scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Materials Research in 2020"


Journal ArticleDOI
TL;DR: Farkas and Caro as discussed by the authors developed a set of embedded atom model (EAM) interatomic potentials to represent highly idealized face-centered cubic (FCC) mixtures of Fe−Ni−Cr−Co−Al at nearequiatomic compositions.
Abstract: A set of embedded atom model (EAM) interatomic potentials was developed to represent highly idealized face-centered cubic (FCC) mixtures of Fe–Ni–Cr–Co–Al at near-equiatomic compositions. Potential functions for the transition metals and their crossed interactions are taken from our previous work for Fe–Ni–Cr–Co–Cu [D. Farkas and A. Caro: J. Mater. Res. 33 (19), 3218–3225, 2018], while cross-pair interactions involving Al were developed using a mix of the component pair functions fitted to known intermetallic properties. The resulting heats of mixing of all binary equiatomic random FCC mixtures not containing Al is low, but significant short-range ordering appears in those containing Al, driven by a large atomic size difference. The potentials are utilized to predict the relative stability of FCC quinary mixtures, as well as ordered L12 and B2 phases as a function of Al content. These predictions are in qualitative agreement with experiments. This interatomic potential set is developed to resemble but not model precisely the properties of this complex system, aiming at providing a tool to explore the consequences of the addition of a large size-misfit component into a high entropy mixture that develops multiphase microstructures.

67 citations


Journal ArticleDOI
Woojin Jeon1
TL;DR: In this article, a new way to overcome the limitations of traditional approaches based on thorough understanding of high-k materials is highly recommended to enhance the properties of conventional materials and provide directions for developing new materials.
Abstract: Capacitors represent the largest obstacle to dynamic random-access memory (DRAM) technology evolution because the capacitor properties govern the overall operational characteristics of DRAM devices. Moreover, only the atomic layer deposition (ALD) technique is used for the dielectric and electrode because of its extreme geometry. Various high-k materials deposited by ALD have been investigated for further scaling. Whereas past investigations focused on increasing the physical thickness of the dielectric to suppress leakage current, the physical thickness of the dielectric should also be limited to a few nanometers in design rules less than 1×-nm. Therefore, a new way to overcome the limitations of traditional approaches based on thorough understanding of high-k materials is highly recommended to enhance the properties of conventional materials and provide directions for developing new materials. In this review, previously reported results are discussed, and suggestions are made for further investigations for DRAM capacitor applications.

48 citations


Journal ArticleDOI
TL;DR: A comprehensive overview of various chemical and mechanical phenomena such as contact mechanics, lubrication models, chemical reaction that occurs between slurry components and films being polished, electrochemical reactions, adsorption behavior and mechanism, temperature effects, and the complex interactions occurring at the wafer interface during polishing is provided in this article.
Abstract: As the minimum feature size of integrated circuit elements has shrunk below 7 nm, chemical mechanical planarization (CMP) technology has grown by leaps and bounds over the past several decades. There has been a growing interest in understanding the fundamental science and technology of CMP, which has continued to lag behind advances in technology. This review paper provides a comprehensive overview of various chemical and mechanical phenomena such as contact mechanics, lubrication models, chemical reaction that occur between slurry components and films being polished, electrochemical reactions, adsorption behavior and mechanism, temperature effects, and the complex interactions occurring at the wafer interface during polishing. It also provides important insights into new strategies and novel concepts for next‐generation CMP slurries. Finally, the challenges and future research directions related to the chemical and mechanical process and slurry chemistry are highlighted.

47 citations


Journal ArticleDOI
TL;DR: In this article, the effect of gelatin- and chitosan-based scaffolds on osteoblast biomineralization was compared with methacrylated gelatin-laponite and laponite nanosilicates.
Abstract: This study compared the effect of gelatin- and chitosan-based scaffolds on osteoblast biomineralization. These scaffolds have been modified using methacrylate and laponite nanosilicates to improve their mechanical strength and support osteoblast function. Scaffold materials were prepared to have the same compressive strength (14–15 MPa) such that differences in cell response would be isolated to differences in biopolymer chemistry. The materials were tested for rheological properties to optimize the bio-ink for successful 3D printing using a robocast-assisted deposition system. Osteoblasts were cultured on the surface of 3D-printed methacrylated chitosan-laponite (MAC-Lp), methacrylated gelatin-laponite (MAG-Lp), MAC, and MAG scaffolds. MAC-Lp scaffolds showed increased cell viability, cell growth, and biomineral formation as compared to MAG-Lp scaffolds. FTIR results showed the presence of higher biomineral phosphate and extracellular matrix (ECM) collagen-like amide formation on MAC-Lp scaffolds as compared to MAG-Lp scaffolds. MAC-Lp scaffolds showed increased density of ECM-like tissue from SEM analysis, stained mineral nodules from Alizarin staining, and the existence of Ca–P species evident by X-ray absorbance near edge structure analysis. In conclusion, MAC-Lp scaffolds enhanced osteoblast growth and biomineral formation as compared to MAG-Lp scaffolds.

