMer and Dinegar method was used to obtain uniform α-Fe2O3 particles from hydrolyzed ferric chloride solutions at 100 °C.
Abstract: Uniform α–Fe2O3 particles of varying axial ratios have been prepared from hydrolyzed ferric chloride solutions at 100 °C. In the absence of phosphate anions, spherical particles were obtained by a mechanism that follows the classical LaMer and Dinegar scheme. However, in the presence of phosphates ellipsoidal particles were observed, with their formation taking place through an aggregation process from smaller primary particles of α–Fe2O3. It is also shown that all particles are monocrystalline irrespective of their formation mechanism.

Journal ArticleDOI
TL;DR: In this paper, the properties of nanocrystalline ZnO have been examined using nanindenter techniques to determine hardness, Young's modulus, and strain rate sensitivity.
Abstract: A number of nanocrystalline ceramics have been fabricated by the gas phase condensation technique. The mechanical properties of one of the first ceramics produced by this method, nanophase TiO{sub 2},have been discussed in an earlier study. This paper reports a similar study undertaken to examine the properties of nanocrystalline ZnO. Nanoindenter techniques are used to determine hardness, Young's modulus, and strain rate sensitivity in ultra-fine grained ZnO. Significant properties variations are experienced within a given sample, indicating a large degree of microstructural inhomogeneity. Nevertheless, a distinct evolution in properties can be observed as a function of sintering temperature. Young's modulus and hardness values increase almost linearly with increasing sintering temperature, and, in addition, there also appears to be a linear correlation between the development of the two materials properties. In contrast, strain rate sensitivity is shown to have an inverse dependence on sintering temperature. This dependence appears to be linked to the strong influence of grain size on strain rate sensitivity, so that the lower sintering temperatures, which provide the finer grain sizes, tend to promote strain rate sensitivity. The results of this study are strikingly similar to those obtained earlier for nanophase TiO{sub 2}, and they indicate that themore » earlier results could probably be generalized to a much broader range of nanocrystalline ceramics.« less

Journal ArticleDOI
TL;DR: The unidirectional solidification of the zone melt method was performed in order to clarify the growth mechanism on Y-system superconductors as mentioned in this paper, and a sharp faceted interface of YBa2Cu3Oy (123) crystals was obtained in the sample grown at the low growth rate of 1 mm/h.
Abstract: The unidirectional solidification of the zone melt method was performed in order to clarify the growth mechanism on Y-system superconductors A sharp faceted interface of YBa2Cu3Oy (123) crystals was obtained in the sample grown at the low growth rate of 1 mm/h The volume of the 211 phase changed drastically from liquid to 123 crystal These results lead to the idea that the necessary solute for peritectic reaction is provided through a liquid Based on this idea, we developed a simple solidification model that is in good agreement with the experimental results

Journal ArticleDOI
TL;DR: In this article, the luminescence spectra of Eu3+ in sol-gel derived silica samples heated at different temperatures were compared to study the structural evolution of the gel network.
Abstract: This paper compares the luminescence spectra of Eu3+ in sol-gel derived silica samples heated at different temperatures, following the densification process from wet gel to compact silica glass Lifetimes, linewidths, and Stark splittings of the transitions were used to study the structural evolution of the gel network

Journal ArticleDOI
TL;DR: In this paper, molecular species were found to diffuse readily into the octahedral interstitial sites of the fcc lattice of C{sub 60, and the down-field shift obeys Curie's law and is attributed to the Fermi-contact interaction between paramagnetic oxygen molecules and all 60 carbon atoms of rapidly rotating adjacent molecules.
Abstract: Molecular species were found to diffuse readily into the octahedral interstitial sites of the fcc lattice of C{sub 60}. The {sup 13}C NMR spectrum of C{sub 60} under magic angle spinning (MAS) conditions consisted of a primary resonance at 143.7 ppm and a minor peak shifted 0.7 ppm downfield. The downfield shift obeys Curie's law and is attributed to the Fermi-contact interaction between paramagnetic oxygen molecules and all 60 carbon atoms of rapidly rotating adjacent C{sub 60} molecules. Exposure of C{sub 60} to 1 kbar oxygen for 1.75 h at room temperature resulted in a spectrum of seven evenly spaced resonances corresponding to the filling of 0 to 6 of the adjacent octahedral interstitial sites with oxygen molecules. The distribution of site occupancies about a C{sub 60} molecule provided evidence that the intercalation process is controlled by diffusion kinetics. Exposure to 0.14 kbar hydrogen gas at room temperature for 16 h filled a substantial fraction of the interstitial sites of C{sub 60} and C{sub 70} with hydrogen molecules.

