scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Morphology in 2003"


Journal ArticleDOI
TL;DR: Haikouella agrees so closely with recent predictions about pre‐craniates that the difficult problem of craniate origins is nearly solved.
Abstract: This study investigates whether the recently described Cambrian fossil Haikouella (and the very similar Yunnanozoon) throws light on the longstanding problem of the origin of craniates. In the first rigorous cladistic analysis of the relations of this animal, we took 40 anatomical characters from Haikouella and other taxa (hemichordates, tunicates, cephalochordates, conodont craniates and other craniates, plus protostomes as the outgroup) and subjected these characters to parsimony analysis. The characters included several previously unrecognized traits of Haikouella, such as upper lips resembling those of larval lampreys, the thick nature of the branchial bars, a mandibular branchial artery but no mandibular branchial bar, muscle fibers defining the myomeres, a dark fibrous sheath that defines the notochord, conclusive evidence for paired eyes, and a large hindbrain and diencephalon in the same positions as in the craniate brain. The cladistic analysis produced this tree: (protostomes, hemichordates (tunicates, (cephalochordates, (Haikouella, (conodonts + other craniates))))), with the "Haikouella + craniate" clade supported by bootstrap values that ranged from 81-96%, depending on how the analysis was structured. Thus, Haikouella is concluded to be the sister group of the craniates. Alternate hypotheses that unite Haikouella with hemichordates or cephalochordates, or consider it a basal deuterostome, received little or no support. Although it is the sister group of craniates, Haikouella is skull-less and lacks an ear, but it does have neural-crest derivatives in its branchial bars. Its craniate characters occur mostly in the head and pharynx; its widely spaced, robust branchial bars indicate it ventilated with branchiomeric muscles, not cilia. Despite its craniate mode of ventilation, Haikouella was not a predator but a suspension feeder, as shown by its cephalochordate-like endostyle, and tentacles forming a screen across the mouth. Haikouella was compared to pre-craniates predicted by recent models of craniate evolution and was found to fit these predictions closely. Specifically, it fits Northcutt and Gans' prediction that the change from ciliary to muscular ventilation preceded the change from suspension feeding to predatory feeding; it fits Butler's claim that vision was the first craniate sense to start elaborating; it is consistent with the ideas of Donoghue and others about the ancestor of conodont craniates; and, most strikingly, it resembles Mallatt's prediction of the external appearance of the ancestral craniate head. By contrast, Haikouella does not fit the widespread belief that ancestral craniates resembled hagfishes, because it has no special hagfish characters. Overall, Haikouella agrees so closely with recent predictions about pre-craniates that we conclude that the difficult problem of craniate origins is nearly solved.

149 citations


Journal ArticleDOI
TL;DR: It is proposed that this model is particularly suited for the reconstruction of paleodiets in hypsodont hipparionine and equine equids and a basic scenario for the evolution of anisodont dentitions is suggested.
Abstract: A new approach of reconstructing ungulate diet, the mesowear method, was recently introduced by Fortelius and Solounias ((2000) Am Mus Novitat 3301:1- 36). Mesowear is based on facet development on the occlu- sal surfaces of the teeth. Restricting mesowear investiga- tion to maxillary cheek teeth would allow mesowear investigation only in assemblages of large numbers of individuals and therefore would generally restrict this method to relatively few assemblages of recent and fossil ungulates. Most of the fossil, subfossil, and recent ungu- late osteological assemblages that may be assigned to a single taxon have smaller numbers of individuals. This results in a demand to extend the mesowear method to further tooth positions in order to obtain stable dietary classifications of fossil taxa. The focus of this article is to test if a consistent mesowear classification is obtainable for mandibular as well as for maxillary teeth. For statis- tical testing, large assemblages of isolated cheek teeth of the Vallesian hipparionine horse Hippotherium primige- nium and of the recent zebra Equus burchelli were em- ployed as models. The upper tooth positions P 4 ,M 1 ,M 2 , and M 3 as suggested by Kaiser and Solounias (2003) as the model for the "extended" mesowear method and the lower tooth positions P4-M3 were tested for their consis- tency in classification of the mesowear variables. We found a considerable shift of the mesowear signature to- wards the grazing edge of the mesowear continuum in lower cheek teeth. In order to adjust the signal of lower teeth to the signal of the upper teeth, a calibration factor was introduced which allowed incorporation of lower cheek teeth into the same model of mesowear investiga- tion together with upper cheek teeth. We propose that this model is particularly suited for the reconstruction of pa- leodiets in hypsodont hipparionine and equine equids. We further investigated the functional relation between the mesowear profiles and the distribution of dental tissues along the course of the occlusal contact. We therefore correlated mesowear profiles with enamel distribution profiles and found the mesowear profile to be strongly controlled by the attritional environment encountered by a given apex area. The differential signal observed in cusp apex morphology between upper and lower cheek teeth was found to be more closely related to attrition by the antagonistic tooth than to the distribution of dental tis- sues in the tooth under consideration. The results suggest a general extension of the mesowear method of paleodiet reconstruction and a basic scenario for the evolution of anisodont dentitions. J. Morphol. 258:67- 83, 2003.

132 citations


Journal ArticleDOI
TL;DR: Evidence is presented to further support the presence of a terminal mouth in the ground plan of the Onychophora and, hence, an acron may not exist in the arthropod clade.
Abstract: The neuroectoderm of the Euperipatoides kanangrensis embryo becomes distinguishable during germ band formation when the antennal segment is evident externally. During later stages of development, the neuroectoderm proliferates extensively and, at the anterior part of the head, newly-formed neuron precursor cells occupy most of the volume. The antenna forms from the dorsolateral side of the anterior somite. The antenna has no neuroectoderm of its own at the onset of its formation, but instead, neurons migrate out to the appendage from the nearby region of the developing brain. When the antennal tract is formed it is positioned horizontally in the brain, in line with the antennal commissure. Only later, and coincidentally with the anterior repositioning of the antenna, is the tract's distal part bent anteriorly and positioned laterally. The eye starts to develop posteriorly to the antenna and the antennal commissure. This suggests that the segment(s) associated with the onychophoran eye and antenna are not serially homologous with segments carrying equivalent structures within the Euarthropoda. Evidence is presented to further support the presence of a terminal mouth in the ground plan of the Onychophora and, hence, an acron may not exist in the arthropod clade.