45 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the processing methods, materials, mechanical properties, thermal stability, and functional properties of various nanostructured HEMs, particularly nanocrystalline (NC) HEAs.
Abstract: In the past decade, the emergence of high-entropy alloys (HEAs) and other high-entropy materials (HEMs) has brought about new opportunities in the development of novel materials for high-performance applications. In combining solid-solution (SS) strengthening with grain-boundary strengthening, new material systems—nanostructured or nanocrystalline (NC) HEAs or HEMs—have been developed, showing superior combined mechanical and functional properties compared with conventional alloys, HEAs, and NC metals. This article reviews the processing methods, materials, mechanical properties, thermal stability, and functional properties of various nanostructured HEMs, particularly NC HEAs. With such new nanostructures and alloy compositions, many interesting phenomena and properties of such NC HEAs have been unveiled, for example, extraordinary microstructural and mechanical thermal stability. As more HEAs or HEMs are being developed, a new avenue of research is to be exploited. The article concludes with perspectives about future directions in this field.

43 citations


Journal ArticleDOI
TL;DR: In this article, the microstructure of high-entropy alloy (HEA) parts produced by selective laser melting and powder-based directed energy deposition is investigated, and a solidification maps based on laser process parameters (as opposed to most commonly used solidification velocity and temperature gradient) are constructed by compiling available literature for single-phase face centered cubic, body-centered cubic, and multiphase HEAs.
Abstract: The disruptive potential of additive manufacturing (AM) relies on its ability to make customized products with considerable weight savings through geometries that are difficult or impossible to produce by conventional methods Despite its versatility, applications of AM have been restricted due to the formation of columnar grains, resulting in solidification defects and anisotropy in properties To achieve fine equiaxed grains in AM, alloy design and solidification conditions have been optimized in various alloy systems In this review paper, the microstructure of high-entropy alloy (HEA) parts produced by selective laser melting and powder-based directed energy deposition is investigated Solidification maps based on laser process parameters (as opposed to most commonly used solidification velocity and temperature gradient) are constructed by compiling available literature for single-phase face-centered cubic, body-centered cubic, and multiphase HEAs These maps could guide printing of HEAs and provide an insight into the design of novel HEAs for AM

42 citations


Journal ArticleDOI
TL;DR: In this article, a comprehensive assessment of these methods by grouping them into two main categories, i.e., indirect methods in which a carbon layer is first deposited on a substrate and then converted to graphene by some type of energetic post-treatment process.
Abstract: The unique properties of graphene have led to the use of this allotrope of carbon in a wide range of applications, including semiconductors, energy devices, diffusion barriers, heat spreaders, and protective overcoats. The synthesis of graphene by process methods that either directly or indirectly rely on physical vapor deposition, thermal annealing, laser irradiation, and ion/electron beam irradiation has drawn significant attention in recent years, mainly because they can provide high purity, low temperature, high throughput, and controllable growth of graphene on various substrates. This article provides a comprehensive assessment of these methods by grouping them into two main categories, i.e., indirect methods in which a carbon layer is first deposited on a substrate and then converted to graphene by some type of energetic post-treatment process and direct methods in which graphene is directly synthesized on a substrate surface by a process that uses a solid carbon source. The underlying growth mechanisms of these processes and the challenging issues that need to be overcome before further advances in graphene synthesis can occur are interpreted in the context of published results.

41 citations


Journal ArticleDOI
TL;DR: In this article, the superalloy IN718 has been prepared by additive manufacturing (AM) following a selective laser melting technique, and the post-AM heat treatments have been optimized to facilitate the precipitation of d phase at the grain boundaries to make the material resistant to grain boundary sliding (GBS).
Abstract: In this investigation, the superalloy IN718 has been prepared by additive manufacturing (AM) following a selective laser melting technique, and the post-AM heat treatments have been optimized The microstructure of additively manufactured (AM) IN718 is characterized by the presence of dendritic and cellular features with large spatial heterogeneity along and across the build plane Along the build direction, the fiber texture dominates Heat treatment involving two-step solution treatment, and subsequently, two-step aging treatment was specifically designed to facilitate the precipitation of d phase at the grain boundaries to make the material resistant to grain boundary sliding (GBS) The AM IN718 showed dynamic strain aging (DSA) at three different temperatures, while the critical strain for the onset of serration was extended to a higher value after the heat treatment

