scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Medicinal Chemistry in 2018"


Journal ArticleDOI
TL;DR: In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.
Abstract: The electronic properties and relatively small size of fluorine endow it with considerable versatility as a bioisostere and it has found application as a substitute for lone pairs of electrons, the hydrogen atom, and the methyl group while also acting as a functional mimetic of the carbonyl, carbinol, and nitrile moieties. In this context, fluorine substitution can influence the potency, conformation, metabolism, membrane permeability, and P-gp recognition of a molecule and temper inhibition of the hERG channel by basic amines. However, as a consequence of the unique properties of fluorine, it features prominently in the design of higher order structural metaphors that are more esoteric in their conception and which reflect a more sophisticated molecular construction that broadens biological mimesis. In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.

1,199 citations


Journal ArticleDOI
TL;DR: An emphasis is placed on describing research efforts to overcome the inherent weaknesses of peptide drugs, in particular their poor pharmacokinetic properties, and how these efforts have been critical to the discovery, design, and subsequent development of novel therapeutics.
Abstract: Over the past decade, peptide drug discovery has experienced a revival of interest and scientific momentum, as the pharmaceutical industry has come to appreciate the role that peptide therapeutics can play in addressing unmet medical needs and how this class of compounds can be an excellent complement or even preferable alternative to small molecule and biological therapeutics. In this Perspective, we give a concise description of the recent progress in peptide drug discovery in a holistic manner, highlighting enabling technological advances affecting nearly every aspect of this field: from lead discovery, to synthesis and optimization, to peptide drug delivery. An emphasis is placed on describing research efforts to overcome the inherent weaknesses of peptide drugs, in particular their poor pharmacokinetic properties, and how these efforts have been critical to the discovery, design, and subsequent development of novel therapeutics.

651 citations


Journal ArticleDOI
TL;DR: The development of antineoplastic ruthenium therapeutic complexes NAMI-A, KP1019, and KP1339 entered clinical trials and DW1/2 is in preclinical levels, and the very robust, conformationally rigid organometallic Ru(II) compound DW1 /2 is a protein kinase inhibitor and presents new Ru( II) compound designs as anticancer agents.
Abstract: Metal based therapeutics are a precious class of drugs in oncology research that include examples of theranostic drugs, which are active in both diagnostic, specifically imaging, and therapeutics applications. Ruthenium compounds have shown selective bioactivity and the ability to overcome the resistance that platinum-based therapeutics face, making them effective oncotherapeutic competitors in rational drug invention approaches. The development of antineoplastic ruthenium therapeutics is of particular interest because ruthenium containing complexes NAMI-A, KP1019, and KP1339 entered clinical trials and DW1/2 is in preclinical levels. The very robust, conformationally rigid organometallic Ru(II) compound DW1/2 is a protein kinase inhibitor and presents new Ru(II) compound designs as anticancer agents. Over the recent years, numerous strategies have been used to encapsulate Ru(II) derived compounds in a nanomaterial system, improving their targeting and delivery into neoplastic cells. A new photodynamic th...

317 citations


Journal ArticleDOI
TL;DR: The brief history of the field is surveyed from a drug discovery perspective with a focus on the key advances in knowledge which have led to the definition and exemplification of protein degradation concepts and their resulting applications to medicine discovery.
Abstract: Targeted protein degradation, using bifunctional small molecules (Protacs) to remove specific proteins from within cells, has emerged as a novel drug discovery strategy with the potential to offer therapeutic interventions not achievable with existing approaches. In this Perspective, the brief history of the field is surveyed from a drug discovery perspective with a focus on the key advances in knowledge which have led to the definition and exemplification of protein degradation concepts and their resulting applications to medicine discovery. The approach has the potential to bring disruptive change to drug discovery; the many potential advantages and outstanding challenges which lie ahead of this technology are discussed.

