scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Medicinal Chemistry in 2007"


Journal ArticleDOI
TL;DR: The results show that a shape-based, ligand-centric approach is more consistent than, and often superior to, the protein-focused approach taken by docking.
Abstract: Ligand docking is a widely used approach in virtual screening. In recent years a large number of publications have appeared in which docking tools are compared and evaluated for their effectiveness in virtual screening against a wide variety of protein targets. These studies have shown that the effectiveness of docking in virtual screening is highly variable due to a large number of possible confounding factors. Another class of method that has shown promise in virtual screening is the shape-based, ligand-centric approach. Several direct comparisons of docking with the shape-based tool ROCS have been conducted using data sets from some of these recent docking publications. The results show that a shape-based, ligand-centric approach is more consistent than, and often superior to, the protein-centric approach taken by docking.

792 citations


Journal ArticleDOI
TL;DR: A procedure for analyzing and classifying publicly available crystal structures has been developed and has been used to identify high-resolution protein-ligand complexes that can be assessed by reconstructing the electron density for the ligand using the deposited structure factors.
Abstract: A procedure for analyzing and classifying publicly available crystal structures has been developed. It has been used to identify high-resolution protein-ligand complexes that can be assessed by reconstructing the electron density for the ligand using the deposited structure factors. The complexes have been clustered according to the protein sequences, and clusters have been discarded if they do not represent proteins thought to be of direct interest to the pharmaceutical or agrochemical industry. Rules have been used to exclude complexes containing non-drug-like ligands. One complex from each cluster has been selected where a structure of sufficient quality was available. The final Astex diverse set contains 85 diverse, relevant protein-ligand complexes, which have been prepared in a format suitable for docking and are to be made freely available to the entire research community (http://www.ccdc.cam.ac.uk). The performance of the docking program GOLD against the new set is assessed using a variety of protocols. Relatively unbiased protocols give success rates of approximately 80% for redocking into native structures, but it is possible to get success rates of over 90% with some protocols.

541 citations


Journal ArticleDOI
TL;DR: Structures of human monoamine oxidase B in complex with safinamide and two coumarin derivatives, all sharing a common benzyloxy substituent, were determined by X-ray crystallography.
Abstract: Structures of human monoamine oxidase B (MAO B) in complex with safinamide and two coumarin derivatives, all sharing a common benzyloxy substituent, were determined by X-ray crystallography. These compounds competitively inhibit MAO B with Ki values in the 0.1−0.5 μM range that are 30−700-fold lower than those observed with MAO A. The inhibitors bind noncovalently to MAO B, occupying both the entrance and the substrate cavities and showing a similarly oriented benzyloxy substituent.

466 citations



Journal ArticleDOI
TL;DR: The structure-based design, synthesis, structure-activity relationships and pharmacokinetics of potent small-molecule inhibitors of Hsp90 based on the 4,5-diarylisoxazole scaffold are described and analogues from this series have high affinity for HSp90, as measured in a fluorescence polarization (FP) competitive binding assay, and are active in cancer cell lines.
Abstract: Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential chemotherapeutic agents for cancer. Here, we describe the structure-based design, synthesis, structure-activity relationships and pharmacokinetics of potent small-molecule inhibitors of Hsp90 based on the 4,5-diarylisoxazole scaffold. Analogues from this series have high affinity for Hsp90, as measured in a fluorescence polarization (FP) competitive binding assay, and are active in cancer cell lines where they inhibit proliferation and exhibit a characteristic profile of depletion of oncogenic proteins and concomitant elevation of Hsp72. Compound 40f (VER-52296/NVP-AUY922) is potent in the Hsp90 FP binding assay (IC50 = 21 nM) and inhibits proliferation of various human cancer cell lines in vitro, with GI(50) averaging 9 nM. Compound 40f is retained in tumors in vivo when administered i.p., as evaluated by cassette dosing in tumor-bearing mice. In a human colon cancer xenograft model, 40f inhibits tumor growth by similar to 50%.