Journal ArticleDOI
TL;DR: In this article, the extent of phase transformation occurring in silicon during room-temperature indentation experiments has been examined by transmission electron microscopy of low-load microindents and the results show that the entire hardness impression arises from structural transformation and extrusion of a ductile high pressure phase.
Abstract: The extent of phase transformation occurring in silicon during room-temperature indentation experiments has been examined by transmission electron microscopy of low-load microindents. The results show that the entire hardness impression arises from structural transformation and extrusion of a ductile high pressure phase. In particular, there is no dislocation activity or other mechanism of plastic deformation operating outside the clearly demarcated transformation zone. The observable impression consists of an amorphous transformation zone with an adjacent region of plastically extruded material and a layer of polycrystalline silicon at the near-surface transformation interface.

Journal ArticleDOI
TL;DR: In this paper, the synthesis of new materials termed organoceramics in which polymers are molecularly dispersed within inorganic crystalline phases is reported, which may not only have unique morphologies and physical properties but may also lead to new processing methods for ceramic-based materials.
Abstract: We report here on the synthesis of new materials termed organoceramics in which polymers are molecularly dispersed within inorganic crystalline phases. These nanocomposite materials may not only have unique morphologies and physical properties but may also lead to new processing methods for ceramic-based materials. In organoceramics polymer molecules could opportunistically occupy sites such as grain boundaries or other two-dimensional defects, nanopores, lattice channels, or interlamellar spaces. Our synthetic approach to get macromolecules to those sites is to nucleate and grow inorganic crystals from homogeneous solutions containing the polymer chains as co-solutes. The new materials discussed in this manuscript were synthesized by growing calcium aluminate crystals in the presence of water soluble polymers and were characterized by x-ray diffraction, scanning electron microscopy, elemental analysis, and diffuse reflectance infrared spectroscopy. The macromolecules used in organoceramic synthesis included poly(vinyl alcohol), poly(dimethyldiallyl ammonium chloride), and poly(dibutyl ammonium iodide). We found that the chemistry of polymer repeats can impact on the spatial distribution of the dispersed organic chains and also on the morphology of organoceramic powders. In the case of the poly(vinyl alcohol) organoceramic the polymer is intercalated in “flattened” conformations in Ca2Al(OH)6[X] ·nH2O, thus increasing the distance between ionic layers from 7.9 A to ∊ 18 A (X is a monovalent or divalent anion). Such a layered nanocomposite can be formed only by intercalating the poly(vinyl alcohol) during growth of the Ca2Al(OH)6[X] · nH2O crystal. The synthetic pathway is therefore able to overcome large entropic barriers and incorporate significant amounts of polymer in the organoceramic product, in some cases up to 38% by weight. The particles of this nanocomposite are spheroidal aggregates of thin plate crystals whereas the use of a polycationic polymer in the synthesis leads to rod-like particles in which organic chains may reside in channels of the inorganic crystal.