295 citations


Journal ArticleDOI
TL;DR: The design, synthesis, and evaluation of a new class of PROTAC BET degraders are presented, and data establish that compound 23 (BETd-260/ZBC260) is a highly potent and efficacious BET degrader.
Abstract: The bromodomain and extra-terminal (BET) family proteins, consisting of BRD2, BRD3, BRD4, and testis-specific BRDT members, are epigenetic “readers” and play a key role in the regulation of gene transcription. BET proteins are considered to be attractive therapeutic targets for cancer and other human diseases. Recently, heterobifunctional small-molecule BET degraders have been designed based upon the proteolysis targeting chimera (PROTAC) concept to induce BET protein degradation. Herein, we present our design, synthesis, and evaluation of a new class of PROTAC BET degraders. One of the most promising compounds, 23, effectively degrades BRD4 protein at concentrations as low as 30 pM in the RS4;11 leukemia cell line, achieves an IC50 value of 51 pM in inhibition of RS4;11 cell growth and induces rapid tumor regression in vivo against RS4;11 xenograft tumors. These data establish that compound 23 (BETd-260/ZBC260) is a highly potent and efficacious BET degrader.

279 citations


Journal ArticleDOI
TL;DR: The discovery of 1 (risdiplam, RG7916, RO7034067) that focused on thorough pharmacology, DMPK and safety characterization and optimization is described, which is a promising medicine for the treatment of patients in all ages and stages with SMA.
Abstract: SMA is an inherited disease that leads to loss of motor function and ambulation and a reduced life expectancy. We have been working to develop orally administrated, systemically distributed small molecules to increase levels of functional SMN protein. Compound 2 was the first SMN2 splicing modifier tested in clinical trials in healthy volunteers and SMA patients. It was safe and well tolerated and increased SMN protein levels up to 2-fold in patients. Nevertheless, its development was stopped as a precautionary measure because retinal toxicity was observed in cynomolgus monkeys after chronic daily oral dosing (39 weeks) at exposures in excess of those investigated in patients. Herein, we describe the discovery of 1 (risdiplam, RG7916, RO7034067) that focused on thorough pharmacology, DMPK and safety characterization and optimization. This compound is undergoing pivotal clinical trials and is a promising medicine for the treatment of patients in all ages and stages with SMA.

274 citations


Journal ArticleDOI
TL;DR: The present Perspective focuses on the opportunities that silicon incorporation offers in drug discovery, with an emphasis on case studies where introduction of silicon has created a benefit over its analog.
Abstract: In order to optimize a lead molecule for further development, bioisosteric replacements are generally adopted as one of the strategies. Silicon appears to be the right choice as a carbon isostere because of the similarity in chemical properties. Silicon can be strategically introduced in a molecule to modulate its druglike properties, providing medicinal chemists with an unconventional strategy for replacing a carbon atom. Silicon can also be introduced to replace other heteroatoms and can act as a surrogate of functional groups such as olefin and amide as well. The present Perspective focuses on the opportunities that silicon incorporation offers in drug discovery, with an emphasis on case studies where introduction of silicon has created a benefit over its analog. We have tried to highlight all the recent developments in the field and briefly discuss the challenges associated with them.

254 citations


Journal ArticleDOI
TL;DR: The discovery of asciminib (ABL001), the first allosteric BCR-ABL1 inhibitor to reach the clinic, and structure-based optimization for potency, physicochemical, pharmacokinetic, and drug-like properties, culminated in ascinib, which is currently undergoing clinical studies in CML patients.
Abstract: Chronic myelogenous leukemia (CML) arises from the constitutive activity of the BCR-ABL1 oncoprotein. Tyrosine kinase inhibitors (TKIs) that target the ATP-binding site have transformed CML into a chronic manageable disease. However, some patients develop drug resistance due to ATP-site mutations impeding drug binding. We describe the discovery of asciminib (ABL001), the first allosteric BCR-ABL1 inhibitor to reach the clinic. Asciminib binds to the myristate pocket of BCR-ABL1 and maintains activity against TKI-resistant ATP-site mutations. Although resistance can emerge due to myristate-site mutations, these are sensitive to ATP-competitive inhibitors so that combinations of asciminib with ATP-competitive TKIs suppress the emergence of resistance. Fragment-based screening using NMR and X-ray yielded ligands for the myristate pocket. An NMR-based conformational assay guided the transformation of these inactive ligands into ABL1 inhibitors. Further structure-based optimization for potency, physicochemical, pharmacokinetic, and drug-like properties, culminated in asciminib, which is currently undergoing clinical studies in CML patients.

