scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Mountain Science in 2017"


Journal ArticleDOI
TL;DR: In this paper, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment.
Abstract: Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups, (i) training dataset and (ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages, distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation.

116 citations


Journal ArticleDOI
TL;DR: In this paper, 16 flume experiments were designed using the method of orthogonal design and completed in a laboratory, where particle composition changes in slope toe, volumetric water content, fine particle movement characteristics and soil failure mechanism were analyzed and understood.
Abstract: The initiation mechanism of debris flow is regarded as the key step in understanding the debris-flow processes of occurrence, development and damage. Moreover, migration, accumulation and blocking effects of fine particles in soil will lead to soil failure and then develop into debris flow. Based on this hypothesis and considering the three factors of slope gradient, rainfall duration and rainfall intensity, 16 flume experiments were designed using the method of orthogonal design and completed in a laboratory. Particle composition changes in slope toe, volumetric water content, fine particle movement characteristics and soil failure mechanism were analyzed and understood as follows: the soil has complex, random and unstable structures, which causes remarkable pore characteristics of poor connectivity, non-uniformity and easy variation. The major factors that influence fine particle migration are rainfall intensity and slope. Rainfall intensity dominates particle movement, whereby high intensity rainfall induces a large number of mass movement and sharp fluctuation, causing more fine particles to accumulate at the steep slope toe. The slope toe plays an important role in water collection and fine particle accumulation. Both fine particle migration and coarse particle movement appears similar fluctuation. Fine particle migration is interrupted in unconnected pores, causing pore blockage and fine particle accumulation, which then leads to the formation of a weak layer and further soil failure or collapses. Fine particle movement also causes debris flow formation in two ways: movement on the soil surface and migration inside the soil. The results verify the hypothesis that the function of fine particle migration in soil failure process is conducive for further understanding the formation mechanism of soil failure and debris flow initiation.

100 citations


Journal ArticleDOI
TL;DR: A novel extraction method for cultivated land information based on Deep Convolutional Neural Network and Transfer Learning was proposed, and accuracy of DTCLE was equivalent to that of ECLE, and also outperformed ECLE in terms of integrity and continuity.
Abstract: The development of precision agriculture demands high accuracy and efficiency of cultivated land information extraction. As a new means of monitoring the ground in recent years, unmanned aerial vehicle (UAV) low-height remote sensing technique, which is flexible, efficient with low cost and with high resolution, is widely applied to investing various resources. Based on this, a novel extraction method for cultivated land information based on Deep Convolutional Neural Network and Transfer Learning (DTCLE) was proposed. First, linear features (roads and ridges etc.) were excluded based on Deep Convolutional Neural Network (DCNN). Next, feature extraction method learned from DCNN was used to cultivated land information extraction by introducing transfer learning mechanism. Last, cultivated land information extraction results were completed by the DTCLE and eCognition for cultivated land information extraction (ECLE). The location of the Pengzhou County and Guanghan County, Sichuan Province were selected for the experimental purpose. The experimental results showed that the overall precision for the experimental image 1, 2 and 3 (of extracting cultivated land) with the DTCLE method was 91.7%, 88.1% and 88.2% respectively, and the overall precision of ECLE is 90.7%, 90.5% and 87.0%, respectively. Accuracy of DTCLE was equivalent to that of ECLE, and also outperformed ECLE in terms of integrity and continuity.