114 citations


Journal ArticleDOI
TL;DR: Using miniature pigs, in vivo strains in rostral bones and sutures were measured to gain a better understanding of how the rostrum behaves biomechanically and found evidence in the maxillary and nasal bones for rigid structural behavior.
Abstract: The rostrum is a large diameter, thin-walled tubular structure that receives loads from the teeth. The rostrum can be conceptualized both as a rigid structure and as an assemblage of several bones that interface at sutures. Using miniature pigs, we measured in vivo strains in rostral bones and sutures to gain a better understanding of how the rostrum behaves biomechanically. Strains in the premaxillary and nasal bones were low but the adjacent maxillary-premaxillary, internasal, and intermaxillary suture strains were larger by an order of magnitude. While this finding emphasizes the composite nature of the rostrum, we also found evidence in the maxillary and nasal bones for rigid structural behavior. Namely, maxillary strain is consistent with a short beam model under shear deformation from molar loading. Strain in the nasal bones is only partially supported by a long beam model; rather, a complex pattern of dorsal bending of the rostrum from incisor contact and lateral compression is suggested. Torsion of the maxilla is ruled out due to the bilateral occlusion of pigs and the similar working and balancing side strains, although it may be important in mammals with a unilateral bite. Torsional loading does appear important in the premaxillae, which demonstrate working and balancing side changes in strain orientation. These differences are attributed to asymmetrical incisor contact occurring at the end of the power stroke.

107 citations


Journal ArticleDOI
TL;DR: The feeding behavior of extreme and modest jaw‐protruding Neotropical cichlids is investigated by comparing feeding kinematics, cranial morphology, and feeding performance to represent an adaptation for capturing elusive prey by enhancing the ram velocity of the predator but does not enhance suction feeding performance.
Abstract: The New World cichlids Petenia splendida and Caquetaia spp. possess extraordinarily protrusible jaws. We investigated the feeding behavior of extreme (here defined as greater than 30% head length) and mod- est jaw-protruding Neotropical cichlids by comparing feed- ing kinematics, cranial morphology, and feeding perfor- mance. Digital high-speed video (500 fps) of P. splendida, C. spectabile, and Astronotus ocellatus feeding on live guppy prey was analyzed to generate kinematic and per- formance variables. All three cichlid taxa utilized cranial elevation, lower jaw depression, and rotation of the sus- pensorium to protrude the jaws during feeding experi- ments. Extreme anterior jaw protrusion in P. splendida and C. spectabile resulted from augmented lower jaw de- pression and anterior rotation of the suspensorium. Mor- phological comparisons among eight cichlid species re- vealed novel anterior and posterior points of flexion within the suspensorium of P. splendida and Caquetaia spp. The combination of anterior and posterior loosening within the suspensorium in P. splendida and Caquetaia spp. permit- ted considerable anterior rotation of the suspensorium and contributed to protrusion of the jaws. Petenia splen- dida and C. spectabile exhibited greater ram distance and higher ram velocities than did A. ocellatus, resulting pri- marily from increased jaw protrusion. Petenia splendida and C. spectabile exhibited lower suction feeding perfor- mance than A. ocellatus, as indicated by lower suction- induced prey movements and velocities. Thus, extreme jaw protrusion in these cichlids may represent an adapta- tion for capturing elusive prey by enhancing the ram ve- locity of the predator but does not enhance suction feeding performance. J. Morphol. 257:96 -106, 2003. © 2003 Wiley-Liss, Inc.

105 citations


Journal ArticleDOI
TL;DR: It is proposed that Mayulestes and Pucadelphys represent an ancestral morphotype suggesting that the generalized type of locomotion of Paleocene marsupials was partly terrestrial with some climbing ability.
Abstract: In this study, the axial skeletons of two Early Paleocene marsupials, Mayulestes ferox and Pucadelphys andinus, were analyzed functionally and compared to that of six South American and three Australian species of extant marsupials. In the case of the South American opossums, myological data of the epaxial musculature were collected and analyzed and osteological-myological associations were related to locomotor behavior. Various features of the vertebral column that relate to diet or to locomotor or postural patterns were pointed out. These features include: the craniocaudal development of the neural process of the axis; the position of the anticlinal vertebra; the morphology of the neural processes of the thoracolumbar vertebrae (orientation, length, and craniocaudal width); the length, orientation, and curvature of the transverse processes of the lumbar vertebrae; and the length and robustness of the caudal vertebrae. In both fossil forms the vertebral column is mobile and allows a great range of flexion and extension of the spine, more so than in most of the living didelphids. It is emphasized here that the analysis of the axial skeleton complements and improves the conclusions provided by the forelimb and hindlimb analyses. It is proposed that Mayulestes and Pucadelphys represent an ancestral morphotype suggesting that the generalized type of locomotion of Paleocene marsupials was partly terrestrial with some climbing ability. J. Morphol. 255:279–300, 2003. © 2003 Wiley-Liss, Inc.

99 citations


Journal ArticleDOI
TL;DR: The adult skeleton of the spiny softshell turtle, Apalone spinifera (Testudines: Trionychidae), is described and this description forms a basis of comparison for the embryonic skeleton and its ontogenesis.
Abstract: Despite considerable attention that other groups of reptiles have received, few descriptions of the development and sequences of chondrification and ossification of the entire skeleton of turtles exist. Herein, the adult skeleton of the spiny softshell turtle, Apalone spinifera (Testudines: Trionychidae), is described; this description forms a basis of comparison for the embryonic skeleton and its ontogenesis. Descriptions are made on the basis of cleared and double-stained embryos and dry skeletal postembryonic specimens. The embryonic chondrocranium of A. spinifera is described and compared to those of Emys orbicularis and Caretta caretta, the sequence of chondrification of fore- and hindlimbs are compared with published descriptions of Chelydra serpentina and Chrysemys picta, and the sequence of ossification of elements is compared with those of C. serpentina, Lacerta vivipara, and Alligator mississippiensis. In A. spinifera, the first elements that ossify (Stage 17) are associated with the dermatocranium and mandible, followed by elements of the dermal skull table, lower jaw, and dermal elements of the plastron. In A. spinifera, the sequence of chondrification of limb elements is similar to that of C. serpentina; however, the sequence of ossification varies greatly among Apalone, Chelydra, Lacerta, and Alligator.