228 citations


Journal ArticleDOI
TL;DR: Highlights and case studies of lessons learned from discovery of bRo5 compounds are presented and a simple multiparametric scoring function (AB-MPS) was devised that correlated preclinical PK results with cLogD, number of rotatable bonds, and number of aromatic rings.
Abstract: Recently, there has been an increasing focus on the pursuit of targets considered to be less druggable that offer potential for development of promising new therapeutic agents for the treatment of diseases with large unmet medical need, particularly in the areas of oncology and virology. However, conducting drug discovery campaigns in “beyond rule of 5” (bRo5) chemical space presents a significant drug design and development challenge to medicinal chemists to achieve acceptable oral pharmacokinetics. Retrospective analysis of past successes and failures in drug discovery bRo5 may shed light on the key principles that contribute to the oral bioavailability of successful bRo5 compounds and improve the efficiency of drug design for future projects. We present here highlights and case studies of lessons learned from discovery of bRo5 compounds. A simple multiparametric scoring function (AB-MPS) was devised that correlated preclinical PK results with cLogD, number of rotatable bonds, and number of aromatic rings.

219 citations


Journal ArticleDOI
TL;DR: Progress toward and challenges impeding drug development for inhibiting or evading P-gp are highlighted in the context of improved understanding of the structural basis and mechanism of P- gp-mediated MDR.
Abstract: Multidrug resistance (MDR) is a major cause of failure in cancer chemotherapy. P-glycoprotein (P-gp), a promiscuous drug efflux pump, has been extensively studied for its association with MDR due to overexpression in cancer cells. Several P-gp inhibitors or modulators have been investigated in clinical trials in hope of circumventing MDR, with only limited success. Alternative strategies are actively pursued, such as the modification of existing drugs, development of new drugs, or combination of novel drug delivery agents to evade P-gp-dependent efflux. Despite the importance and numerous studies, these efforts have mostly been undertaken without a priori knowledge of how drugs interact with P-gp at the molecular level. This review highlights and discusses progress toward and challenges impeding drug development for inhibiting or evading P-gp in the context of our improved understanding of the structural basis and mechanism of P-gp-mediated MDR.

214 citations


Journal ArticleDOI
TL;DR: This SirReal-based PROTAC is the first example of a probe that is able to chemically induce the degradation of an epigenetic eraser protein and can be readily adapted to alkynylated ligands of other targets.
Abstract: Here we report the development of a proteolysis targeting chimera (PROTAC) based on the combination of the unique features of the sirtuin rearranging ligands (SirReals) as highly potent and isotype-selective Sirt2 inhibitors with thalidomide, a bona fide cereblon ligand. For the first time, we report the formation of a PROTAC by Cu(I)-catalyzed cycloaddition of a thalidomide-derived azide to an alkynylated inhibitor. This thalidomide-derived azide as well as the highly versatile linking strategy can be readily adapted to alkynylated ligands of other targets. In HeLa cells, our SirReal-based PROTAC induced isotype-selective Sirt2 degradation that results in the hyperacetylation of the microtubule network coupled with enhanced process elongation. Thus, our SirReal-based PROTAC is the first example of a probe that is able to chemically induce the degradation of an epigenetic eraser protein.