84 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the indigenous knowledge of local people and their perceptions on climate change, and also documented adaptation approaches at local level in mountain ecosystem of western Himalaya.
Abstract: The Himalaya represents a vast mountain system and globally valued for its significant role in regulation of global as well as regional climate that has direct impact on biodiversity and ecosystem services crucial for sustenance of millions of people in Himalaya and adjoining areas. However, mountain regions worldwide are impacted by climate change and at the same time represent distinctive area for the assessment of climate related impacts. Climate change impacts in Himalayan region have its implications on food production, natural ecosystems, retreat of glacier, water supply, human and animal health and overall human well being. The livelihood and food security of the people inhabited in region largely depend on climate sensitive sectors i.e. agriculture, livestock, forestry and their interlinkages with each other, and has the potential to break down food and nutritional security as well as livelihood support systems. People’s perception and understanding of climate can be an important asset when it comes to adaptation to climate change impact; however it is not taken into consideration for the development of policy design and implementation of modern mitigation and adaptation strategies by governments and other civil society organizations. The knowledge of local people and farming communities for rural landscape management and sustainable use of bioresources is gaining credence as a key strategy to cope up with the climate change. Therefore, the present study analyzes the indigenous knowledge of local people and their perceptions on climate change, and also documented adaptation approaches at local level in mountain ecosystem of western Himalaya. The study could be useful to policy makers to design appropriate adaptation strategies to cope up with the impacts of climate change.

72 citations


Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors investigated the triggering and triggering factors of a landslide-debris avalanche on Fugui Mountain at Xinmo village, Diexi town, Maoxian county, Sichuan province, China.
Abstract: At 5: 39 AM on 24 June 2017, a huge landslide-debris avalanche occurred on Fugui Mountain at Xinmo village, Diexi town, Maoxian county, Sichuan province, China. The debris blocked the Songpinggou River for about 2 km, resulting in a heavy loss of both human lives and properties (10 deaths, 3 injuries, 73 missing, and 103 houses completely destroyed). The objectives of this paper are to understand the overall process and triggering factors of this landslide and to explore the affecting factors for its long term evolution before failure. Post event surveys were carried out the day after the landslide occurrence. Information was gathered from literature and on-site investigation and measurement. Topography, landforms, lithology, geological setting, earthquake history, meteorological and hydrological data of the area were analysed. Aerial photographs and other remote sensing information were used for evaluation and discussion. Eye witnesses also provided a lot of helpful information for us to understand the process of initiation, development and deposition. The depositional characteristics of the moving material as well as the traces of the movement, the structural features of the main scarp and the seismic waves induced by the slide are presented and discussed in detail in this paper. The results show that the mechanism of the landslide is a sudden rupture of the main block caused by the instability of a secondary block at a higher position. After the initiation, the failed rock mass at higher position overloaded the main block at the lower elevation and collapsed in tandem. Fragmentation of the rock mass occurred later, thus forming a debris avalanche with high mobility. This landslide case indicates that such seismic events could influence geological hazards for over 80 years and this study provides reference to the long term susceptibility and risk assessment of secondary geological hazards from earthquake.

71 citations


Journal ArticleDOI
TL;DR: In this article, the dynamic process and runout characteristics of the landslide are numerically analyzed using a depth-integrated continuum method and MacCormack-TVD finite difference algorithm.
Abstract: A catastrophic landslide occurred at Xinmo village in Maoxian County, Sichuan Province, China, on June 24, 2017. A 2.87×106 m3 rock mass collapsed and entrained the surface soil layer along the landslide path. Eighty-three people were killed or went missing and more than 103 houses were destroyed. In this paper, the geological conditions of the landslide are analyzed via field investigation and high-resolution imagery. The dynamic process and runout characteristics of the landslide are numerically analyzed using a depth-integrated continuum method and MacCormack-TVD finite difference algorithm. Computational results show that the evaluated area of the danger zone matchs well with the results of field investigation. It is worth noting that soil sprayed by the high-speed blast needs to be taken into account for such kind of large high-locality landslide. The maximum velocity is about 55 m/s, which is consistent with most cases. In addition, the potential danger zone of an unstable block is evaluated. The potential risk area evaluated by the efficient depth-integrated continuum method could play a significant role in disaster prevention and secondary hazard avoidance during rescue operations.