432 citations


Journal ArticleDOI
TL;DR: It is suggested that specific abietane-type diterpenoids and lignoids exhibit strong anti-SARS-CoV effects.
Abstract: In this study, 221 phytocompounds were evaluated for activity against anti-severe acute respiratory syndrome associated coronavirus (SARS-CoV) activities using a cell-based assay measuring SARS-CoV-induced cytopathogenic effect on Vero E6 cells. Ten diterpenoids (1-10), two sesquiterpenoids (11 and 12), two triterpenoids (13 and 14), five lignoids (15-19), curcumin (20), and reference controls niclosamide (21) and valinomycin (22) were potent inhibitors at concentrations between 3.3 and 10 microM. The concentrations of the 22 compounds to inhibit 50% of Vero E6 cell proliferation (CC50) and viral replication (EC50) were measured. The selective index values (SI = CC50/EC50) of the most potent compounds 1, 5, 6, 8, 14, and 16 were 58, >510, 111, 193, 180, and >667, respectively. Betulinic acid (13) and savinin (16) were competitive inhibitors of SARS-CoV 3CL protease with Ki values = 8.2 +/- 0.7 and 9.1 +/- 2.4 microM, respectively. Our findings suggest that specific abietane-type diterpenoids and lignoids exhibit strong anti-SARS-CoV effects.

431 citations


Journal ArticleDOI
TL;DR: Compound 40 exhibits a high degree of fXa potency, selectivity, and efficacy and has an improved pharmacokinetic profile relative to 4.
Abstract: Efforts to identify a suitable follow-on compound to razaxaban (compound 4) focused on modification of the carboxamido linker to eliminate potential in vivo hydrolysis to a primary aniline. Cyclization of the carboxamido linker to the novel bicyclic tetrahydropyrazolopyridinone scaffold retained the potent fXa binding activity. Exceptional potency of the series prompted an investigation of the neutral P1 moieties that resulted in the identification of the p-methoxyphenyl P1, which retained factor Xa binding affinity and good oral bioavailability. Further optimization of the C-3 pyrazole position and replacement of the terminal P4 ring with a neutral heterocycle culminated in the discovery of 1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (apixaban, compound 40). Compound 40 exhibits a high degree of fXa potency, selectivity, and efficacy and has an improved pharmacokinetic profile relative to 4.

412 citations


Journal ArticleDOI
TL;DR: The first published report documenting the antipyretic and analgesic properties of willow bark appeared in England in 1763 in a presentation to the Royal Society by Reverend Edward Stone.
Abstract: Brief History. The use of medicinal substances for the treatment of pain and fever dates to ancient Egyptian and Grecian civilizations, where dried myrtle leaves or bitter extracts from the bark of poplar trees were used to treat back and abdominal pain. The Ebers papyrus from ancient Egypt (1850 B.C.) is the oldest preserved medical text and contains the first record documenting the use of plant remedies for the treatment of pain and inflammation. Other records show that in 400 B.C., Hippocrates prescribed the bark and leaves of the willow tree to reduce fever and to relieve the pain of childbirth. The first published report documenting the antipyretic and analgesic properties of willow bark appeared in England in 1763 in a presentation to the Royal Society by Reverend Edward Stone. 1

411 citations



Journal ArticleDOI
TL;DR: Alogliptin is a potent, selective inhibitor of the serine protease dipeptidyl peptidase IV (DPP-4) and related quinazolinone-based DPP-4 inhibitors provide sustained reduction of plasma D PP-4 activity and a lowering of blood glucose in animal models of diabetes.
Abstract: Alogliptin is a potent, selective inhibitor of the serine protease dipeptidyl peptidase IV (DPP-4). Herein, we describe the structure-based design and optimization of alogliptin and related quinazolinone-based DPP-4 inhibitors. Following an oral dose, these noncovalent inhibitors provide sustained reduction of plasma DPP-4 activity and a lowering of blood glucose in animal models of diabetes. Alogliptin is currently undergoing phase III trials in patients with type 2 diabetes.