Journal ArticleDOI
TL;DR: A structure-guided design of [1,4]oxazepines as a new class of BET inhibitors is described and the subsequent design, synthesis, and evaluation of proteolysis-targeting chimeric (PROTAC) small-molecule BET degraders are described.
Abstract: Proteins of the bromodomain and extra-terminal (BET) family are epigenetics “readers” and promising therapeutic targets for cancer and other human diseases We describe herein a structure-guided design of [1,4]oxazepines as a new class of BET inhibitors and our subsequent design, synthesis, and evaluation of proteolysis-targeting chimeric (PROTAC) small-molecule BET degraders Our efforts have led to the discovery of extremely potent BET degraders, exemplified by QCA570, which effectively induces degradation of BET proteins and inhibits cell growth in human acute leukemia cell lines even at low picomolar concentrations QCA570 achieves complete and durable tumor regression in leukemia xenograft models in mice at well-tolerated dose-schedules QCA570 is the most potent and efficacious BET degrader reported to date

Journal ArticleDOI
TL;DR: An integrated overview of the approaches explored for the modulation of 14-3-3 PPIs is provided and the examples resulting from these efforts in both inhibiting and stabilizing specific 14- 3-3 protein complexes by small molecules, peptide mimetics, and natural products are reviewed.
Abstract: Direct interactions between proteins are essential for the regulation of their functions in biological pathways. Targeting the complex network of protein-protein interactions (PPIs) has now been widely recognized as an attractive means to therapeutically intervene in disease states. Even though this is a challenging endeavor and PPIs have long been regarded as "undruggable" targets, the last two decades have seen an increasing number of successful examples of PPI modulators, resulting in growing interest in this field. PPI modulation requires novel approaches and the integrated efforts of multiple disciplines to be a fruitful strategy. This perspective focuses on the hub-protein 14-3-3, which has several hundred identified protein interaction partners, and is therefore involved in a wide range of cellular processes and diseases. Here, we aim to provide an integrated overview of the approaches explored for the modulation of 14-3-3 PPIs and review the examples resulting from these efforts in both inhibiting and stabilizing specific 14-3-3 protein complexes by small molecules, peptide mimetics, and natural products.

Journal ArticleDOI
TL;DR: The clinical candidate 2 (AZD6738), a potent and selective sulfoximine morpholinopyrimidine ATR inhibitor with excellent preclinical physicochemical and pharmacokinetic characteristics, has favorable human PK suitable for once or twice daily dosing and achieves biologically effective exposure at moderate doses.
Abstract: The kinase ataxia telangiectasia mutated and rad3 related (ATR) is a key regulator of the DNA-damage response and the apical kinase which orchestrates the cellular processes that repair stalled replication forks (replication stress) and associated DNA double-strand breaks. Inhibition of repair pathways mediated by ATR in a context where alternative pathways are less active is expected to aid clinical response by increasing replication stress. Here we describe the development of the clinical candidate 2 (AZD6738), a potent and selective sulfoximine morpholinopyrimidine ATR inhibitor with excellent preclinical physicochemical and pharmacokinetic (PK) characteristics. Compound 2 was developed improving aqueous solubility and eliminating CYP3A4 time-dependent inhibition starting from the earlier described inhibitor 1 (AZ20). The clinical candidate 2 has favorable human PK suitable for once or twice daily dosing and achieves biologically effective exposure at moderate doses. Compound 2 is currently being teste...

Journal ArticleDOI
TL;DR: The pharmaceutical use of CO and CORMs, methods of detecting CO release, and developments in CORM design and synthesis are described.
Abstract: Carbon monoxide (CO) is attracting increasing attention because of its role as a gasotransmitter with cytoprotective and homeostatic properties. Carbon monoxide releasing molecules (CORMs) are spatially and temporally controlled CO releasers that exhibit superior and more effective pharmaceutical traits than gaseous CO because of their chemistry and structure. Experimental and preclinical research in animal models has shown the therapeutic potential of inhaled CO and CORMs, and the biological effects of CO and CORMs have also been observed in preclinical trials via the genetic modulation of heme oxygenase-1 (HO-1). In this review, we describe the pharmaceutical use of CO and CORMs, methods of detecting CO release, and developments in CORM design and synthesis. Many valuable clinical CORMs formulated using macromolecules and nanomaterials are also described.