68 citations


Journal ArticleDOI
TL;DR: In this paper, a new approach combining the certainty factor (CF) and analytic hierarchy process (AHP) methods was proposed to assess landslide susceptibility in the Ziyang district, which is situated in the Qin-Ba Mountain region, China.
Abstract: A new approach combining the certainty factor (CF) and analytic hierarchy process (AHP) methods was proposed to assess landslide susceptibility in the Ziyang district, which is situated in the Qin-Ba Mountain region, China. Landslide inventory data were collected based on field investigations and remote sensing interpretations. A total of 791 landslides were identified. A total of 633 landslides were randomly selected from this data set as the training set, and the remaining landslides were used for validation as the test set. Nine factors, including the slope angle, slope aspect, slope curvature, lithology, distance to faults, distance to streams, precipitation, road network intensity degree and land use were chosen as the landslide causal factors for further susceptibility assessment. The weight of each factor and its subclass were calculated by AHP and CF methods. Landslide susceptibility was compared between the bivariate statistical method and the proposed CF-AHP method. The results indicate that the distance to streams, distance to faults and lithology are the most dominant causal factors associated with landslides. The susceptibility zonation was categorized into five classes of landslide susceptibility, i.e., very high, high, moderate, low and very low level. Lastly, the relative operating characteristics (ROC) curve was used to validate the accuracy of the new approach, and the result showed a satisfactory prediction rate of 78.3%, compared to 69.2% obtained with the landslide susceptibility index method. The results indicate that the CF-AHP combined method is more appropriate for assessing the landslide susceptibility in this area.

65 citations


Journal ArticleDOI
Guoyu Li1, Wei Ma1, Yanhu Mu1, Fei Wang1, Fan Shanzhi1, Wu Yahu1 
TL;DR: In this paper, cyclic freeze-thaw tests for both densely and loosely compacted loess samples were performed to determine the variation in engineering properties such as volume, void ratio, collapsible settlement, microstructure, and the related mechanisms were addressed.
Abstract: Compacted loess is widely used as fills of road embankments in loess regions of northern China. Generally, densely-compacted loess can satisfy the requirements of embankment strength and post-construction deformation. I lowever, uneven subsidence, pavement cracks and other related damages can affect the integrity of loess subgrade after several years of operation, and even cause some hazards, especially in North China, where the strong freeze-thaw erosion occurs. In this study, cyclic freeze-thaw tests for both densely and loosely compacted loess samples were performed to determine the variation in engineering properties such as volume, void ratio, collapsible settlement, microstructure, and the related mechanisms were addressed. The experimental results showed that an obvious water migration and redistribution occurred within the samples during freeze-thaw cycles. Ice lenses and fissures could be identified in the upper frozen layers of the samples. After freeze-thaw cycles, the dry densities of the nipper layers of samples changed significantly due to strong freeze-thaw erosion. The dry densities decreased for the dense sample and increased for the loose sample. It can be found that dense samples become loose, while loose samples became dense with the increasing number of freeze-thaw cycles. Their related void ratios changed reversely. Both void ratios tended to fall into a certain range, which verified the concept of a residual void ratio proposed by Viklander. The loosening process of densely compacted samples involves the formation of large pores, volume increase and density reduction as well as the related changes in mechanical properties because freeze-thaw cycles may be important contribution to problems of loess road embankments. Adverse effects of freeze-thaw cycles, therefore, should be taken into account in selecting loess parameters for the stability evaluation of road embankment in seasonally frozen ground regions.

63 citations


Journal ArticleDOI
TL;DR: In this paper, the authors recommend a holistic conflict resolution approach which recognizes and resolves the different needs of all stakeholders in the management of protected areas in Nepal, including land use conflict, poaching and smuggling of wildlife parts and illegal harvesting of highly valued medicinal herbs.
Abstract: The modern history of protected area (PA) management in Nepal dates back to 1973 when the National Parks and Wildlife Conservation Act (1973) was promulgated and Chitwan National Park was established. In the years immediately following these key events, protected area acts and regulations were strictly applied and the role of local people in managing natural resources was neglected. However with the passage of time, and with changes in the socio-political and economic characteristics of Nepal, management regimes have shifted towards a more liberal model which recognizes more clearly the contributions of people living and working within protected areas. Recently, landscape level conservation models including the designation of multiple use areas have been utilized in the development of management plans for protected areas in Nepal. Conservation agencies have attempted to tackle challenges such as land use conflict, poaching and smuggling of wildlife parts and illegal harvesting of highly valued medicinal herbs through regulation, but these efforts are not always successful. We recommend a holistic conflict resolution approach which recognizes and resolves the different needs of all stakeholders.