364 citations


Journal ArticleDOI
TL;DR: A strong trend toward a wider variety of counterions over the past decade is observed, which can be explained by a stronger need to improve physical chemical properties of research and development compounds.
Abstract: The Orange Book database published by the U.S. Drug and Food Administration (FDA) was analyzed for the frequency of occurrence of different counterions used for the formation of pharmaceutical salts. The data obtained from the present analysis of the Orange Book are compared to reviews of the Cambridge Structural Database (CSD) and of the Martindale "The Extra Pharmacopoeia". As well as showing overall distributions of counterion usage, results are broken down into 5-year increments to identify trends in counterion selection. Chloride ions continue to be the most frequently utilized anionic counterions for the formation of salts as active pharmaceutical ingredients (APIs), while sodium ions are most widely utilized for the formation of salts starting from acidic molecules. A strong trend toward a wider variety of counterions over the past decade is observed. This trend can be explained by a stronger need to improve physical chemical properties of research and development compounds.

Journal ArticleDOI
TL;DR: Three key results emerge from this study: first, detergent-dependent identification of aggregate- based inhibition is feasible on the large scale, second, 95% of the actives obtained in this screen are aggregate-based inhibitors, and third, aggregate-Based inhibition is correlated with steep dose-response curves, although not absolutely.
Abstract: High-throughput screening (HTS) is the primary technique for new lead identification in drug discovery and chemical biology. Unfortunately, it is susceptible to false-positive hits. One common mechanism for such false-positives is the congregation of organic molecules into colloidal aggregates, which nonspecifically inhibit enzymes. To both evaluate the feasibility of large-scale identification of aggregate-based inhibition and quantify its prevalence among screening hits, we tested 70 563 molecules from the National Institutes of Health Chemical Genomics Center (NCGC) library for detergent-sensitive inhibition. Each molecule was screened in at least seven concentrations, such that dose−response curves were obtained for all molecules in the library. There were 1274 inhibitors identified in total, of which 1204 were unambiguously detergent-sensitive. We identified these as aggregate-based inhibitors. Thirty-one library molecules were independently purchased and retested in secondary low-throughput experime...

Journal ArticleDOI
TL;DR: Compound 2 demonstrated single agent efficacy against human follicular lymphoma cell lines that overexpress Bcl-2, and efficacy in a murine xenograft model of lymphoma when given both as a single agent and in combination with etoposide.
Abstract: Overexpression of the antiapototic proteins Bcl-2 and Bcl-xL provides a common mechanism through which cancer cells gain a survival advantage and become resistant to conventional chemotherapy. Inhibition of these prosurvival proteins is an attractive strategy for cancer therapy. We recently described the discovery of a selective Bcl-xL antagonist that potentiates the antitumor activity of chemotherapy and radiation. Here we describe the use of structure-guided design to exploit a deep hydrophobic binding pocket on the surface of these proteins to develop the first dual, subnanomolar inhibitors of Bcl-xL and Bcl-2. This study culminated in the identification of 2, which exhibited EC50 values of 8 nM and 30 nM in Bcl-2 and Bcl-xL dependent cells, respectively. Compound 2 demonstrated single agent efficacy against human follicular lymphoma cell lines that overexpress Bcl-2, and efficacy in a murine xenograft model of lymphoma when given both as a single agent and in combination with etoposide.

Journal ArticleDOI
TL;DR: 1 (BI 1356), a highly potent, selective, long-acting, and orally active DPP-4 inhibitor that shows considerable blood glucose lowering in different animal species, is currently undergoing clinical phase IIb trials and holds the potential for once-daily treatment of type 2 diabetics.
Abstract: A new chemical class of potent DPP-4 inhibitors structurally derived from the xanthine scaffold for the treatment of type 2 diabetes has been discovered and evaluated. Systematic structural variations have led to 1 (BI 1356), a highly potent, selective, long-acting, and orally active DPP-4 inhibitor that shows considerable blood glucose lowering in different animal species. 1 is currently undergoing clinical phase IIb trials and holds the potential for once-daily treatment of type 2 diabetics.

Journal ArticleDOI
TL;DR: Molecular modeling studies revealed the binding mode between the derivatives and the G-quadruplexes is end-stacking at the 3'-position, and the positively charged side chain on the quindoline derivatives may contribute to the selectivity to certain loop isomers of topological quadruplexes as the improved stabilization action.
Abstract: Stabilization of G-quadruplex structures in the promoter region of certain oncogenes is an emerging field in anticancer drug design. Human c-myc gene is one of these oncogenes, and G-quadruplexes have been proven to be the transcriptional controller of this gene. In the present study, the interaction of quindoline derivatives with G-quadruplexes in c-myc was investigated. The experimental results indicated that these derivatives have the ability to induce/stabilize the G-quadruplexes in c-myc, which lead to down-regulation of the c-myc in the Hep G2 cell line. It was found that derivatives with terminal amino groups in their side chains would selectively bind to the isomers with the double nucleotide loops in the absence of K+. Molecular modeling studies revealed the binding mode between the derivatives and the G-quadruplexes is end-stacking at the 3‘-position, and the positively charged side chain on the quindoline derivatives may contribute to the selectivity to certain loop isomers of topological quadr...