Journal ArticleDOI
TL;DR: In this article, two equations for determining the hardness of thin films from depth-sensing indentation data are examined, one based on an empirical fit of hardness versus indenter displacement data obtained from finite element calculations on a variety of hypothetical films and the other based on a model which assumes that measured hardness is determined by the weighted average of the volume of plastically deformed material in the coating and that in the substrate.
Abstract: Two equations for determining the hardness of thin films from depth-sensing indentation data are examined. The first equation is based on an empirical fit of hardness versus indenter displacement data obtained from finite element calculations on a variety of hypothetical films. The second equation is based on a model which assumes that measured hardness is determined by the weighted average of the volume of plastically deformed material in the coating and that in the substrate. The equations are evaluated by fitting the predicted hardness versus contact depth to data obtained from titanium coatings on a sapphire substrate. Only the volume fractions model allows the data to be fitted with a single adjustable parameter, the film hardness; the finite element equation requires two thickness-dependent parameters to obtain acceptable fits. It is argued that the difficulty in applying the finite element model lies in the use of an unrealistic area function for the indenter. For real indenters, which have finite radii, the area function must appear explicitly in the final equation. This is difficult to do with the finite element approach, but is naturally incorporated into the volume fractions equation. Finally, using the volume fractions approach the hardnesses of the titanium films are found to be relatively insensitive to film thickness. Thus, the apparent increase in hardness with decreasing film thickness for the titanium films is most likely due to increased interactions between the film and substrate for the thinner films rather than to a change in the basic structure of the titanium films.

Journal ArticleDOI
TL;DR: In this article, the authors used polycrystalline MoSi2 to characterize the pest reaction and to determine the roles of composition, grain or phase boundaries, and physical defects on the oxidation and fracture of specimens exposed to air at 500 °C.
Abstract: MoSi2 is a promising high-temperature material with low density (6.3 g/cm3), high melting point (2020 °C), and good oxidation resistance at temperatures to about 1900 °C. However, in the intermediate temperature range between 400 and 600 °C, it is susceptible to a “pest” reaction which causes catastrophic disintegration by a combination of oxidation and fracture. In this study, we have used polycrystalline MoSi2, produced by arc-casting of the pure elements and by cold and hot pressing of alloy powders, to characterize the pest reaction and to determine the roles of composition, grain or phase boundaries, and physical defects on the oxidation and fracture of specimens exposed to air at 500 °C. It was found that pest disintegration occurs through transport of oxygen into the interior of the specimen along pre-existing cracks and/or pores, where it reacts to form MoO3 and SiO2. The internal stress produced during the formation of MoO3 results in disintegration to powder. Near the stoichiometric ratio, the susceptibility to pest disintegration increases with increasing molybdenum content and with decreasing density. Silicon-rich alloys were able to form protective SiO2 and showed no indication of disintegration, even at densities as low as 60%.

Journal ArticleDOI
TL;DR: In this article, a variety of TiO{sub 2} materials, including a nanophase TiOsub 2 powder, were evaluated for their ability to dissociatively adsorb sulfide in a H{ sub 2} environment.
Abstract: A variety of TiO{sub 2} materials, including a nanophase TiO{sub 2} powder, were evaluated for their ability to dissociatively adsorb H{sub 2}S in a H{sub 2} environment. A temperature programmed desorption technique was used to determine the rate of sulfide accumulation on the surface of the samples as a measurement of initial activity. The initial activity for the gas condensation-produced nanophase TiO{sub 2} with its rutile structure was found to be greater than that for other samples of TiO{sub 2} tested. When normalized for surface area, the initial specific activities of the rutile samples studied for the dissociative adsorption of H{sub 2}S were similar in magnitude, but significantly higher than those of the anatase TiO{sub 2} samples investigated. Thus, the improvement in the activity is attributed mainly to the ability of the nanophase synthesis method to produce high surface area rutile TiO{sub 2}. When evaluated using x-ray photoelectron spectroscopy, the nanophase TiO{sub 2} was found to be significantly deficient in oxygen. Annealing this material in oxygen decreased the number of anion vacancies and lowered the activity. Thus, we conclude that oxygen vacancies also contribute to the H{sub 2}S dissociative adsorption activity.