58 citations


Journal ArticleDOI
TL;DR: The Wulipo landslide, triggered by heavy rainfall on July 10, 2013, transformed into debris flow, resulted in the destruction of 12 houses, 44 deaths, and 117 missing as discussed by the authors.
Abstract: The Wulipo landslide, triggered by heavy rainfall on July 10, 2013, transformed into debris flow, resulted in the destruction of 12 houses, 44 deaths, and 117 missing. Our systematic investigation has led to the following results and to a new understanding about the formation and evolution process of this hazard. The fundamental factors of the formation of the landslide are a high-steep free surface at the front of the slide mass and the sandstone-mudstone mixed stratum structure of the slope. The inducing factor of the landslide is hydrostatic and hydrodynamic pressure change caused by heavy continuous rainfall. The geological mechanical model of the landslide can be summarized as “instability - translational slide - tension fracture - collapse” and the formation mechanism as “translational landslide induced by heavy rainfall”. The total volume of the landslide is 124.6×104 m3, and 16.3% of the sliding mass was dropped down from the cliff and transformed into debris flow during the sliding process, which enlarged 46.7% of the original sliding deposit area. The final accumulation area is found to be 9.2×104 m2. The hazard is a typical example of a disaster chain involving landslide and its induced debris flow. The concealment and disaster chain effect is the main reason for the heavy damage. In future risk assessment, it is suggested to enhance the research on potential landslide identification for weakly intercalated slopes. By considering the influence of the behaviors of landslide-induced debris flow, the disaster area could be determined more reasonably.

56 citations


Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the effectiveness of frequency ratio, fuzzy logic and logistic regression models for assessing landslide susceptibility in Rudraprayag district of Uttarakhand state, India.
Abstract: Rudraprayag in Garhwal Himalayan division is one of the most vulnerable districts to landslides in India. Heavy rainfall, steep slope and developmental activities are important factors for the occurrence of landslides in the district. Therefore, specific assessment of landslide susceptibility and its accuracy at regional level is essential for disaster management and proper land use planning. The article evaluates effectiveness of frequency ratio, fuzzy logic and logistic regression models for assessing landslide susceptibility in Rudraprayag district of Uttarakhand state, India. A landslide inventory map was prepared and verified by field data. Fourteen landslide parameters and generated inventory map were utilized to prepare landslide susceptibility maps through frequency ratio, fuzzy logic and logistic regression models. Landslide susceptibility maps generated through these models were classified into very high, high, medium, low and very low categories using natural breaks classification. Receiver operating characteristics (ROC) curve, spatially agreed area approach and seed cell area index (SCAI) method were used to validate the landslide models. Validation results revealed that fuzzy logic model was found to be more effective in assessing landslide susceptibility in the study area. The landslide susceptibility map generated through fuzzy logic model can be best utilized for landslide disaster management and effective land use planning.

Journal ArticleDOI
TL;DR: In this paper, a fuzzy c-mean (FCM) algorithm was used to classify 38 watersheds in three homogeneous groups, and the optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error.
Abstract: Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to identify homogeneous hydrological watersheds using remote sensing data in western Iran. To achieve this goal, remote sensing indices including SAVI, LAI, NDMI, NDVI and snow cover, were extracted from MODIS data over the period 2000 to 2015. Then, a fuzzy method was used to clustering the watersheds based on the extracted indices. A fuzzy c-mean (FCM) algorithm enabled to classify 38 watersheds in three homogeneous groups. The optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error. The results indicated three homogeneous regions identified by the fuzzy c-mean clustering and remote sensing product which are consistent with the variations of topography and climate of the study area. Inherently, the grouped watersheds have similar hydrological properties and are likely to need similar management considerations and measures.