Journal ArticleDOI
TL;DR: A series of pyrazoloquinazolines, some of which show greater than 1000-fold selectivity for Aurora B over Aurora A kinase activity, in recombinant enzyme assays, are discovered, and compound 5 (AZD1152) has been selected for clinical evaluation and is currently in phase 1 clinical trials.
Abstract: The Aurora kinases have been the subject of considerable interest as targets for the development of new anticancer agents. While evidence suggests inhibition of Aurora B kinase gives rise to the more pronounced antiproliferative phenotype, the most clinically advanced agents reported to date typically inhibit both Aurora A and B. We have discovered a series of pyrazoloquinazolines, some of which show greater than 1000-fold selectivity for Aurora B over Aurora A kinase activity, in recombinant enzyme assays. These compounds have been designed for parenteral administration and achieve high levels of solubility by virtue of their ability to be delivered as readily activated phosphate derivatives. The prodrugs are comprehensively converted to the des-phosphate form in vivo, and the active species have advantageous pharmacokinetic properties and safety pharmacology profiles. The compounds display striking in vivo activity, and compound 5 (AZD1152) has been selected for clinical evaluation and is currently in p...

Journal ArticleDOI
TL;DR: A series of derivatives describing the structure-activity relationship around liraglutide, a once-daily human glucagon-like peptide-1 fatty acid derivative, with respect to potency as well as protraction in vivo are reported.
Abstract: We here report a series of derivatives describing the structure−activity relationship around liraglutide, a once-daily human glucagon-like peptide-1 fatty acid derivative, with respect to potency as well as protraction in vivo. The spacer region between the fatty acid and the peptide is mostly important for potency, whereas the fatty acid or fatty acid mimetic is important for both potency and protraction. The length of the fatty acid is the most important parameter for protraction.

Journal ArticleDOI
TL;DR: In this article, the binding of amprenavir to both of the wild-type and the drug-resistant V82F/I84V mutant of the HIV-1 protease was investigated by molecular dynamics simulations and was compared to those of two inhibitors in development.
Abstract: The V82F/I84V double mutation is considered as the key residue mutation of the HIV-1 protease drug resistance because it can significantly lower the binding affinity of protease inhibitors in clinical uses. In the current work, the binding of amprenavir to both of the wild-type and the drug-resistant V82F/I84V mutant of the HIV-1 protease was investigated by molecular dynamics (MD) simulations and was compared to those of two inhibitors in development, TMC126 and TMC114. Absolute binding free energies were calculated by molecular mechanics/Poisson−Boltzmann surface area (MM/ PBSA) methodology. The predicted binding affinities give a good explanation of structure−affinity relationship (SAR) of three studied inhibitors. Furthermore, in the 18 ns MD simulations on the free wild-type and the mutated proteases, we observed that the free mutated protease shows similar dynamic characteristics of the flap opening and a little higher structural stability than the free wild-type protease. This suggests that the eff...

Journal ArticleDOI
TL;DR: Nine classical analogues and 15 nonclassical analogues were synthesized as potential dihydrofolate reductase (DHFR) inhibitors and as antitumor agents and some were potent and selective inhibitors of DHFR from two pathogens that cause opportunistic infections in patients with compromised immune systems.
Abstract: The classical antifolate N-{4-[(2,4-diamino-5-ethyl-7H-pyrrolo[2,3-d]pyrimidin-6-yl)sulfanyl]benzoyl}-l-glutamic acid (2) and 15 nonclassical analogues (3−17) were synthesized as potential dihydrofolate reductase (DHFR) inhibitors and as antitumor agents. 5-Ethyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (20) served as the key intermediate to which various aryl thiols and a heteroaryl thiol were appended at the 6-position via an oxidative addition reaction. The classical analogue 2 was synthesized by coupling the benzoic acid derivative 18 with diethyl l-glutamate followed by saponification. The classical compound 2 was an excellent inhibitor of human DHFR (IC50 = 66 nM) as well as a two digit nanomolar (<100 nM) inhibitor of the growth of several tumor cells in culture. Some of the nonclassical analogues were potent and selective inhibitors of DHFR from two pathogens (Toxoplasma gondii and Mycobacterium avium) that cause opportunistic infections in patients with compromised immune systems.