34 citations


Journal ArticleDOI
TL;DR: In this paper, reduced graphene oxide supported titanium dioxide (GO/TiO2) heterojunction composites as highly active photocatalysts were synthesized via simple ultrasonic mixing and hydrothermal reaction using TiCl3 and GO as precursors.
Abstract: Reduced graphene oxide supported titanium dioxide (GO/TiO2) heterojunction composites as highly active photocatalysts were synthesized via simple ultrasonic mixing and hydrothermal reaction using TiCl3 and GO as precursors. Their structure and morphology were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectra, UV-vis spectroscopy, and thermogravimetic analysis. The GO/TiO2 heterojunction composites were used to degrade methyl orange (MO). The adsorption and photocatalytic degradation rate of the prepared GO/TiO2 composites increased by nearly three times compared with that of pristine TiO2 or GO, which reached up 90%, to degrade MO after 4 h, which provides a simple method to obtain photocatalytic materials.

33 citations


Journal ArticleDOI
TL;DR: In this paper, a review of bio-inspired ceramics is presented to understand the potential of these materials in terms of toughness and strength increase, and the challenges that are ahead to eventually reproduce the exceptional fracture behavior observed in nacre.
Abstract: The materials chosen to make thermal engines, spacecrafts, or human implants cannot fail in an unpredictable way to guarantee the users’ well-being. These applications can benefit from the use of ceramics because of their temperature resistance, corrosion resistance, or hardness. Although parts based on ceramic matrix composites and zirconia are already in use, a more recent ceramic with a structure inspired from seashells provides an attractive combination of ease of processing, high strength, and high toughness. These nacre-like aluminas are made of aligned micron-sized monocrystalline platelets joined together by a mix of mineral secondary phase and nanoparticles. The review’s first objective is to provide a picture of what these newly developed bioinspired ceramics are capable of within today’s ceramic and nacre-inspired composites landscape. I will also extract from the results the links between process/microstructure/performance to better understand the potential of these materials in terms of toughness and strength increase. Finally, I will present the challenges that are ahead to eventually reproduce the exceptional fracture behavior observed in nacre.

32 citations


Journal ArticleDOI
TL;DR: In this article, the challenges of thin film encapsulation, including pinholes, crystallization, cracks, and overheated, are introduced first and then the ALD-based monolayer, composite structures, and hybrid laminates were developed to improve the barrier property, flexibility, and thermal conductivity.
Abstract: Organic light-emitting diodes (OLEDs) have aroused great attention due to the advantages of high luminescent efficiency, fast response time, wide viewing angle, and the compatibility with the flexible electronics. Nevertheless, the organic luminescent materials are vulnerable to environment moisture/oxygen. Thus, how to protect the OLEDs from the ambient moisture/oxygen erosion is of great importance to ensure the stability and reliability. Thin film encapsulation (TFE) via atomic layer deposition (ALD) has emerged as a potential method to meet the encapsulation requirements of OLEDs due to its unique assets. In this review, the challenges of TFE, including pinholes, crystallization, cracks, and overheated, are introduced first. The ALD-based monolayer, composite structures, and hybrid laminates were developed to improve the barrier property, flexibility, and thermal conductivity. Besides, the ALD reactors and processes for TFE are also reviewed. Finally, the challenges remained and future development in the stabilization of OLEDs via ALD are also discussed.

Journal ArticleDOI
TL;DR: The developed GO–PEG–FA/GNPs–DOX theranostic nanomedicine exhibited an excellent cancer chemotherapy feature and can be used in chemo-photothermal therapy of solid tumors because of the presence of GO and GNPs in its structure.
Abstract: A de novo drug delivery nanosystem based on gold nanoparticles (GNPs), decorated poly(ethylene glycol) (PEG), and folate (FA)-conjugated graphene oxide (GO) was designed and developed successfully. Initially, the graphite (G) powder was oxidized to the GO, and then functionalized with chloroacetic acid to afford a carboxylated graphene oxide (GO–COOH). The obtained GO–COOH was functionalized with an amine end-caped PEG, FA, as well as 3-amino-1-propanethiol to produce a GO–PEG–FA–SH. In another experimental section, GNPs were synthesized through a citrate-mediated reduction approach, and subsequently decorated onto/into GO–PEG–FA–SH through the formation of Au–S bond to afford a GO–PEG–FA/GNP nanosystem. The resultant nanosystem was loaded with doxorubicin hydrochloride (DOX) as a model anticancer drug, and its drug-loading capacity as well as pH-dependent drug release behavior were investigated. The anticancer activity of the developed theranostic nanomedicine was extensively evaluated using MTT assay against human breast cancer cells (MCF7). The developed GO–PEG–FA/GNPs–DOX theranostic nanomedicine exhibited an excellent cancer chemotherapy feature. In addition, this nanomedicine can be used in chemo-photothermal therapy of solid tumors because of the presence of GO and GNPs in its structure.