Journal ArticleDOI
TL;DR: In this paper, the authors used MaxEnt to predict the distribution of two threatened medicinal plants, Fritillaria cirrhosa and Lilium nepalense, in response to climate change.
Abstract: Predicting the potential distribution of medicinal plants in response to climate change is essential for their conservation and management. Contributing to the management program, this study aimed to predict the distribution of two threatened medicinal plants, Fritillaria cirrhosa and Lilium nepalense. The location of focal species gathered from herbarium specimen housed in different herbaria and online databases were geo-referenced and checked for spatial autocorrelation. The predictive environmental variables were selected, and MaxEnt software was used to model the current and future distributions of focal species. Four Representative Concentration Pathway (RCP) trajectories of the BCC-CSM1.1 model were used as the future (2050) projection layer. The MaxEnt modelling delineated the potential distribution of F. cirrhosa and L. nepalense. The current suitability is projected towards Central and Eastern Hilly/Mountainous regions. Both species gain maximum suitability in RCP 4.5 which decline towards other trajectories for L. nepalense. Overall, both the focal species shift towards the north-west, losing their potential habitat in hilly and lower mountainous regions by 2050 across all trajectories. Our results highlight the impact of future climate change on two threatened and valuable species. The results can be further useful to initiate farming of these medicinally and economically important species based on climatically suitable zone and for designing a germplasm conservation strategy.

Journal ArticleDOI
TL;DR: In this article, the authors evaluated two agri-spillways (between 10 m and 15 m length, and slopes between 25.8° and 35°) by performing runoff experiments under extreme conditions (a motor driven pump that discharged water flows up to 1.33 l s-1 for 12 to 15 minutes: ≈1000 l).
Abstract: Suitable vineyard soils enhance soil stability and biodiversity which in turn protects roots against erosion and nutrient losses. There is a lack of information related to inexpensive and suitable methods and tools to protect the soil in Mediterranean sloping vineyards (>25° of slope inclination). In the vineyards of the Montes de Malaga (southern Spain), a sustainable land management practice that controls soil erosion is actually achieved by tilling rills in the down-slope direction to canalize water and sediments. Because of their design and use, we call them agri-spillways. In this research, we assessed two agri-spillways (between 10 m and 15 m length, and slopes between 25.8° and 35°) by performing runoff experiments under extreme conditions (a motor driven pump that discharged water flows up to 1.33 l s-1 for 12 to 15 minutes: ≈1000 l). The final results showed: i) a great capacity by these rills to canalize large amounts of water and sediments; and, ii) higher water flow speeds (between 0.16 m s-1 and 0.28 m s-1) and sediment concentration rates (up to 1538.6 g l-1) than typically found in other Mediterranean areas and land uses (such as badlands, rangelands or extensive crops of olives and almonds). The speed of water flow and the sediment concentration were much higher in the shorter and steeper rill. We concluded that agri-spillways, given correct planning and maintenance, can be a potential solution as an inexpensive method to protect the soil in sloping Mediterranean vineyards.

Journal ArticleDOI
TL;DR: In this paper, the authors focused on the water resource management in Shanshan County, an inland arid region located in northwestern China with a long history of groundwater overexploitation.
Abstract: Water scarcity is a challenge in many arid and semi-arid regions; this may lead to a series of environmental problems and could be stressed even further by the effects from climate change. This study focused on the water resource management in Shanshan County, an inland arid region located in northwestern China with a long history of groundwater overexploitation. A model of the supply and demand system in the study area from 2006 to 2030, including effects from global climate change, was developed using a system dynamics (SD) modeling tool. This SD model was used to 1) explore the best water-resource management options by testing system responses under various scenarios and 2) identify the principal factors affecting the responses, aiming for a balance of the groundwater system and sustainable socio-economic development. Three causes were identified as primarily responsible for water issues in Shanshan: low water-use efficiency, low water reuse, and increase in industrial water demand. To address these causes, a combined scenario was designed and simulated, which was able to keep the water deficiency under 5% by 2030. The model provided some insights into the dynamic interrelations that generate system behavior and the key factors in the system that govern water demand and supply. The model as well as the study results may be useful in water resources management in Shanshan and may be applied, with appropriate modifications, to other regions facing similar water management challenges.