Journal ArticleDOI
TL;DR: It is demonstrated that trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid 13g (t-AUCB, IC50 = 1.3 +/- 0.05 nM) had excellent oral bioavailability and blood area under the curve in dogs and was effective in vivo to treat hypotension in lipopolysaccharide challenged murine models.
Abstract: A series of N,N‘-disubstituted ureas having a conformationally restricted cis- or trans-1,4-cyclohexane α to the urea were prepared and tested as soluble epoxide hydrolase (sEH) inhibitors. This series of compounds showed low nanomolar to picomolar activities against recombinant human sEH. Both isomers showed similar potencies, but the trans isomers were more metabolically stable in human hepatic microsomes. Furthermore, these new potent inhibitors show a greater metabolic stability in vivo than previously described sEH inhibitors. We demonstrated that trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid 13g (t-AUCB, IC50 = 1.3 ± 0.05 nM) had excellent oral bioavailability (98%, n = 2) and blood area under the curve in dogs and was effective in vivo to treat hypotension in lipopolysaccharide challenged murine models.

Journal ArticleDOI
TL;DR: A design strategy to convert a dual-binding site AChE inhibitor into triple functional compounds with promising in vitro profile against multifactorial syndromes, such as Alzheimer's disease, is proposed.
Abstract: A design strategy to convert a dual-binding site AChE inhibitor into triple functional compounds with promising in vitro profile against multifactorial syndromes, such as Alzheimer’s disease, is proposed. The lead compound bis(7)-tacrine (2) was properly modified to confer to the new molecules the ability of chelating metals, involved in the neurodegenerative process. The multifunctional compounds show activity against human AChE, are able to inhibit the AChE-induced amyloid-β aggregation, and chelate metals, such as iron and copper.

Journal ArticleDOI
TL;DR: Fragment-based lead generation has led to the discovery of a novel series of cyclic amidine-based inhibitors of beta-secretase (BACE-1), and the dihydroisocytosines were efficiently optimized to submicromolar potency.
Abstract: Fragment-based lead generation has led to the discovery of a novel series of cyclic amidine-based inhibitors of β-secretase (BACE-1). Initial fragment hits with an isocytosine core having millimolar potency were identified via NMR affinity screening. Structure-guided evolution of these fragments using X-ray crystallography together with potency determination using surface plasmon resonance and functional enzyme inhibition assays afforded micromolar inhibitors. Similarity searching around the isocytosine core led to the identification of a related series of inhibitors, the dihydroisocytosines. By leveraging the knowledge of the ligand-BACE-1 recognition features generated from the isocytosines, the dihydroisocytosines were efficiently optimized to submicromolar potency. Compound 29, with an IC50 of 80 nM, a ligand efficiency of 0.37, and cellular activity of 470 nM, emerged as the lead structure for future optimization.

Journal ArticleDOI
TL;DR: This work examines the role of aromatic substituents on the antiproliferative and redox activity of novel DpT analogues, namely, the 2-benzoylpyridine thiosemicarbazone (BpT) and NBpT series, which are found to be the most active anticancer agents developed within the laboratory.
Abstract: Previously, we demonstrated that the potent antiproliferative activity of the di-2-pyridylketone thiosemicarbazone (DpT) series of Fe chelators was due to their ability to induce Fe depletion and form redox-active Fe complexes (Richardson, D. R.; et al. J. Med. Chem. 2006, 49, 6510-6521). We now examine the role of aromatic substituents on the antiproliferative and redox activity of novel DpT analogues, namely, the 2-benzoylpyridine thiosemicarbazone (BpT) and 2-(3-nitrobenzoyl)pyridine thiosemicarbazone (NBpT) series. Both series exhibited selective antiproliferative effects, with the majority having greater antineoplastic activity than their DpT homologues. This makes the BpT chelators the most active anticancer agents developed within our laboratory. The BpT series Fe complexes exhibit lower redox potentials than their corresponding DpT and NBpT complexes, highlighting their enhanced redox activity. The increased ability of BpT-Fe complexes to catalyze ascorbate oxidation and benzoate hydroxylation, relative to their DpT and NBpT analogues, suggested that redox cycling plays an important role in their antiproliferative activity.