87 citations


Journal ArticleDOI
TL;DR: Gas chromatography and infrared spectroscopy revealed that the lipid fraction of the secretion is a mixture of unsaturated fatty acid glycerides and aliphatic hydrocarbons whose spectra are similar to those of extractions of the superficial lipid coating of the body surface.
Abstract: SEM studies show that the differentiation among Stenus species with respect to the formation of the tarsi (wide bilobed vs. slender tarsomeres) takes place with a considerable augmentation of tarsal ventral setae in wide bilobed tarsomeres. The structural diversity of ventral tarsal setae among and within species is discussed with respect to 1) their different roles as mechanosensilla and tenent setae, respectively, and 2) the different selection pressures in terms of adhesive requirements along the longitudinal tarsus axis. The tarsi are provided with four groups of tarsal mechanosensilla, comprising hair and bristle sensilla, campaniform sensilla, and scolopidia. The tarsus wall is supported by an epidermis, which forms three different types of glands pouring their secretion via different exit paths onto the outer cuticle. The organization and ultrastructure of each of these glands is described. Only one (unicellular) gland is directly associated with the ventral tenent setae and is thus considered to form the main part of the adhesive secretion. The beetles appear to release the tarsal secretion through mediation of the tenent setae, which contains a lipid and a proteinaceous fraction. I propose that the secretion is discharged to the outside via a system of very fine pore canals in the wall of the setal shaft. Gas chromatography and infrared spectroscopy revealed that the lipid fraction of the secretion is a mixture of unsaturated fatty acid glycerides and aliphatic hydrocarbons whose spectra are similar to those of extractions of the superficial lipid coating of the body surface. J. Morphol. 255:24–43, 2003. © 2002 Wiley-Liss, Inc.

74 citations


Journal ArticleDOI
TL;DR: This first comprehensive study of the peripheral olfactory organ from a representative of the large and economically important order of teleost fishes, the Perciformes, shows a compact structure with Olfactory sensory neurons distributed widely throughout the olfFactory chamber.
Abstract: This first comprehensive study of the peripheral olfactory organ from a representative of the large and economically important order of teleost fishes, the Perciformes, shows a compact structure with olfactory sensory neurons distributed widely throughout the olfactory chamber. The spatial organization of the nasal cavity in the bottom-dwelling round goby (Gobiidae, Neogobius melanostomus) was examined using impression material injection, immunocytochemistry, and transmission electron microscopy. The olfactory chamber contains a single olfactory lamella; prominent dorsocaudal lachrymal and ethmoidal accessory nasal sacs are situated ventrocaudal to the chamber. The location of the olfactory mucosa within the olfactory chamber is novel for teleost fish, as it extends beyond the ventral surface to the lateral and dorsal regions. Microvillar olfactory sensory neurons and ciliated olfactory sensory neurons were identified by transmission electron microscopy and the spatial distribution of these two cell types was assessed through immunocytochemistry against olfactory receptor coupled G-proteins. Both G(alphaolf)-immunoreactive ciliated olfactory sensory neurons and the G(alphao)-immunoreactive microvillar form were located throughout the olfactory epithelium. Ciliated crypt cells were G(alphao) immunoreactive and were found throughout the olfactory epithelium of some specimens. The widespread occurrence of olfactory sensory neurons in the olfactory chamber supports the idea that olfactory signaling is important to the survival of the round goby. The prominence of the lachrymal and ethmoidal accessory nasal sacs indicates the capacity to regulate the flow of odorant molecules over the sensory surface of the olfactory sensory neurons, possibly through a pump-like mechanism driven by opercular activity associated with gill ventilation.

74 citations


Journal ArticleDOI
TL;DR: It is concluded that extramuscular myofascial force transmission is an important feature of the anterior crural compartment and requires that it be considered in analysis of muscular function.
Abstract: Muscles within the anterior crural compartment (extensor digitorum longus, EDL; tibialis anterior, TA; and extensor hallucis longus, EHL) and within the peroneal compartment were excited simultaneously and maximally. All muscles were kept at constant length with the exception of EDL, for which muscle length was changed by moving its proximal tendon. Active and passive force was measured at proximal as well as distal EDL tendons and at the combined distal tendons of TA and EHL (TA+EHL). In the initial experimental condition, a difference (Fproximal > Fdistal) in EDL force, amounting to 0-14% of proximal force, was confirmed for most EDL lengths. This is interpreted as a clear proof of extramuscular myofascial force transmission, as no significant EDL length effects could be shown on TA+EHL force. Repeated measurements were confirmed to cause marked changes of both proximal and distal length-force characteristics, such as a shift of the whole ascending limb of the active curve, including optimum length, to higher lengths without decreasing optimum force, and decreasing active force at low lengths (by ~57%). Repeated measurements also lowered proximal and distal EDL passive force (by up to 35%). The proximo-distal difference in passive as well as active EDL force was decreased, but persisted. At most lengths, this difference for active force amounted to a constant fraction (14%) of proximal force. TA+EHL force was not affected significantly. Subsequently, acute effects of experimental surgical alterations were studied: The first manipulation was full lateral fasciotomy of the anterior crural compartment that caused a further decrease in active force at the proximal EDL but not at the distal EDL tendon. Passive forces showed no further significant changes. The proximo-distal EDL active force difference decreased to 0-5% of proximal force. After fasciotomy, TA+EHL force increased by 30%. This was interpreted as evidence of increased intramuscular and decreased extramuscular myofascial force transmission. The second manipulation was full isolation of EDL from TA+EHL, but not from extramuscular connective tissues, which caused a further decrease of the EDL proximo-distal force differences, indicating a stiffening effect of the presence of TA+EHL on the extramuscular matrix. For EDL active force the difference was no longer significantly different from zero. In contrast, for EDL passive force the proximo-distal force difference persisted. It is concluded that extramuscular myofascial force transmission is an important feature of the anterior crural compartment. The magnitude of this force transmission requires that it be considered in analysis of muscular function. J. Morphol. 256:306-321 2003

71 citations


Journal ArticleDOI
TL;DR: The overall anatomy of this vessel and its abundant connections with the other venous systems indicate it likely plays a primary role in returning blood to the heart from all parts of the body.
Abstract: The crocodilian spinal vein is remarkably robust yet historically overlooked. Using corrosion casting, we describe the anatomy of this vessel and its connections with the caval and hepatic venous systems in representatives from four crocodilian genera. The spinal vein arises from an enlarged occipital sinus over the medulla and extends the entire length of the vertebral column. Unlike in squamate reptiles, the spinal vein is single (nonplexiform), voluminous, and situated dorsal to the spinal cord, and plexi lateral to the cord span between emerging intercostal veins. The connections with the other venous systems are otherwise similar to those in other tetrapods. The overall anatomy of this vessel and its abundant connections with the other venous systems indicate it likely plays a primary role in returning blood to the heart from all parts of the body. Preliminary studies of function suggest that this vessel could also play an adaptive role during basking and diving.