Journal ArticleDOI
TL;DR: In this article, a landslide susceptibility map by combining landslide initiation and runout maps is presented, which is a combination of analytical hierarchical process (AHP) and fuzzy membership standardization (weighs from 0 to 1).
Abstract: Rainfall induced landslides are a common threat to the communities living on dangerous hill-slopes in Chittagong Metropolitan Area, Bangladesh. Extreme population pressure, indiscriminate hill cutting, increased precipitation events due to global warming and associated unplanned urbanization in the hills are exaggerating landslide events. The aim of this article is to prepare a scientifically accurate landslide susceptibility map by combining landslide initiation and runout maps. Land cover, slope, soil permeability, surface geology, precipitation, aspect, and distance to hill cut, road cut, drainage and stream network factor maps were selected by conditional independence test. The locations of 56 landslides were collected by field surveying. A weight of evidence (WoE) method was applied to calculate the positive (presence of landslides) and negative (absence of landslides) factor weights. A combination of analytical hierarchical process (AHP) and fuzzy membership standardization (weighs from 0 to 1) was applied for performing a spatial multi-criteria evaluation. Expert opinion guided the decision rule for AHP. The Flow-R tool that allows modeling landslide runout from the initiation sources was applied. The flow direction was calculated using the modified Holmgren’s algorithm. The AHP landslide initiation and runout susceptibility maps were used to prepare a combined landslide susceptibility map. The relative operating characteristic curve was used for model validation purpose. The accuracy of WoE, AHP, and combined susceptibility map was calculated 96%, 97%, and 98%, respectively.

Journal ArticleDOI
TL;DR: The fund name of National Key Technologies R&D Program of China as mentioned in this paper in the section of “Acknowledgements” is incorrect and the correct fund name is NKRP of China.
Abstract: The fund name “National Key Technologies R&D Program of China” in the section of “Acknowledgements” is incorrect. The correct fund name is “National Key Research and Development Program of China”.

Journal ArticleDOI
TL;DR: In this paper, small-scale watersheds were extracted and selected as basic analysis and recognition units based on the data of SRTM DEM, and a Random Forest (RF) method was employed to automatically select features and classify landforms based on their topographical characteristics.
Abstract: The automatic recognition of landforms is regarded as one of the most important procedures to classify landforms and deepen the understanding on the morphology of the earth. However, landform types are rather complex and gradual changes often occur in these landforms, thus increasing the difficulty in automatically recognizing and classifying landforms. In this study, small-scale watersheds, which are regarded as natural geomorphological elements, were extracted and selected as basic analysis and recognition units based on the data of SRTM DEM. In addition, datasets integrated with terrain derivatives (e.g., average slope gradient, and elevation range) and texture derivatives (e.g., slope gradient contrast and elevation variance) were constructed to quantify the topographical characteristics of watersheds. Finally, Random Forest (RF) method was employed to automatically select features and classify landforms based on their topographical characteristics. The proposed method was applied and validated in seven case areas in the Northern Shaanxi Loess Plateau for its complex and gradual changed landforms. Experimental results show that the highest recognition accuracy based on the selected derivations is 92.06%. During the recognition procedure, the contributions of terrain derivations were higher than that of texture derivations within selected derivative datasets. Loess terrace and loess mid-mountain obtained the highest accuracy among the seven typical loess landforms. However, the recognition precision of loess hill, loess hill–ridge, and loess sloping ridge is relatively low. The experiment also shows that watershed-based strategy could achieve better results than object-based strategy, and the method of RF could effectively extract and recognize the feature of landforms.