Journal ArticleDOI
TL;DR: This work will review the development of the ProTide technology, its application in drug discovery, and its role in the improvement of drug delivery and efficacy.
Abstract: The ProTide technology is a prodrug approach developed for the efficient intracellular delivery of nucleoside analogue monophosphates and monophosphonates. In this approach, the hydroxyls of the monophosphate or monophosphonate groups are masked by an aromatic group and an amino acid ester moiety, which are enzymatically cleaved-off inside cells to release the free nucleoside monophosphate and monophosphonate species. Structurally, this represents the current end-point of an extensive medicinal chemistry endeavor that spans almost three decades. It started from the masking of nucleoside monophosphate and monophosphonate groups by simple alkyl groups and evolved into the sophisticated ProTide system as known today. This technology has been extensively employed in drug discovery, and it has already led to the discovery of two FDA-approved (antiviral) ProTides. In this work, we will review the development of the ProTide technology, its application in drug discovery, and its role in the improvement of drug de...

Journal ArticleDOI
TL;DR: This article describes a broadly applicable process for identifying degrader hits based on the serine/threonine kinase TANK-binding kinase 1 (TBK1) and has generalized the key structural elements associated with degradation activities.
Abstract: Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that recruit an E3 ligase to a target protein to facilitate ubiquitination and subsequent degradation of that protein. While the field of targeted degraders is still relatively young, the potential for this modality to become a differentiated and therapeutic reality is strong, such that both academic and pharmaceutical institutions are now entering this interesting area of research. In this article, we describe a broadly applicable process for identifying degrader hits based on the serine/threonine kinase TANK-binding kinase 1 (TBK1) and have generalized the key structural elements associated with degradation activities. Compound 3i is a potent hit (TBK1 DC50 = 12 nM, Dmax = 96%) with excellent selectivity against a related kinase IKKe, which was further used as a chemical tool to assess TBK1 as a target in mutant K-Ras cancer cells.

Journal ArticleDOI
TL;DR: In this Perspective, the inhibitors of melanogenesis that directly/indirectly target a key enzyme tyrosinase as well as its associated signaling pathways are focused on.
Abstract: Melanins are pigment molecules that determine the skin, eye, and hair color of the human subject to its amount, quality, and distribution. Melanocytes synthesize melanin and provide epidermal protection from various stimuli, such as harmful ultraviolet radiation, through the complex process called melanogenesis. However, serious dermatological problems occur when there is excessive production of melanin in different parts of the human body. These include freckles, melasma, senile lentigo, pigmented acne scars, and cancer. Therefore, controlling the production of melanin is an important approach for the treatment of pigmentation related disorderes. In this Perspective, we focus on the inhibitors of melanogenesis that directly/indirectly target a key enzyme tyrosinase as well as its associated signaling pathways.

Journal ArticleDOI
TL;DR: Analysis of the database of drugs approved through 2017 reveals 311 distinct pharmaceuticals containing at least one oxygen heterocycle, with furanoses, macrolactones, morpholines, and dioxolanes rounding off the top five.
Abstract: Oxygen heterocycles are the second most common type of heterocycles that appear as structural components of US Food and Drug Administration (FDA) approved pharmaceuticals Analysis of our database of drugs approved through 2017 reveals 311 distinct pharmaceuticals containing at least one oxygen heterocycle Most prevalent among these are pyranoses, with furanoses, macrolactones, morpholines, and dioxolanes rounding off the top five The main body of this Perspective is organized according to ring size, commencing with three- and four-membered rings and ending with macrocycles, polymers, and unusual oxygen-containing heterocycles For each section, all oxygen heterocycle-containing drugs are presented along with a brief discussion about structural and drug application patterns