Journal ArticleDOI
TL;DR: The concept of a lepidosaurian epidermal generation as a derived manifestation of the sauropsid synapomorphy of vertical alternation of keratin synthesis is elucidated and it is shown that further study of Keratinocyte differentiation in the tuatara may contribute to the understanding of the origin and evolution of β‐keratinization in sa Kuropsid amniotes.
Abstract: Histochemical and TEM analysis of the epidermis of Sphenodon punctatus confirms previous histological studies showing that skin-shedding in this relic species involves the periodic production and loss of epidermal generations, as has been well documented in the related Squamata The generations are basically similar to those that have been described in the latter, and their formation involves a cyclic alternation between beta- and alpha-keratogenesis The six differences from the previously described squamate condition revealed by this study include: 1) the absence of a well-defined shedding complex; 2) the persistence of plasma membranes throughout the mature beta-layer, including the oberhautchen; 3) the concomitant presence of lipogenic lamellar bodies and PAS-positive mucous granules in most presumptive alpha-keratinizing cells; 4) the presence of the secreted contents of these organelles in the intercellular domains of the three derived tissues, the homologues of the squamate mesos, alpha-, and lacunar cells; 5) the paucity of lamellated lipid deposits in such domains; 6) the presence of keratohyalin-like granules (KHLG) in the presumptive lacunar, clear, and oberhautchen cells In toto, the absence of many of the precisely definable, different pathways of cytogenesis discernible during squamate epidermal generation production might be interpreted as primitive for lepidosaurs However, when the evolutionary significance of each of the six differences listed is evaluated separately, it becomes clear that the epidermis of S punctatus possesses primitive amniote, shared and derived lepidosaurian, and some unique characters This evaluation further elucidates the concept of a lepidosaurian epidermal generation as a derived manifestation of the sauropsid synapomorphy of vertical alternation of keratin synthesis and shows that further study of keratinocyte differentiation in the tuatara may contribute to our understanding of the origin and evolution of beta-keratinization in sauropsid amniotes

Journal ArticleDOI
TL;DR: The present report provides a basis for future studies aimed at discovering molecular pathways that precede these diverse mechanisms of uptake in necrotic caspase‐independent modes of death, and studies at the ultrastructural level the phagocytic response to dying cells in an in vitrophagocytosis assay with a mouse macrophage cell line.
Abstract: Rapid and efficient phagocytic removal of dying cells is a key feature of apoptosis. In necrotic caspase-independent modes of death, the role and extent of phagocytosis is not well documented. To address this issue, we studied at the ultrastructural level the phagocytic response to dying cells in an in vitro phagocytosis assay with a mouse macrophage cell line (Mf4/4). As target cells, murine L929sAhFas cells were induced to die by TNFR1-mediated necrosis or by Fas-mediated apoptosis. Apoptotic L929sAhFas cells are taken up by complete engulfment of apoptotic bodies as single entities forming a tight-fitting phagosome, thus resembling the "zipper"-like mechanism of internalization. In contrast, primary and secondary necrotic cells were internalized by a macropinocytotic mechanism with formation of multiple ruffles by the ingesting macrophage. Ingestion of necrotic cellular material was invariably taking place after the integrity of the cell membrane was lost and did not occur as discrete particles, in contrast to apoptotic material that is surrounded by an intact membrane. Although nuclei of necrotic cells have been observed in the vicinity of macrophages, no uptake of necrotic nuclei was observed. The present report provides a basis for future studies aimed at discovering molecular pathways that precede these diverse mechanisms of uptake.

Journal ArticleDOI
TL;DR: A functional explanation of this system is given, which indicates that cryptic female choice may occur in these spiders: the anterior wall of their spermatheca is strongly sclerotized and possesses a cone‐shaped hole in its upper part.
Abstract: Female genital structures with their allied muscles of the haplogyne spider Opopaea fosuma are described. A functional explanation of this system is given, which indicates that cryptic female choice may occur in these spiders: the anterior wall of their spermatheca is strongly sclerotized and possesses a cone-shaped hole in its upper part. A transverse sclerite that serves as muscle attachment bears a nail-like structure and lies in a chitinized area of the anterior wall of the uterus externus. Muscle contraction presses this nail into the hole of the spermatheca. In this way, the uterus externus gets both locked and fixed. Furthermore, as this occurs the copulatory orifice is enlarged and the resulting suction probably leads to previously deposited sperm being drawn from the spermatheca and dumped. This is a common mechanism used by females to influence a male's chances of fathering their offspring in a process known as cryptic female choice.