Journal ArticleDOI
TL;DR: A new pocket detection protocol successfully identified transient pockets on the protein surfaces of BCL-XL, IL-2, and MDM2 and AutoDock could successfully place inhibitor molecules into these transient pockets with less than 2 A rms deviation from their crystal structures.
Abstract: A new pocket detection protocol successfully identified transient pockets on the protein surfaces of BCL-XL, IL-2, and MDM2. Because the native inhibitor binding pocket was absent or only partly detectable in the unbound proteins, these crystal structures were used as starting points for 10 ns long molecular dynamics simulations. Trajectory snapshots were scanned for cavities on the protein surface using the program PASS. The detected cavities were clustered to determine several distinct transient pockets. They all opened within 2.5 ps, and most of them appeared multiple times. All three systems gave similar results overall. At the native binding site, pockets of similar size compared with a known inhibitor bound could be observed for all three systems. AutoDock could successfully place inhibitor molecules into these transient pockets with less than 2 A rms deviation from their crystal structures, suggesting this protocol as a viable tool to identify transient ligand binding pockets on protein surfaces.

Journal ArticleDOI
TL;DR: The most active imidazolyl-substituted compound 19 inhibits topoisomerase II and induces strong G2/M cell cycle arrest, pointing to the impairment in mitotic progression.
Abstract: Synthesis of novel cyano- and amidino-substituted styryl-2-benzimidazoles and benzimidazo[1,2-a]quinolines by condensation reactions and photochemical dehydrocyclization and dehydrohalogenation cyclization is described. Thermal denaturation experiments reveal that cyclic derivatives considerably stabilize DNA double helix, while the effect of their acyclic analogues is negligible. According to the spectroscopic study of the interaction of cyclic derivative 19, we propose intercalation of benzimidazo[1,2-a]quinoline moiety into ct-DNA as a dominant interaction underlying biologically relevant effects of this compound, whereas for its acyclic derivative 11, we propose binding into the minor groove of DNA. All compounds show noticeable antiproliferative effect. Morpholino- and chloro-substituted compound 9 is the most active among all acyclic derivatives. All cyclic compounds were 2- to 10-fold more potent, which is correlated with their property to intercalate into DNA. The most active imidazolyl-substituted compound 19 inhibits topoisomerase II and induces strong G2/M cell cycle arrest, pointing to the impairment in mitotic progression. Its pronounced selectivity toward colon carcinoma cells encourages further development of this compound as a lead.

Journal ArticleDOI
TL;DR: A novel application of the Gini coefficient for expressing selectivity of kinase inhibitor against a panel of kinases is proposed using single-point inhibition data for 40 commercially available kinase inhibitors screened against 85 kinases.
Abstract: A novel application of the Gini coefficient for expressing selectivity of kinase inhibitors against a panel of kinases is proposed. This has been illustrated using single-point inhibition data for 40 commercially available kinase inhibitors screened against 85 kinases. Nonselective inhibitors are characterized by Gini values close to zero (Staurosporine, Gini 0.150). Highly selective compounds exhibit Gini values close to 1 (PD184352 Gini 0.905). The relative selectivity of inhibitors does not depend on the ATP concentration.