Journal ArticleDOI
TL;DR: CC-220 (compound 6), a cereblon modulator in clinical development for systemic lupus erythematosis and relapsed/refractory multiple myeloma, is described and an example of the effect of E3 ligase binding affinity with relevance to other drug discovery efforts in targeted protein degradation is provided.
Abstract: The drugs lenalidomide and pomalidomide bind to the protein cereblon, directing the CRL4–CRBN E3 ligase toward the transcription factors Ikaros and Aiolos to cause their ubiquitination and degradation. Here we describe CC-220 (compound 6), a cereblon modulator in clinical development for systemic lupus erythematosis and relapsed/refractory multiple myeloma. Compound 6 binds cereblon with a higher affinity than lenalidomide or pomalidomide. Consistent with this, the cellular degradation of Ikaros and Aiolos is more potent and the extent of substrate depletion is greater. The crystal structure of cereblon in complex with DDB1 and compound 6 reveals that the increase in potency correlates with increased contacts between compound 6 and cereblon away from the modeled binding site for Ikaros/Aiolos. These results describe a new cereblon modulator which achieves greater substrate degradation via tighter binding to the cereblon E3 ligase and provides an example of the effect of E3 ligase binding affinity with rel...

Journal ArticleDOI
TL;DR: Using literature drug discovery examples, the concept of rigorously applying LipE to guide medicinal chemistry lead optimization toward drug candidates with potential for superior in vivo efficacy and safety is discussed.
Abstract: Lipophilic efficiency (LipE) is an important metric that has been increasingly applied in drug discovery medicinal chemistry lead optimization programs. In this Perspective, using literature drug discovery examples, we discuss the concept of rigorously applying LipE to guide medicinal chemistry lead optimization toward drug candidates with potential for superior in vivo efficacy and safety, especially when guided by physiochemical property-based optimization (PPBO). Also highlighted are examples of small structural modifications such as addition of single atoms, small functional groups, and cyclization that produce large increases in LipE. Understanding the factors that may contribute to LipE changes through analysis of ligand–protein crystal structures and using structure-based drug design (SBDD) to increase LipE by design is also discussed. Herein we advocate for use of LipE analysis coupled with PPBO and SBDD as an efficient mechanism for drug design.

Journal ArticleDOI
TL;DR: GDC-0853 has the potential to be a best-in-class Btk inhibitor for a wide range of immunological indications and demonstrates highly favorable safety, pharmacokinetic (PK), and pharmacodynamic (PD) profiles in preclinical and Phase 2 studies ongoing in patients with rheumatoid arthritis, lupus, and chronic spontaneous urticaria.
Abstract: Bruton’s tyrosine kinase (Btk) is a nonreceptor cytoplasmic tyrosine kinase involved in B-cell and myeloid cell activation, downstream of B-cell and Fcγ receptors, respectively. Preclinical studies have indicated that inhibition of Btk activity might offer a potential therapy in autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. Here we disclose the discovery and preclinical characterization of a potent, selective, and noncovalent Btk inhibitor currently in clinical development. GDC-0853 (29) suppresses B cell- and myeloid cell-mediated components of disease and demonstrates dose-dependent activity in an in vivo rat model of inflammatory arthritis. It demonstrates highly favorable safety, pharmacokinetic (PK), and pharmacodynamic (PD) profiles in preclinical and Phase 2 studies ongoing in patients with rheumatoid arthritis, lupus, and chronic spontaneous urticaria. On the basis of its potency, selectivity, long target residence time, and noncovalent mode of inhibition, 29 h...

Journal ArticleDOI
TL;DR: This work exemplifies as a cautionary tale how a more potent inhibitor does not necessarily generate more potent PROTACs and underscores the key roles played by the conjugation.
Abstract: The design of proteolysis-targeting chimeras (PROTACs) is a powerful small-molecule approach for inducing protein degradation. PROTACs conjugate a target warhead to an E3 ubiquitin ligase ligand via a linker. Here we examined the impact of derivatizing two different BET bromodomain inhibitors, triazolodiazepine JQ1 and the more potent tetrahydroquinoline I-BET726, via distinct exit vectors, using different polyethylene glycol linkers to VHL ligand VH032. Triazolodiazepine PROTACs exhibited positive cooperativities of ternary complex formation and were more potent degraders than tetrahydroquinoline compounds, which showed negative cooperativities instead. Marked dependency on linker length was observed for BET-degrading and cMyc-driven antiproliferative activities in acute myeloid leukemia cell lines. This work exemplifies as a cautionary tale how a more potent inhibitor does not necessarily generate more potent PROTACs and underscores the key roles played by the conjugation. The provided insights and fram...