Journal ArticleDOI
TL;DR: In this paper, a detailed model of musculoskeletal geometry and muscle architecture is used to predict muscle and joint contact forces, which can increase our understanding of the relationship between muscle structure and function in the equine distal forelimb.
Abstract: Articular injuries in athletic horses are associated with large forces from ground impact and from muscular contraction. To accurately and noninvasively predict muscle and joint contact forces, a detailed model of musculoskeletal geometry and muscle architecture is required. Moreover, muscle architectural data can increase our understanding of the relationship between muscle structure and function in the equine distal forelimb. Muscle architectural data were collected from seven limbs obtained from five thoroughbred and thoroughbred-cross horses. Muscle belly rest length, tendon rest length, muscle volume, muscle fiber length, and pennation angle were measured for nine distal forelimb muscles. Physiological cross-sectional area (PCSA) was determined from muscle volume and muscle fiber length. The superficial and deep digital flexor muscles displayed markedly different muscle volumes (227 and 656 cm3, respectively), but their PCSAs were very similar due to a significant difference in muscle fiber length (i.e., the superficial digital flexor muscle had very short fibers, while those of the deep digital flexor muscle were relatively long). The ulnaris lateralis and flexor carpi ulnaris muscles had short fibers (17.4 and 18.3 mm, respectively). These actuators were strong (peak isometric force, Fmax=5,814 and 4,017 N, respectively) and stiff (tendon rest length to muscle fiber length, LT:LMF=5.3 and 2.1, respectively), and are probably well adapted to stabilizing the carpus during the stance phase of gait. In contrast, the flexor carpi radialis muscle displayed long fibers (89.7 mm), low peak isometric force (Fmax=555 N), and high stiffness (LT:LMF=1.6). Due to its long fibers and low Fmax, flexor carpi radialis appears to be better adapted to flexion and extension of the limb during the swing phase of gait than to stabilization of the carpus during stance. Including muscle architectural parameters in a musculoskeletal model of the equine distal forelimb may lead to more realistic estimates not only of the magnitudes of muscle forces, but also of the distribution of forces among the muscles crossing any given joint.

Journal ArticleDOI
TL;DR: The staging scheme for flounder embryonic and larval development presented here should facilitate both experimental and comparative research on summerFlounder and other flatfish species and allow accurate and consistent assessment of developmental stage despite variation in timing and size.
Abstract: Early development of flatfishes such as the summer flounder Paralichthys dentatus (Pleuronectiformes) has not been extensively documented, largely because of a dearth of material; however, the recent expansion of flatfish aquaculture has made embryos of P. dentatus readily available for developmental studies. We divide development of P. dentatus embryos and larvae into two main periods, pre- and posthatching, and assign stages within each of those primary divisions. Stages from fertilization to hatching loosely follow the general teleost staging scheme suggested by Shardo ([1995] J Morphol 225:125-167); stages from hatching through metamorphosis are aligned with the series used for Japanese flounder, P. olivaceus (Minami [1982] Nippon Suisan Gakkaishi 48:1581-1588; Fukuhara [1986] Nippon Suisan Gakkaishi 52:81-91). Although length, width, and age may serve as approximate indicators of developmental progression in summer flounder, these characteristics are too variable to form the sole basis of a staging table. Therefore, we define stages by morphological criteria drawn from the development of the jaw apparatus and digestive system, eye migration, and notochord tip flexion. Examination of these morphological features in hatched larvae allows accurate and consistent assessment of developmental stage despite variation in timing and size. The staging scheme for flounder embryonic and larval development presented here should facilitate both experimental and comparative research on summer flounder and other flatfish species.

Journal ArticleDOI
TL;DR: Histological and immunohistochemical techniques were used to describe the five reproductive classes that were observed to occur during the annual reproductive cycle: regressed, early maturation, mid‐maturation, late maturation and regression.
Abstract: The swamp eel, Synbranchus marmoratus, is a protogynous, diandric species. During sex reversal, the ovarian germinal epithelium, which forms follicles containing an oocyte and encompassing follicle cells dur- ing the female portion of the life cycle, produces numerous invaginations, or acini, into the ovarian stroma. Within the acini, the gonia that formerly produced oocytes become spermatogonia, enter meiosis, and produce sperm. The acini are bounded by the basement membrane of the ger- minal epithelium. Epithelial cells of the female germinal epithelium, which formerly became follicle (granulosa) cells, now become Sertoli cells in the developing testis. Subsequently, lobules and testicular ducts form. The swamp eel testis has a lobular germinal compartment in both primary and secondary males, although the germinal compartment in testes of secondary males resides within the former ovarian lamellae. The germinal compartment, supported by a basement membrane, is composed of Ser- toli and germ cells that give rise to sperm. Histological and immunohistochemical techniques were used to de- scribe the five reproductive classes that were observed to occur during the annual reproductive cycle: regressed, early maturation, mid-maturation, late maturation, and regression. These classes are differentiated by the pres- ence of continuous or discontinuous germinal epithelia and by the types of germ cells present. Synbranchus mar- moratus has a permanent germinal epithelium. Differ- ences between the germinal compartment of the testes of primary and secondary males were not observed. J. Mor- phol. 257:107-126, 2003. © 2003 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: Placodermi would seem to provide little evidence for the early evolution of dentitions, or of denticle whorls, or tooth families, at the base of the clade of jawed fishes, however, organized denticles do occur at the rear of the placoderm gill chamber, but are associated with the postbranchial lamina of the anterior trunkshield, assumed to be part of the dermal cover.
Abstract: The correlation of the origin of teeth with jaws in vertebrate history has recently been challenged with an alternative to the canonical view of teeth deriving from separate skin denticles. This alternative proposes that organized denticle whorls on the pharyngeal (gill) arches in the fossil jawless fish Loganellia are precursors to tooth families developing from a dental lamina along the jaw, such as those occurring in sharks, acanthodians, and bony fishes. This not only indicates that homologs of tooth families were present, but also illustrates that they possessed the relevant developmental controls, prior to the evolution of jaws. However, in the Placodermi, a phy- logenetically basal group of jawed fishes, the state of pha- ryngeal denticles is poorly known, tooth whorls are ab- sent, and the presence of teeth homologous to those in extant jawed fishes (Chondrichthyes Osteichthyes) is controversial. Thus, placoderms would seem to provide little evidence for the early evolution of dentitions, or of denticle whorls, or tooth families, at the base of the clade of jawed fishes. However, organized denticles do occur at the rear of the placoderm gill chamber, but are associated with the postbranchial lamina of the anterior trunkshield, assumed to be part of the dermal cover. Significantly, these denticles have a different organization and morphol- ogy relative to the external dermal trunkshield tubercles. We propose that they represent a denticulate part of the visceral skeleton, under the influence of pharyngeal pat- terning controls comparable to those for pharyngeal den- ticles in other jawed vertebrates and Loganellia. J. Mor- phol. 257:289 -307, 2003. © 2003 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: Character evolution and phylogenetic signal were explored, accepting the incomplete understanding of intraspecific variation and of uropeltid interrelationships, and there is evidence that all but one of these characters evolved homoplastically, probably by multiple independent origin.
Abstract: Microornamentation was examined on the exposed oberhautchen surface of dorsal, lateral, and ventral scales from the midbody region of 20 species of the fossorial snake family Uropeltidae and seven species of fossorial scolecophidian and anilioid outgroups. No substantial variation was observed in microornamentation from the different areas around the midbody circumference within species. All oberhautchen cells were flat and exhibited no major surface features other than occasional posterior margin denticulations, small pores/pits, and narrow, low ridges. This is largely consistent with the hypothesis that friction reduction and dirt shedding are the main selective pressures on microornamentation, given that reducing shine is not of key importance in fossorial animals. Variations among taxa were observed in the shape and size of oberhautchen cells, in the presence of pores/pits, in the presence and size of denticulations on posterior cell margins, and in the level or imbricate nature of cell borders. Six microornamentation characters were formulated, scored, and plotted onto a selected phylogeny. Character evolution and phylogenetic signal were explored, accepting the incomplete understanding of intraspecific variation and of uropeltid interrelationships. There is evidence that all but one of these characters evolved homoplastically, probably by multiple independent origin. There is no clear evidence for character state reversal, but greater phylogenetic resolution is required to test this further. Phylogenetic signal appears to exist in some instances, including possible microornamentation synapomorphies for Uropeltidae and Melanophidium. These derived character states are found elsewhere within Squamata. A microornamentation of narrow, finely, and regularly spaced ridges is associated with scale iridescence. These ridges, and possibly pores/pits, are also associated with scales that are less wettable, and that therefore might be expected to be better at shedding dirt in moist conditions. Testable hypotheses are presented that might explain minor variations in the form of ridges and pits among uropeltids.