Journal ArticleDOI
Liping Gao, Hao Fu1, Jiejun Zhu, Junhai Wang, Yuping Chen, Hongjie Liu 
TL;DR: The gas sensor based on SnO2 nanoparticles can be utilized as a promising candidate for practical low-temperature detectors of HCHO due to its higher gas response, excellent response–recovery properties, and perfect selectivity.
Abstract: During the detection of industrial hazardous gases, like formaldehyde (HCHO), the selectivity is still a challenging issue. Herein, an alternative HCHO chemosensor that based on the tin oxide nanoparticles is proposed, which was obtained through a facile hydrothermal method. Gas sensing performances showed that the optimal working temperature located at only 180 °C, the response value of 79 via 50 ppm HCHO was much higher than that of 35 at 230 °C. However, the compromised test temperature was selected as 230 °C, taking into account the faster response/recovery speeds than 180 °C, named 20/23versus 53/60 s, respectively. The response (35) of the SnO2 nanoparticles-based sensor to 50 ppm of HCHO is about 400% higher than that of bulk SnO2 sensor (9), especially when the gas concentration is 1 ppm, SnO2 nanoparticles also has a higher sensitivity which may possibly result from more exposed active sites and small size effect for nanoparticles than for bulk ones. The gas sensor based on SnO2 nanoparticles can be utilized as a promising candidate for practical low-temperature detectors of HCHO due to its higher gas response, excellent response–recovery properties, and perfect selectivity.

Journal ArticleDOI
TL;DR: In this article, a nanostructured SnO2/NiO composite was prepared by a simple hydrothermal method, and the results of physicochemical properties tests of the samples show that the enhancement in sensitivity and selectivity is attributed to the oxygen vacancies and heterojunction between SnO 2 and NiO.
Abstract: To detect low concentrations of formaldehyde selectively, the sensing properties of SnO2 nanostructured are enhanced by modifying with p-type semiconductor NiO. In this study, a nanostructured SnO2/NiO composite was prepared by a simple hydrothermal method. The X-ray photoelectron spectroscopy (XPS) peak in 532.4 eV proved that the existence of the SnO2/NiO composite structure increased the amount of adsorbed oxygen O− and O2− significantly. Gas-sensing tests showed that these mixed phases SnO2/NiO are highly promising for gas sensor applications, as the gas response for formaldehyde was significantly enhanced in gas response, selectivity at an operating temperature of 230 °C. The sensor fabricated by SnO2/NiO composite can detect as low as 1 ppm of formaldehyde at 230 °C, and the corresponding response is 1.57. The results of physicochemical properties tests of the samples show that the enhancement in sensitivity and selectivity is attributed to the oxygen vacancies and heterojunction between SnO2 and NiO. The SnO2/NiO composites can be applied to sensitive materials of formaldehyde sensors.

Journal ArticleDOI
TL;DR: A review of the development of piezoelectric (K,Na)NbO3-based single crystals, including their growth, defect chemistry, domain structures, electromechanical properties, and applications are discussed in this article.
Abstract: Piezoelectric single crystals based on the perovskite ferroelectric system (K,Na)NbO3 have been widely investigated over the past 20 years due to large piezoelectric coefficients, high transition temperatures, low density, and the nontoxic chemical composition. Various crystal growth methods were examined, including high-temperature solution growth, solid-state crystal growth, Bridgman–Stockbarger method, and the floating zone method. Increased understanding of the crystal growth process and post-growth treatments resulted in improved crystal quality and larger sizes. Recently, crystals with high piezoelectric and electromechanical coupling coefficients exceeding 1000 pC/N and 0.90, respectively, were reported. Moreover, their large potential for high-frequency ultrasonic medical imaging was demonstrated. This work provides a review of the development of piezoelectric (K,Na)NbO3-based single crystals, including their growth, defect chemistry, domain structures, electromechanical properties, and applications. Approaches for reducing growth defects, controlling point defects, and domain engineering are discussed. The remaining open issues are presented and an outlook on the future is provided.