Journal ArticleDOI
TL;DR: These degraders were developed through conjugation of known pyrimidine-based ALK inhibitors, TAE684 or LDK378, and the cereblon ligand pomalidomide and it was demonstrated that in some cell types degrader potency is compromised by expression of drug transporter ABCB1.
Abstract: We present the development of the first small molecule degraders that can induce anaplastic lymphoma kinase (ALK) degradation, including in non-small-cell lung cancer (NSCLC), anaplastic large-cell lymphoma (ALCL), and neuroblastoma (NB) cell lines. These degraders were developed through conjugation of known pyrimidine-based ALK inhibitors, TAE684 or LDK378, and the cereblon ligand pomalidomide. We demonstrate that in some cell types degrader potency is compromised by expression of drug transporter ABCB1. In addition, proteomic profiling demonstrated that these compounds also promote the degradation of additional kinases including PTK2 (FAK), Aurora A, FER, and RPS6KA1 (RSK1).

Journal ArticleDOI
TL;DR: This work investigated the influence of dynamically exposed polarity on cell permeability and aqueous solubility for a structurally diverse set of drugs and clinical candidates far beyond the Ro5, all of which populated multiple distinct conformations as revealed by X-ray crystallography.
Abstract: Conformational flexibility has been proposed to significantly affect drug properties outside rule-of-5 (Ro5) chemical space. Here, we investigated the influence of dynamically exposed polarity on cell permeability and aqueous solubility for a structurally diverse set of drugs and clinical candidates far beyond the Ro5, all of which populated multiple distinct conformations as revealed by X-ray crystallography. Efflux-inhibited (passive) Caco-2 cell permeability correlated strongly with the compounds’ minimum solvent-accessible 3D polar surface areas (PSA), whereas aqueous solubility depended less on the specific 3D conformation. Inspection of the crystal structures highlighted flexibly linked aromatic side chains and dynamically forming intramolecular hydrogen bonds as particularly effective in providing “chameleonic” properties that allow compounds to display both high cell permeability and aqueous solubility. These structural features, in combination with permeability predictions based on the correlatio...

Journal ArticleDOI
TL;DR: The most significant advances concerning the discovery and development of NQO1 inhibitors, N QO1-directed chemotherapeutic quinones, and NQo1-activated optical probes are summarized, along with the prospects and potential obstacles in this research area.
Abstract: NAD(P)H:quinone oxidoreductase 1 (NQO1) is a two-electron reductase responsible for detoxification of quinones and also bioactivation of certain quinones. It is abnormally overexpressed in many tumors and intimately linked with multiple carcinogenic processes. NQO1 is considered to be a cancer-specific target for therapy but currently available NQO1 inhibitors have not yet led to chemotherapeutic success. Utilization of NOQ1’s ability to bioactivate chemotherapeutic quinones, however, has emerged as a promising selective anticancer therapy. On the basis of the different levels of NQO1 between cancer and normal cells, the catalytic property of NQO1 has recently been exploited to develop effective probes for cancer detection. This article summarizes the most significant advances concerning the discovery and development of NQO1 inhibitors, NQO1-directed chemotherapeutic quinones, and NQO1-activated optical probes, along with the prospects and potential obstacles in this research area.