Journal ArticleDOI
TL;DR: The absence of dental–dietary correlation in these species suggests that other factors, such as phylogeny, are important in determining dental form, and species with varied food sources are more likely to possess dental characteristics that are generalized in function.
Abstract: This study investigates whether the gross morphology of mustelid and viverrid postcanine dentitions corresponds with differences in diet. For each species, the predominant foods ingested are used to form predictions of dental form and measurements of the carnassial and molar teeth determine the extent of shearing and crushing surfaces on the postcanine teeth. Principal components analysis distinguishes species according to morphological differences in the dentition and these differences are compared with predictions of dental form based on diet. Dietarily specialized species are more likely to be correspondingly specialized in the dentition and species with varied food sources are more likely to possess dental characteristics that are generalized in function. Consumers of foods with high fracture resistance, such as vertebrate tissue and hard-surfaced invertebrates, possess specialized shearing or crushing postcanine teeth. On the other hand, species that consume foods of lesser fracture resistance, such as fruit and soft invertebrates, differ greatly in dental form and are more generalized in dental function. A few species possess postcanine dentitions that do not correspond with diet; the absence of dental-dietary correlation in these species suggests that other factors, such as phylogeny, are important in determining dental form.

Journal ArticleDOI
TL;DR: The germ cell development in the slider turtle (Trachemys scripta) testis was investigated by viewing the histology of the seminiferous epithelium in plastic sections with a light microscope, resulting in a single spermatogenic event that climaxed with one massive sperm release in November.
Abstract: The germ cell development in the slider turtle (Trachemys scripta) testis was investigated by viewing the histology of the seminiferous epithelium in plastic sections with a light microscope. Germ cell morphologies in the slider turtle testis were similar to the morphologies of other verte- brate germ cell types. However, the slider turtle seminifer- ous epithelium contained germ cells that progress through spermatogenesis in a temporal rather than a spatial pattern, resulting in a single spermatogenic event that climaxed with one massive sperm release in November. Mature sperm then are stored within the epididymis until breeding commences in the following spring. The germ cell development strategy in the slider turtle is different from that of other amniotes and is more reminiscent of the developmental strategy found in the anamniotic testis. This temporal progression of germ cells through spermatogenesis within a tubular testis repre- sents a transitional model that may be evolutionarily signif- icant. J. Morphol. 255:337-346, 2003. © 2003 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: High recovery rates corresponded to well‐organized morphologies of anhydrobiotic bdelloids, suggesting that a proper contraction of the body into a tun shape and probably a rigorous packing of internal structures are necessary for survival after anhydRobiosis.
Abstract: We desiccated bdelloid rotifers (Macrotrachela quadricornifera), submitting the animals to four desiccation procedures (protocols A, B, C, D) that differed in the rate of water evaporation, in the time of desiccation, and in the substrates provided. We observed external morphological changes of the rotifer bodies during drying with scanning electron microscopy and, in parallel, assessed rates of recovery after a 7-day period of dormancy. Two protocols produced disorganized morphologies of the anhydrobiotic animals, with no (A) or very poor (B) recovery. Protocols C and D gave rather high rates of recovery and dry rotifers appeared unaltered and well organized. The different protocols affected rotifer morphology during the 7-day anhydrobiosis and rates of recovery after the 7-day anhydrobiosis; high recovery rates corresponded to well-organized morphologies of anhydrobiotic bdelloids, suggesting that a proper contraction of the body into a tun shape and probably a rigorous packing of internal structures are necessary for survival after anhydrobiosis. These features are affected by the time between water shortage and full desiccation, but also by the surrounding relative humidity and by the nature of the substrate. Possible adaptations of anhydrobiotic rotifers are discussed.

Journal ArticleDOI
TL;DR: Acipenseriformes are basal actinopterygians with a highly derived cranial morphology that is characterized by an anatomical independence of the jaws from the neurocranium, and have a novel jaw protrusion mechanism, which converts rostral rotation of the hyomandibula into ventral protrusion of the jaw joint.
Abstract: Acipenseriformes (sturgeon and paddlefish) are basal actinopterygians with a highly derived cranial morphology that is characterized by an anatomical independence of the jaws from the neurocranium. We examined the morphological and kinematic basis of prey capture in the Acipenseriform fish Scaphirhynchus albus, the pallid sturgeon. Feeding pallid sturgeon were filmed in lateral and ventral views and movement of cranial elements was measured from video sequences. Sturgeon feed by creating an anterior to posterior wave of cranial expansion resulting in prey movement through the mouth. The kinematics of S. albus resemble those of other aquatic vertebrates: maximum hyoid depression follows maximum gape by an average of 15 ms and maximum opercular abduction follows maximum hyoid depression by an average of 57 ms. Neurocranial rotation was not a part of prey capture kinematics in S. albus, but was observed in another sturgeon species, Acipenser medirostris. Acipenseriformes have a novel jaw protrusion mechanism, which converts rostral rotation of the hyomandibula into ventral protrusion of the jaw joint. The relationship between jaw protrusion and jaw opening in sturgeon typically resembles that of elasmobranchs, with peak upper jaw protrusion occurring after peak gape.