Journal ArticleDOI
TL;DR: In this paper, the effects of indentation on the electrical resistance of rectifying gold-chromium contacts on silicon and germanium have been studied using nanoindentation techniques, and it was shown that a large portion of the resistance drop is due to decreases in the resistance of the metal-to-semiconductor interface rather than the bulk semiconductor.
Abstract: The effects of indentation on the electrical resistance of rectifying gold-chromium contacts on silicon and germanium have been studied using nanoindentation techniques. The DC resistance of circuits consisting of positively and negatively biased contacts with silicon and germanium in the intervening gap was measured while indenting either directly in the gap or on the contacts. Previous experiments showed that a large decrease in resistance occurs when an indentation bridges a gap, which was used to support the notion that a transformation from the semiconducting to the metallic state occurs beneath the indenter. The experimental results reported here, however, show that a large portion of the resistance drop is due to decreases in the resistance of the metal-to-semiconductor interface rather than the bulk semiconductor. Experimental evidence supporting this is presented, and a simple explanation for the physical processes involved is developed which still relies on the concept of an indentation-induced, semiconducting-to-metallic phase transformation.

Journal ArticleDOI
TL;DR: In this article, Johnson and Oh developed Embedded Atom Method potentials for bcc metals (Na, Li, K, V, Nb, Ta, Mo, W, Fe).
Abstract: Johnson and Oh have recently developed Embedded Atom Method potentials for bcc metals (Na, Li, K, V, Nb, Ta, Mo, W, Fe). The predictive power of these potentials was first tested by calculating vacancy formation and migration energies. Due to the results of these calculations, some of the functions were slightly modified to improve their fit to vacancy properties. The modified potentials were then used to calculate phonon dispersion curves, surface relaxations, surface energies, and thermal expansion. In addition, Johnson’s alloy model, which works well for fcc metals, was applied to the bcc metals to predict dilute heats of solution.

Journal ArticleDOI
TL;DR: In this article, AlN powders (particle size = 0.44 ± 0.08 μm) containing no deliberate sintering additives were consolidated to near theoretical density in 5 min at 2003 K (1730 °C) using a PAS process.
Abstract: AlN powders (particle size = 0.44 ± 0.08 μm) containing no deliberate sintering additives were consolidated to near theoretical density in 5 min at 2003 K (1730 °C) using a Plasma Activated Sintering (PAS) process. PAS is a novel consolidation method that combines a very short time at high temperature with pressure application in a plasma environment. The in situ cleaning ability of powder particle during plasma activated densification leads to enhanced particle sinterability. The densities of undoped AlN specimens that were PAS consolidated at 2003 K for 5 min under 50 MPa pressure ranged from 97.5 to 99.3% of theoretical. The initial submicron particle size of AlN powders was retained in the final microstructure that consisted of polycrystalline grains with an average size of ≍0.77 ± 0.1 μm.

Journal ArticleDOI
TL;DR: In this paper, a depth-sensing indentation instrument with indentation depths in the submicron range was used for constant load creep experiments on polycrystalline Sn and sputtered Al films on Si substrates.
Abstract: Constant load creep experiments were conducted using a depth-sensing indentation instrument with indentation depths in the submicron range. Experiments were conducted on polycrystalline Sn and sputtered Al films on Si substrates. The results show that the plastic depth versus time curves and the strain rate versus stress plots from these experiments are analogous to those obtained from conventional creep experiments using bulk specimens. The value of the stress exponent for Sn is close to the reported values from uniaxial creep tests. Tests on Al films showed that the stress exponent is dependent on the indentation depth and is governed by the proximity to the film/substrate interface. Load change experiments were also performed and the data from these tests were analyzed. It is concluded that indentation creep experiments may be useful in elucidating the deformation properties of materials and in identifying deformation mechanisms.