Journal ArticleDOI
TL;DR: Novel SNIPERs capable of inducing proteasomal degradation of the androgen receptor (AR) and 42a (SNIPER(AR)-51), which shows effective protein knockdown activity against AR, suggest that SNIPer(AR)s could be leads for an anticancer drug against prostate cancers that exhibit AR-dependent proliferation.
Abstract: Targeted protein degradation using small molecules is a novel strategy for drug development. We have developed hybrid molecules named specific and nongenetic inhibitor of apoptosis protein [IAP]-dependent protein erasers (SNIPERs) that recruit IAP ubiquitin ligases to degrade target proteins. Here, we show novel SNIPERs capable of inducing proteasomal degradation of the androgen receptor (AR). Through derivatization of the SNIPER(AR) molecule at the AR ligand and IAP ligand and linker, we developed 42a (SNIPER(AR)-51), which shows effective protein knockdown activity against AR. Consistent with the degradation of the AR protein, 42a inhibits AR-mediated gene expression and proliferation of androgen-dependent prostate cancer cells. In addition, 42a efficiently induces caspase activation and apoptosis in prostate cancer cells, which was not observed in the cells treated with AR antagonists. These results suggest that SNIPER(AR)s could be leads for an anticancer drug against prostate cancers that exhibit AR-...

Journal ArticleDOI
TL;DR: It is concluded that al chemical methods are becoming a feasible reality in medicinal chemistry research due to improved computational resources and algorithms and that alchemical free energy predictions methods are close to becoming a mainstream tool for medicinal chemists.
Abstract: Underpinning all drug discovery projects is the interaction between a drug and its target, usually a protein. Thus, improved methods for predicting the magnitude of protein–ligand interactions have the potential to improve the efficiency of drug development. In this review, we describe the principles of free energy methods used for the calculation of protein–ligand binding free energies, the challenges associated with these methods, and recent advances developed to address these difficulties. We then present case studies from 2005 to 2017, each demonstrating that alchemical free energy methods can assist rational drug design projects. We conclude that alchemical methods are becoming a feasible reality in medicinal chemistry research due to improved computational resources and algorithms and that alchemical free energy predictions methods are close to becoming a mainstream tool for medicinal chemists.

Journal ArticleDOI
TL;DR: A "click chemistry" approach for the synthesis of PROTACs is described and the utility of this approach is demonstrated with the bromodomain and extraterminal domain-4 (BRD4) ligand JQ-1 (3) and ligase binders targeting cereblon and Von Hippel-Lindau (VHL) proteins.
Abstract: Proteolysis targeting chimeras (PROTACs) are bispecific molecules containing a target protein binder and an ubiquitin ligase binder connected by a linker. By recruiting an ubiquitin ligase to a target protein, PROTACs promote ubiquitination and proteasomal degradation of the target protein. The generation of effective PROTACs depends on the nature of the protein/ligase ligand pair, linkage site, linker length, and linker composition, all of which have been difficult to address in a systematic way. Herein, we describe a “click chemistry” approach for the synthesis of PROTACs. We demonstrate the utility of this approach with the bromodomain and extraterminal domain-4 (BRD4) ligand JQ-1 (3) and ligase binders targeting cereblon (CRBN) and Von Hippel–Lindau (VHL) proteins. An AlphaScreen proximity assay was used to determine the ability of PROTACs to form the ternary ligase–PROTAC–target protein complex and a MSD assay to measure cellular degradation of the target protein promoted by PROTACs.

Journal ArticleDOI
TL;DR: The majority of clinical candidates were found to be structurally very different from their starting point and were more complex, and several reports of noncovalent scaffolds modified by a covalent warhead using SBDD approaches are discussed.
Abstract: An analysis of 66 published clinical candidates from Journal of Medicinal Chemistry has been conducted to shed light on which lead generation strategies are most frequently employed in identifying drug candidates. The most frequent lead generation strategy (producing a drug candidate) was based on starting points derived from previously known compounds (43%) followed by random high throughput screening (29%). The remainder of approaches included focused screening, structure-based drug design (SBDD), fragment-based lead generation (FBLG), and DNA-encoded library screening (DEL). An analysis of physicochemical properties on the hit-to-clinical pairs shows an average increase in molecular weight (ΔMW = +85) but no change in lipophilicity (ΔclogP = −0.2), although exceptions are noted. The majority (>50%) of clinical candidates were found to be structurally very different from their starting point and were more complex. Finally, several reports of noncovalent scaffolds modified by a covalent warhead using SBD...