Journal ArticleDOI
TL;DR: The original molluscan radula was similar to the radula found in Helicoradomena species, and it is shown that distichy also occurs during early development in several species of gastropods and polyplacophorans.
Abstract: As the original molluscan radula is not known from direct observation, we consider what the form of the original radula may have been from evidence provided by neomenioid Aplacophora (Solenogastres), Gastropoda, Polyplacophora, and the Cambrian fossil Wiwaxia corrugata (Matthews). Conclusions are based on direct observation of radula morphology and its accessory structures (salivary gland ducts, radular sac, anteroventral radular pocket) in 25 species and 16 genera of Aplacophora; radula morphogenesis in Aplacophora; earliest tooth formation in Gastropoda (14 species among Prosobranchia, Opisthobranchia, and Pulmonata); earliest tooth formation in four species of Polyplacophora; and the morphology of the feeding apparatus in W. corrugata. The existence of a true radula membrane and of membranoblasts and odontoblasts in neomenioids indicates that morphogenesis of the aplacophoran radula is homologous to that in other radulate Mollusca. We conclude from p redness of salivary gland ducts, a divided radular sac, and a pair of anteroventral pockets that the plesiomorphic state in neomenioids is bipartite, formed of denticulate bars that are distichous (two teeth per row) on a partially divided or fused radula membrane with the largest denticles lateral, as occurs in the genus Helicoradomenia. The tooth morphology in Helicoradomenia is similar to the feeding apparatus in W. corrugata. We show that distichy also occurs during early development in several species of gastropods and polyplacophorans. Through the rejection of the null hypothesis that the earliest radula was unipartite and had no radula membrane, we conclude that the original molluscan radula was similar to the radula found in Helicoradomena species.

Journal ArticleDOI
TL;DR: New specialized placentotrophic structures and a novel arrangement of extraembryonic membrane morphogenesis for Squamata are shown and may be related to the drastic reduction of the egg size and obligatory placentOTrophy from early developmental stages.
Abstract: Topological and histological analyses of Mabuya mabouya embryos at different developmental stages showed an extraembryonic membrane sequence as follows: a bilaminar omphalopleure and progressive mesodermal expansion around the whole yolk sac at gastrula stages; mesodermal split and formation of an exocoelom in the entire embryonic chamber at neurula stages; beginning of the expansion of the allantois into the exocoelom to form a chorioallantoic membrane at pharyngula stages; complete extension of the allantois into the exocoelom between limb-bud to preparturition stages. Thus, a placental sequence could be enumerated: bilaminar yolk sac placenta; chorioplacenta; allantoplacenta. All placentas are highly specialized for nutrient absorption from early developmental stages. The bistratified extraembryonic ectoderm possesses an external layer with cuboidal cells and a microvillar surface around the whole yolk sac, which absorbs uterine secretions during development of the bilaminar yolk sac placenta and chorioplacenta. During gastrulation, with mesodermal expansion a dorsal absorptive plaque forms above the embryo and several smaller absorptive plaques develop antimesometrially. Both structures are similar histologically and are active in histotrophic transfer from gastrula stages until the end of development. The dorsal absorptive plaque will constitute the placentome and paraplacentome during allantoplacental development. At late gastrula-early neurula stages some absorptive plaques form chorionic concavities or chorionic bags that are penetrated by a long uterine fold and seem to have a specialized histotrophic and/or metabolic role. The extraembryonic mesoderm does not ingress into the yolk sac and neither an isolated yolk mass nor a yolk cleft are formed. This derived pattern of development may be related to the drastic reduction of the egg size and obligatory placentotrophy from early developmental stages. Our results show new specialized placentotrophic structures and a novel arrangement of extraembryonic membrane morphogenesis for Squamata.

Journal ArticleDOI
TL;DR: A survey of the literature in which lateral line canal development is described using histological analysis suggests that the occurrence of two different patterns of canal morphogenesis may be due to phylogenetic variation in the pattern of the development of the lateral line canals.
Abstract: The development of two of the cranial lateral line canals is described in the cichlid, Archocentrus nigrofasciatus. Four stages of canal morphogenesis are defined based on histological analysis of the supraorbital and mandibular canals. “Canal enclosure” and “canal ossification” are defined as two discrete stages in lateral line canal development, which differ in duration, an observation that has interesting implications for the ontogeny of lateral line function. Canal diameter in the vicinity of individual neuromasts begins to increase before ossification of the canal roof in each canal segment; this increase in canal diameter is accompanied by an increase in canal neuromast size. The mandibular canal generally develops later than the supraorbital canal in this species, but in both of these canals development of the different canal segments contained within a single dermal bone is asynchronous. These observations suggest that a dynamic process requiring integration and interaction among different tissues, in both space and time, underlies the development of the cranial lateral line canal system. The supraorbital and mandibular canals appear to demonstrate a “one-component” pattern of development in Archocentrus nigrofasciatus, where the walls of each canal segment grow up from the underlying dermal bone and then fuse to form the bony canal roof. This is contrary to numerous published reports that describe a “two-component” pattern of development in teleosts where the bony canal ossifies separately and then fuses with an underlying dermal bone. A survey of the literature in which lateral line canal development is described using histological analysis suggests that the occurrence of two different patterns of canal morphogenesis (“one-component” and “two-component”) may be due to phylogenetic variation in the pattern of the development of the lateral line canals. J. Morphol. 255:44–57, 2003. © 2002 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: The present study provides a comprehensive description of the morphology of the proximal portion of the limb suitable for the development of a musculoskeletal model of the M. mulatta upper limb.
Abstract: The conversion of muscle activity into smooth, purposeful movement of the limb depends complexly on the morphometry of muscles and their mechanical action on the skeleton. Although nonhuman primates are common subjects in motor control experiments (Scott [2000] Can J Physiol Pharmacol 78:923-933), little information is available on the morphometric properties of their upper limbs. One key variable is muscle moment arm, or mechanical advantage, which defines how linear motion or force of a muscle is translated into angular motion or torque at a joint. This study reports moment arm values with respect to joint angle (flexion/extension) of 14 muscles spanning the shoulder and elbow in Macaca mulatta. The magnitude of moment arm values ranged widely across muscles. In some muscles mechanical advantage remained constant with joint angle, whereas the moment arm of others varied strongly. The angle (Theta(f)(o)) at which optimal fascicle length (L(f)(o)) occurred showed strong trends, where the elbow-spanning muscles had Theta(f)(o) values clustered at mid-flexion and the shoulder musculature Theta(f)(o) values tended to be grouped around the neutral joint angle of 0 degrees. Estimates of peak muscle torque for flexor and extensor muscle groups at each joint were surprisingly similar in both magnitude and dependency on joint angle. The present study, along with the previous two in this series (Cheng and Scott [2000] J Morphol 245:206-224; Singh et al. [2002] J Morphol 251:323-332), provides a comprehensive description of the morphology of the proximal portion of the limb suitable for the development of a musculoskeletal model of the M. mulatta upper limb.