Journal ArticleDOI
TL;DR: In this article, the influence of scanning speed on the fabrication of Ti6Al4V samples produced by the selective laser melting (SLM) process is investigated. And the results show that a high quality of surface morphology and microstructure is obtained at a scanning speed of 775 mm/s, while maximum surface roughness values for both upper and side surfaces are approximately 0.460 µm and 0.592 µm, respectively.
Abstract: Selective laser melting (SLM) is a state-of-the-art technology in the additive manufacturing field. This study focuses on the influence of scanning speed on the fabrication of Ti6Al4V samples produced by SLM. This article contributes to the effect of SLM scanning speed parameters on micropores, surface morphology, and roughness. The detailed characterizations for the parts produced by the SLM process are evaluated. An SLM scanning speed of 695, 775, or 853 mm/s was selected. The findings show that a high quality of surface morphology and microstructure is obtained at a scanning speed of 775 mm/s. In addition, the maximum surface roughness values for both upper and side surfaces are approximately 0.460 µm and 0.592 µm, respectively. Furthermore, surface defect characteristics regarding the speed mechanism parameter for the SLM system are also discussed, and the challenges to the part quality, and potential for numerous industries (e.g., aerospace, automotive, and biomedical), creating microstructures, are observed.

Journal ArticleDOI
TL;DR: In this article, the development of the twinning microstructure at the grain scale can benefit design efforts to optimize microstructures of hexagonal close-packed materials for specific high-performance structural applications.
Abstract: Deformation twinning is a prevalent plastic deformation mode in hexagonal close-packed (HCP) materials, such as magnesium, titanium, and zirconium, and their alloys. Experimental observations indicate that these twins occur heterogeneously across the polycrystalline microstructure during deformation. Morphological and crystallographic distribution of twins in a deformed microstructure, or the so-called twinning microstructure, significantly controls material deformation behavior, ductility, formability, and failure response. Understanding the development of the twinning microstructure at the grain scale can benefit design efforts to optimize microstructures of HCP materials for specific high-performance structural applications. This article reviews recent research efforts that aim to relate the polycrystalline microstructure with the development of its twinning microstructure through knowledge of local stress fields, specifically local stresses produced by twins and at twin/grain–boundary intersections on the formation and thickening of twins, twin transmission across grain boundaries, twin–twin junction formation, and secondary twinning.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the recent advances that have been made in the last years toward optimizing fabrication processes and properties of Al-matrix composites reinforced with quasicrystals.
Abstract: Quasicrystalline alloys and their composites have been extensively studied due to their complex atomic structures, mechanical properties, and their unique tribological and thermal behaviors. However, technological applications of these materials have not yet come of age and still require additional developments. In this review, we discuss the recent advances that have been made in the last years toward optimizing fabrication processes and properties of Al‐matrix composites reinforced with quasicrystals. We discuss in detail the high‐strength rapid‐solidified nanoquasicrystalline composites, the challenges involved in their manufacturing processes and their properties. We also bring the latest findings on the fabrication of Al‐matrix composites reinforced with quasicrystals by powder metallurgy and by conventional metallurgical processes. We show that substantial developments were made over the last decade and discuss possible future studies that may result from these recent findings.

Journal ArticleDOI
TL;DR: In this article, Ni-BPDC/GO composites are synthesized using graphene oxide (GO) as a substrate and 4,4′-biphenyldicarboxylic acid (bPDC) as an organic ligand via a hydrothermal approach.
Abstract: As electrode materials, metal-organic frameworks always have low electrical conductivity and poor structural stability, which limits its applications in electrochemical fields. Here, Ni-BPDC/GO composites are synthesized using graphene oxide (GO) as a substrate and 4,4′-biphenyldicarboxylic acid (BPDC) as an organic ligand via a hydrothermal approach. The growth mechanism of the Ni-BPDC and Ni-BPDC/GO composites is proposed. In the composites, highly dispersed Ni-BPDC macro-nanostrips are supported on the GO surface in parallel. The presence of GO does not affect the growth and crystalline structure of Ni-BPDC. Compared with the Ni-BPDC, Ni-BPDC/GO composites exhibit higher specific capacitance, rate capability, and operating current density through lowering intrinsic resistance, charge-transfer resistance, and ion diffusion impedance. Moreover, the assembled Ni-BPDC/GO-3//reduced graphene oxide (rGO) asymmetric supercapacitor has large specific capacitance, good cycling stability, and high energy density (16.5 W h/kg at 250 W/kg). Hence, Ni-BPDC/GO composites are a potential electrode material for supercapacitors.