Journal ArticleDOI
TL;DR: In this article, the phase evolution of Pb(Zr0.53Ti0.47)O3 (PZT 53/47) films was analyzed using transmission electron microscopy (TEM).
Abstract: We report on the microstructural analyses of chemically prepared Pb(Zr0.53Ti0.47)O3 (PZT 53/47) films. Although several techniques were used to analyze films, transmission electron microscopy (TEM) was emphasized. Phase evolution of these films, fabricated using hybrid metallo-organic decomposition (HMD), was determined by processing films at temperatures ranging from 500 °C to 650 °C. Our films, when observed with an optical microscope, appeared to consist of two distinct phases: (1) a featureless matrix and (2) 1–2 μm diameter “rosettes”. PZT films fired at 500 °C consisted of a pyrochlore containing phase (featureless matrix) and contained no perovskite, whereas films fired at 600 °C were ferroelectric and were approximately 90% perovskite (rosettes) by volume. Our TEM analysis showed that the pyrochlore-containing phase consisted of interpenetrating nanocrystalline pyrochlore and amorphous phases, both with dimensions on the order of 5 nm. For PZT films processed at 650 °C, the perovskite phase was observed in two forms: (1) large (≍2 μm) rosette structures containing 30 nm pores and (2) dense equiaxed particles on the order of 100 nm. We propose that phase evolution—with increasing temperature of HMD PZT 53/47 films—consists of the following steps: (1) phase separation, probably occurring in solution, (2) pyrochlore crystallization, (3) heterogeneous nucleation of perovskite PZT, and (4) homogeneous nucleation of perovskite PZT.

Journal ArticleDOI
TL;DR: In this article, three distinctive morphologies of SiC whiskers were observed: thin and straight, thick and bamboo-like, and smooth, and the relationship between the morphological development of the whiskers and stacking fault energy was determined.
Abstract: SiC whiskers were synthesized by the carbothermal reduction of silica with an addition of halide (3NaF{center dot}AlF{sub 3} or NaF) as an auxiliary bath. The whiskers were {beta} phase (3C) and grew in the (111) direction. Three distinctive morphologies were observed: (1) Type A: thin and straight; (2) Type B: thick and bamboo-like; and (3) Type C: thick, straight, and smooth. Type A whiskers contained a high density of basal plane (111) stacking faults along their entire length, whereas Type B whiskers showed periodic changes between stacking faults and well-defined single crystals. Type C whiskers showed stacking faults on the other {l brace}111{r brace} planes instead of on the basal (111) plane. Silica formed molten fluorosilicate with halide and SiC grew via a vapor-solid reaction mechanism through gaseous SiO. These reactions can be expressed as (SiO{sub 2})+C(s)=SiO(g)+CO(g) and SiO(g)+3CO(g)=SiC(s)+2CO{sub 2}(g). The effects of processing parameters on the morphology and size of the whiskers were examined and the relationship between the morphological development of the whiskers and the stacking fault energy was determined.

Journal ArticleDOI
TL;DR: In this paper, the effect of temperature and of Si to Ti concentration ratio on particle morphology was investigated using a counterflow diffusion flame burner for the formation of oxide particles in hydrogen-oxygen flames.
Abstract: Mixed oxide powders, e.g., Al2O3−TiO2, SiO2−GeO2, and TiO2−SiO2, are used in industry to produce ceramics, optical fibers, catalysts, and paint opacifiers. The properties of these products depend upon the morphology of the powders. Ceramics and optical fibers are produced using either a uniform mixture of multicomponent particles or a uniform solution. The desired morphology for catalysts is a high surface area and many active sites. TiO2 coated with a layer of SiO2 is the desired structure for use as a paint opacifier. In this paper, TiO2−SiO2 mixed oxide powders were synthesized using a counterflow diffusion flame burner. TiCl4 and SiCl4 were used as source materials for the formation of oxide particles in hydrogen-oxygen flames. In situ particle sizes were determined using dynamic light scattering. A thermophoretic sampling method also was used to collect particles directly onto carbon coated grids, and their size, morphology, and crystalline form examined using a transmission electron microscope. A photomultiplier at 90° to the argon ion laser beam was used to measure the light-scattering intensity. The effect of temperature and of Si to Ti concentration ratio on particle morphology was investigated. Strong temperature dependence was observed. At high temperatures, TiO2 particles were covered with discrete SiO2 particles. At low temperatures, the structure changes to TiO2 particles encapsulated by SiO2. TEM diffraction pattern measurements showed that the TiO2 is rutile and the SiO2 is amorphous silica. At high Si to Ti ratios, SiO2-encapsulated TiO2 particles form. At low Si to Ti ratios, one obtains TiO2 particles covered with discrete SiO2 particles.