Journal ArticleDOI
TL;DR: The results suggest that the juvenile hormone plays complicated roles in the expression of caste morphologies and ovarian development in termites.
Abstract: To elucidate the switching mechanism of caste differentiation in termites and to examine the possible induction of soldier-reproductive intercastes experimentally, we investigated the effects of juvenile hormone on the morphologies of soldier caste by applying a juvenile hormone analog (JHA) to nymphs of the damp-wood termite Zootermopsis nevadensis (Isoptera : Termopsidae). JHA treatment for about 2 weeks induced a variety of intermediate castes, showing both alate and soldier morphological features. The principal component analysis (PCA) of those morphological characters showed that those intercastes were a deviation from the developmental line into alates to soldier differentiation, which is known to be triggered by juvenile hormone. Detailed morphological examination of the compound eyes, wing joint, and mandibles showed that those intercastes expressed soldier features, although they had started to develop alate characteristics. The morphology of the resultant intercastes seemed to be determined by the nymphal stage, at which JHA treatment was applied. The induced intercastes with exaggerated soldier-specific characteristics (e.g., mandibles) repressed alate-specific characteristics (e.g., wings), namely, the alate and soldier morphological characteristics in induced intercastes show opposite responses against the application of JHA. On the other hand, ovarian development was not suppressed by the JHA application, even in the soldier-like individuals. Naturally differentiated presoldiers also possessed developed ovarioles, although ovaries of mature soldiers were degenerated. Our results suggest that the juvenile hormone plays complicated roles in the expression of caste morphologies and ovarian development in termites. J. Morphol. 257:22–32, 2003. © 2003 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: Structural characteristics suggest that the omphalallantoic placenta and peripheral zone of the chorioallantoa are sites of nutritional provision via histotrophy in Virginia striatula.
Abstract: Virginia striatula is a viviparous snake with a complex pattern of embryonic nutrition Nutrients for embryonic development are provided by large, yolked eggs, supplemented by placental transfer Placentation in this species is surprisingly elaborate for a predominantly lecithotrophic squamate reptile The embryonic-maternal interface consists of three structurally distinct areas, an omphalallantoic placenta and a regionally diversified chorioallantoic placenta The chorioallantoic placenta over the embryonic hemisphere (paramesometrial region) of the egg, features close apposition of embryonic and uterine blood vessels because of the attenuate form of the interceding epithelial cells The periphery of the chorioallantoic placenta, which is adjacent to the omphalallantoic placenta, is characterized by a simple cuboidal uterine epithelium apposed to a stratified cuboidal chorionic epithelium There are no sites with attenuate epithelial cells and close vascular apposition The morphology of the omphalallantoic placenta is similar to that of the peripheral chorioallantoic placenta, except that the height of uterine epithelial cells is greater and allantoic blood vessels are not associated with the embryonic epithelium The functional capabilities of the three placental regions are not known, but structural characteristics suggest that the omphalallantoic placenta and peripheral zone of the chorioallantoic placenta are sites of nutritional provision via histotrophy The paramesometrial region of the chorioallantoic placenta is also nutritive, in addition to functioning as the primary embryonic respiratory system The structure of the chorioallantoic placenta of V striatula is a new placental morphotype for squamate reptiles that is not represented by a classic model for the evolution of reptilian placentation

Journal ArticleDOI
TL;DR: Although spatial relationships are seen between germ cells within the seminiferous epithelium, accumulation of spermatids during winter and acceleration of elongation in spring prevents determination of consistent cellular associations between early and late developing germ cellswithin the wall lizard testis.
Abstract: The annual cytological changes to the male germinal epithelium were investigated in an introduced population of European wall lizards (Podarcis muralis). Testicular tissues were collected, embedded, sectioned by an ultramicrotome, and stained with the PAS procedure followed by a toluidine counterstain. Spermatogenesis in the lizard is divided into the proliferative, meiotic, and maturational phases. Wall lizards have a prenuptial pattern of spermatogenesis, where sperm development begins immediately prior to and continues through the months of breeding (April-June). The testis then involutes, undergoes a short period of quiescence, and recrudescence commences in mid-July. Germ cells undergo proliferation, meiosis, and the early stages of spermiogenesis (maturation) from late July through December. However, the late stages of spermiogenesis are retarded from December through February. Spermiogenesis continues at an accelerated pace from March through May, leading to a single massive spermiation event through the month of June. Although spatial relationships are seen between germ cells within the seminiferous epithelium, accumulation of spermatids during winter and acceleration of elongation in spring prevents determination of consistent cellular associations between early and late developing germ cells within the wall lizard testis. This temporal germ cell development is different from the consistent spatial development seen within seasonally breeding birds and mammals and may represent an evolutionary intermediate in terms of amniotic germ cell development. J. Morphol. 258:296–306, 2003. © 2003 Wiley-Liss, Inc.