Journal ArticleDOI
TL;DR: In this paper, a review of X-ray photoelectron spectroscopy (XPS) studies of complex oxide interfaces is presented, focusing on key results and the XPS studies that enabled them.
Abstract: Emergent behavior at oxide interfaces has driven research in complex oxide films for the past 20 years. Interfaces have been engineered for applications in spintronics, topological quantum computing, and high-speed electronics with properties not observed in bulk materials. Advances in synthesis have made the growth of these interfaces possible, while X-ray photoelectron spectroscopy (XPS) studies have often explained the observed interfacial phenomena. This review discusses leading recent research, focusing on key results and the XPS studies that enabled them. We describe how the in situ integration of synthesis and spectroscopy improves the growth process and accelerates scientific discovery. Specific techniques include determination of interfacial intermixing, valence band alignment, and interfacial charge transfer. A recurring theme is the role that atmospheric exposure plays on material properties, which we highlight in several material systems. We demonstrate how synchrotron studies have answered questions that are impossible in lab-based systems and how to improve such experiments in the future.

Journal ArticleDOI
TL;DR: In this article, a set of exact interdiffusion coefficients in quaternary and quinary alloy systems was determined using body-diagonal diffusion couple, indicating the existence of strong diffusional interactions in Fe−Ni−Co−Cr−Mn alloys.
Abstract: For the first time in the literature, experimental determination of entire sets of exact interdiffusion coefficients in quaternary and quinary alloy systems is reported. Using the method of body-diagonal diffusion couple, a set of nine quaternary interdiffusion coefficients were evaluated in Fe–Ni–Co–Cr and a set of sixteen quinary interdiffusion coefficients were determined in a Fe–Ni–Co–Cr–Mn system, both at approximately equimolar compositions. Regions of uphill interdiffusion and zero flux planes were observed for nickel and cobalt in quinary couples, indicating the existence of strong diffusional interactions in Fe–Ni–Co–Cr–Mn alloys. The strong diffusional interactions were also manifested in the large magnitudes of cross coefficients in both the systems. The existence of strong diffusional interactions in high-entropy alloys (HEAs) as observed through experimentally determined interdiffusion coefficients in this study establishes beyond doubt the fact that cross interdiffusion coefficients cannot be ignored in HEAs.

Journal ArticleDOI
Na Li1, Ji Gu1, Bin Gan, Qiao Qiao, Song Ni1, Min Song1 
TL;DR: The CoCrNiMox (x = 0, 0.1, and 0.2 in molar ratio) medium entropy alloys (MEAs) were fabricated by vacuum arc melting, followed by cold rolling and annealing treatments.
Abstract: The CoCrNiMox (x = 0, 0.1, and 0.2 in molar ratio) medium entropy alloys (MEAs) were fabricated by vacuum arc melting, followed by cold rolling and annealing treatments. The X-ray diffraction (XRD), electron back-scattered diffraction (EBSD), and transmission electron microscopy (TEM) were employed to characterize the microstructures. It has been shown that the CoCrNi MEA has a single FCC phase and the Mo-containing MEAs contain (Cr, Mo)-rich σ precipitates. In addition, the Mo addition caused significant grain refinement, due to the fact that the presence of σ phase exerts a strong pinning effect on the grain boundary migration. The hardness testing results indicate an increment in Vickers hardness from 187.5 ± 4.5 Hv of CoCrNi alloy to 309.5 ± 10.3 Hv of CoCrNiMo0.2 alloy. The yield strength and ultimate tensile strength also increase from 339 ± 2 to 644 ± 5 MPa and from 810 ± 5 to 1071 ± 17 MPa, respectively, but the elongation drops from 88.4 ± 4.0% to 29.5 ± 7.6%. The grain refinement and the precipitation of σ phase make synergistic contribution to the reinforcement of Mo-containing CoCrNi-based MEAs. The details and explanations in this study may guide the future design and research of the CoCrNi-based quaternary alloys with enhanced properties.