Journal ArticleDOI
TL;DR: The azole ligand of NAMI-A was systematically varied, and the indazole-containing compound shows the highest antiproliferative activity in vitro.
Abstract: Imidazolium [trans-tetrachloro(1H-imidazole)(S-dimethylsulfoxide)ruthenate(III)] (NAMI-A) and indazolium [trans-tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) are the most promising ruthenium complexes for anticancer chemotherapy. In this study, the azole ligand of NAMI-A was systematically varied (from imidazole of NAMI-A to indazole, 1,2,4-triazole, 4-amino-1,2,4-triazole, and 1-methyl-1,2,4-triazole), and the respective complexes were evaluated with regard to the rate of aquation and protein binding, redox potentials, and cytotoxicity by means of capillary zone electrophoresis, electrospray ionization mass spectrometry, cyclic voltammetry, and colorimetric microculture assays. Stability studies demonstrated low stability of the complexes at pH 7.4 and 37 degrees C and a high reactivity toward proteins (binding rate constants in the ranges of 0.02-0.34 and 0.01-0.26 min-1 for albumin and transferrin, respectively). The redox potentials (between 0.25 and 0.35 V) were found to be biologically accessible for activation of the complexes in the tumor, and the indazole-containing compound shows the highest antiproliferative activity in vitro.

Journal ArticleDOI
TL;DR: Molecular docking calculations suggest that the benzopyran ring of EGCG penetrates deeply into the active site while the galloyl moiety anchors it to the cleft through interactions with its hydroxyl groups, which explains the higher activity of E GCG and ECG.
Abstract: Catechins are the main ingredients of green tea extracts and have been shown to possess versatile biological activities, including antimicrobial. We determined that the catechins inhibit bacterial DNA gyrase by binding to the ATP binding site of the gyrase B subunit. In the group of four tested catechins, epigallocatechin gallate (EGCG) had the highest activity, followed by epicatechin gallate (ECG) and epigallocatechin (EGC). Specific binding to the N-terminal 24 kDa fragment of gyrase B was determined by fluorescence spectroscopy and confirmed using heteronuclear two-dimensional NMR spectroscopy of the EGCG-15N-labeled gyrase B fragment complex. Protein residues affected by binding to EGCG were identified through chemical shift perturbation. Molecular docking calculations suggest that the benzopyran ring of EGCG penetrates deeply into the active site while the galloyl moiety anchors it to the cleft through interactions with its hydroxyl groups, which explains the higher activity of EGCG and ECG.

Journal ArticleDOI
TL;DR: The structure of the full-length H-Ras protein in complex with a 1,2-dimyristoylglycero-3-phosphocholine bilayer obtained from modeling and all-atom explicit solvent molecular dynamics simulations, as well as experimental validation of the main results, are presented.
Abstract: Ras proteins regulate signal transduction processes that control cell growth and proliferation. Their disregulation is a common cause of human tumors. Atomic level structural and dynamical information in a membrane environment is crucial for understanding signaling specificity among Ras isoforms and for the design of selective anti-cancer agents. Here, the structure of the full-length H-Ras protein in complex with a 1,2-dimyristoylglycero-3-phosphocholine (DMPC) bilayer obtained from modeling and all-atom explicit solvent molecular dynamics simulations, as well as experimental validation of the main results, are presented. We find that, in addition to the lipid anchor, H-Ras membrane binding involves direct interaction of residues in the catalytic domain with DMPC phosphates. Two modes of binding (possibly modulated by GTP/GDP exchange) differing in the orientation and bilayer contact of the soluble domain as well as in the participation of the flexible linker in membrane binding are proposed. These results are supported by our initial in vivo experiments. The overall structures of the protein and the bilayer remain similar to those of the isolated components, with few localized structural and dynamical changes. The implications of the results to membrane lateral segregation and other aspects of Ras signaling are discussed.

Journal ArticleDOI
TL;DR: A novel chemical series of benzimidazole-ureas as inhibitors of VEGFR-2 and TIE-2 kinase receptors, both of which are implicated in angiogenesis are disclosed.
Abstract: We herein disclose a novel chemical series of benzimidazole-ureas as inhibitors of VEGFR-2 and TIE-2 kinase receptors, both of which are implicated in angiogenesis. Structure-activity relationship (SAR) studies elucidated a critical role for the N1 nitrogen of both the benzimidazole (segment E) and urea (segment B) moieties. The SAR results were also supported by the X-ray crystallographic elucidation of the role of the N1 nitrogen and the urea moiety when the benzimidazole-urea compounds were bound to the VEGFR-2 enzyme. The left side phenyl ring (segment A) occupies the backpocket where a 3-hydrophobic substituent was favored for TIE-2 activity.