Journal ArticleDOI
TL;DR: In this paper, the authors provide substantial insight into the various aspects of surface integrity (SI) for NiTi SMAs using WEDM, including surface characteristics, react layer, phase analysis, elemental composition, micro-hardness, shape recovery ability, and residual stress.
Abstract: NiTi shape memory alloys (SMAs) are extensively used in various significant areas such as aerospace industries, biomedical sector, automobile industries, and robotics field because of their inherent properties, namely, shape memory effect and superelasticity. Nevertheless, the machining of these alloys is a problematic task by conventional machining practices because of various difficulties such as strain hardening, tool failure, high machining time, and poor surface quality. In recent years, researchers have explored various advanced/unconventional machining processes to surmount these challenges and improve the performance characteristics of NiTi SMAs. Wire electrical discharge machining (WEDM) is an effective and reasonable alternative to machine these hard-to-machine alloys among the other available advanced machining processes. A brief overview, characteristics, applications, and conventional machining of NiTi SMAs have been incorporated in this study. This review article provides substantial insight into the various aspects of surface integrity (SI) for NiTi SMAs using WEDM. The current study highlights literature review on the research work accomplished so far in the domain of SI aspects for NiTi-based SMAs, namely, surface characteristics, react layer, phase analysis, elemental composition, micro-hardness, shape recovery ability, and residual stress in WEDM.

Journal ArticleDOI
Jeffrey M. Wheeler1
TL;DR: In this paper, the mechanical properties and composition of the Taza meteorite were mapped using ~100,000 indentations to statistically determine the properties of individual phases of the individual phases.
Abstract: Meteorites have one of the most unique and beautiful microstructures, the Widmanstatten structure. This consists of large, elongated bands which form an intricate octahedral lace of crystalline metal. This structure makes meteorites an ideal case to demonstrate the capabilities of mechanical phase mapping using high‐speed nanoindentation. In this work, the mechanical properties and composition of the Taza meteorite were mapped using ~100,000 indentations to statistically determine the properties of the individual phases. Five microstructural phases were characterized in this meteorite: Kamacite, Plessite, Tetrataenite, Cloudy Zone, and Schreibersite. Mechanical phase identification was confirmed using EDX measurements, and the first direct, point‐to‐point correlation of EDX and large‐scale indentation maps was achieved. Mechanical phase maps showed superior phase contrast to EDX in two phases. An indentation property map or a mechanical phase map using a 2D histogram was used to visualize and statistically characterize the phases and identify trends in their relationships.

Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper studied in situ low-temperature hydrothermal synthesis of LMO nanocomposites based on graphene oxide (GO)/carbon nanotubes (CNTs) hydrogel.
Abstract: Integrating LiMn2O4(LMO) and different carbon materials to build a mixed cathode system can provide fast transport channels to improve the conduction of both electrons and ions. In this paper, our work studied in situ low-temperature hydrothermal synthesis of LMO nanocomposites based on graphene oxide (GO)/carbon nanotubes (CNTs) hydrogel. Compared with the pure LMO nanoparticles, GO/CNTs/LMO (GCLMO) composites greatly improved electrochemical performance in specific capacity, cycle performance and rate ability. The electrochemical test results showed that the specific capacitance of GCLMO nanocomposites reached 396 F/g at the current density of 0.5 A/g, which was much higher than 221 F/g of pure LMO. Even at the current density of 10 A/g, the specific capacitance was still as high as 309 F/g. Besides, after 2000 cycles, the specific capacitance retention of the composite was 93%. Electrochemical data showed that GCLMO composite is an ideal cathode material for supercapacitors.

Journal ArticleDOI
TL;DR: In this paper, an experimental analysis of the structural evolution of reduced graphene oxide (rGO) during thermal treatment has been performed and significant carbon content enrichment and exfoliation are two aspects of the thermal reduction of GO.
Abstract: Graphene enticed the scientific community for its interesting properties since its discovery. Among different synthesis routes of graphene, reduction of graphene oxide (GO) is mostly preferred because of scalability and advantage of modulation of properties of the end product. Thermal reduction of GO is considered to be the simplest and economic among different reduction techniques. The current work reports an experimental analysis of the structural evolution of GO to reduced graphene oxide (rGO) during thermal treatment. GO has been thermally annealed at an optimized temperature of 350 °C in ambient. Thermal reduction is observed after 7 min of annealing and confirmed by shifting of the first major peak from 12° to 23° in X-ray diffraction pattern. Significant carbon content enrichment and exfoliation are two aspects of the thermal reduction of GO. Carbon content suddenly enriches from 38 wt% in GO to 77 wt%. Exfoliation is confirmed by morphological alterations and decrease in carbon layers from eleven to three.

Journal ArticleDOI
Zhe Zhao1, Ye Kong1, Zhiwei Zhang1, Gaoshan Huang1, Yongfeng Mei1 
TL;DR: In this article, the authors summarized some of the latest works on ALD for batteries, supercapacitors, and sensors, and demonstrate the benefits of ALD comprehensively.
Abstract: Nanostructures are considered to have great potential and are widely used in energy storage and sensing devices, and atomic layer deposition (ALD) is of great help for better nanostructure fabrications. ALD can help to preserve the original properties of materials, and, meanwhile, the excellent film quality, nanoscale precise thickness control, and high conformality also play important role in fabrication process. To enhance the performance of energy storage and sensor devices, ALD has been used in directly fabricating active nanostructures, depositing protective passivation layers, etc. ALD is a convenient technique which has been widely engaged in energy-related fields including electrochemical conversion and storage, as well as in sensor and biosensors. The related research interest is increasing significantly. In this review, we summarize some of the latest works on ALD for batteries, supercapacitors, and sensors, and demonstrate the benefits of ALD comprehensively. In these devices, different materials are deposited by ALD under different conditions to achieve better battery performance, higher supercapacitor capacitance, and higher sensitivity. This review fully presents the strengths of ALD and its application in energy storage and sensing devices and proposes the future prospects for this rapidly developing technology.

Journal ArticleDOI
TL;DR: In this article, the effects of built height and orientations on the evolution of the microstructure and the mechanical properties of the samples were investigated using selective laser melting, and the results showed that the XY-built sample exhibited better tensile performance when compared to the Z-built samples due to the fine grain sizes and the retained austenite phase.
Abstract: Distinguished by a marked combination of high strength and high fracture toughness, 18Ni-300 maraging steel (MS) is widely used for intricate tool and die applications. MS is also amenable to the powder bed fusion additive manufacturing process, providing unique opportunities to make small features and incorporate cooling channels in molds. In this study, tensile test samples were fabricated using selective laser melting to investigate the effects of built height and orientations on the evolution of the microstructure and the mechanical properties of the samples. The microstructure of the as-fabricated samples consists of the primary a-martensite phase and fine cellular microstructure (~0.66–0.83 µm) with the retained austenite ?-phase aggregated at the boundaries of the cells, resulting in an enhanced mechanical performance compared with traditional counterparts under the same condition (without post-heat treatments). Random grain orientations with weak textures are revealed in all samples. The XY-built samples display better tensile performance when compared to the Z-built samples due to the fine grain sizes and the retained ? phase. The bottom of the Z-built sample exhibits a higher hardness than other parts of the sample, which could be attributed to its finer cellular structure.

Journal ArticleDOI
TL;DR: In this article, the therapeutic efficacy of curcumin-honey-loaded multilayered polyvinyl alcohol/cellulose acetate electrospun nanofibrous mats as an interactive bioactive wound dressing material was revealed.
Abstract: Bioactive dressings which can treat any kind of chronic or acute wounds and can fully replace the conventional gauzes and superabsorbent dressings have proven to be a future market of wound care products in recent times. These dressings are multifunctional, which can effectively combat the wound infection, remove the exudate, promote angiogenesis, and protect the wound from external trauma. Proper selection of bioactive and polymer defines its efficiency. Current research unveils the therapeutic efficacy of curcumin–honey-loaded multilayered polyvinyl alcohol/cellulose acetate electrospun nanofibrous mats as an interactive bioactive wound dressing material. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis infers uniform encapsulation and chemical compatibility of herbal actives and polymer, inside the nanofibrous layers. The as-spun mat shows potential resistance towards Escherichia coli and ∼90% antioxidant activity against diphenyl-picrylhydrazyl (DPPH)–free radical. Additionally, water absorbency, water vapor transmission rate, and wettability analysis show quick and excellent absorption with controlled transmission of wound exudate.

Journal ArticleDOI
TL;DR: In this article, the 3D characterization of the reinforcement bundles of a branching nodal region of bamboo, through high-resolution X-ray microtomography (µCT), is presented.
Abstract: Bamboo is a natural composite and one of the most efficient structures in nature because of the relationship of mechanical properties with its microstructural features. This research presents the 3D characterization of the reinforcement bundles of a branching nodal region of bamboo, through high-resolution X-ray microtomography (µCT). µCT was used to characterize a sample regarding the volume, relative density, and porosity of parenchyma and sclerenchyma tissues, and the resulting data were used to estimate their constitutive properties. A nonlinear finite element analysis (FEA) was performed based on a discretized model of the µCT to the limiting compressive load. Secondary bundles presented an interweaved arrangement into the primary vascular elements that distribute axial compressive stresses into new branches. Our findings suggest that the foam-like behavior of the parenchyma, the sclerenchyma thickening above the nodal zone, and the nodal vascular branching are ways for bamboo to protect important tissues from mechanical stress by allocating axial loads. In addition, such mechanism could be applied in the design of biomimetic structures with selective load-bearing capabilities.