Journal ArticleDOI
TL;DR: In this article, a method to produce and to update cartographic supports (Geomorphological boxes) realized starting from a traditional geomorphological survey and mapping is proposed, which is used to identify, evaluate and select potential geomorphosites and geotrails.
Abstract: Geomorphological mapping plays a key role in landscape representation: it is the starting point for many applications and for the realization of thematic maps, such as hazard and risk maps, geoheritage and geotourism maps. Traditional geomorphological maps are useful for scientific purposes but they need to be simplified for different aims as management and education. In tourism valorization, mapping of geomorphological resources (i.e., geosites, and geomorphosites), and of geomorphic evidences of past hazardous geomorphological events, is important for increasing knowledge about landscape evolution and active processes, potentially involving geomorphosites and hiking trails. Active geomorphosites, as those widespread in mountain regions, testify the high dynamicity of geomorphic processes and their link with climatic conditions. In the present paper, we propose a method to produce and to update cartographic supports (Geomorphological Boxes) realized starting from a traditional geomorphological survey and mapping. The Geomorphological Boxes are geomorphological representation of single, composed or complex landforms drawn on satellite images, using the official Italian geomorphological legend (ISPRA symbols). Such cartographic representation is also addressed to the analysis (identification, evaluation and selection) of Potential Geomorphosites and Geotrails. The method has been tested in the upper portion of the Loana Valley (Western Italian Alps), located within the borders of the Sesia Val Grande Geopark, recognized by UNESCO in 2013. The area has a good potential for geotourism and for educational purposes. We identified 15 Potential Geomorphosites located along 2 Geotrails; they were ranked according to specific attributes also in relation with a Reference Geomorphosite located in the Loana hydrographic basin and inserted in official national and regional databases of geosites (ISPRA; Regione Piemonte). Finally, the ranking of Potential Geomorphosites allowed to select the most valuable ones for valorization or geoconservation purposes. In this framework, examples of Geomorphological Boxes are proposed as supports to geo-risk education practices.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the stabilization and improvement of geotechnical characteristics of loess achieved by the addition of 0%-9% cement by dry weight, and a durability index was quantified to estimate the influence of wetting-drying (w-d) cycles on CSL strength, and an optimum cement dosage was also identified.
Abstract: Considering the potential use of cementstabilized loess (CSL) as a construction material for structures that are subjected to frequent loess landslides, this paper explores the stabilization and improvement of geotechnical characteristics of loess achieved by the addition of 0%-9% cement by dry weight. Laboratory evaluations investigated the consistency limits, compaction, compressibility, California bearing ratio (CBR), direct shear strength, and unconfined compression strength (UCS) of CSL for different curing stages. A durability index was quantified to estimate the influence of wetting-drying (w-d) cycles on CSL strength, and an optimum cement dosage was also identified. The results reveal that the cohesion of CSL is substantially more sensitive to structure than its friction angle and that cohesion is responsible for shear strength increase after remoulding. The cement proportions have an effective role in the enhancement of compressibility. The development of UCS can be categorized into the early stage ( 14 days). The increase in strength primarily occurred in the first 14 days. The w-d cycles have a significant influence on the decrease in compression strength. The CBR value increases with increments of additional proportions and compaction times. The relationships of UCS versus the compressibility modulus and UCS versus CBR are established to facilitate the mix design for strength. A rational predictive exponential equation is proposed to predict the durability index for different w-d cycles.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrated the usefulness of very long-range terrestrial laser scanning (TLS) for analysis of the spatial distribution of a snowpack, to distances up to 3000 m, one of the longest measurement range reported to date.
Abstract: This study demonstrated the usefulness of very long-range terrestrial laser scanning (TLS) for analysis of the spatial distribution of a snowpack, to distances up to 3000 m, one of the longest measurement range reported to date. Snow depth data were collected using a terrestrial laser scanner during 11 periods of snow accumulation and melting, over three snow seasons on a Pyrenean hillslope characterized by a large elevational gradient, steep slopes, and avalanche occurrence. The maximum and mean absolute snow depth error found was 0.5-0.6 and 0.2-0.3 m respectively, which may result problematic for areas with a shallow snowpack, but it is sufficiently accurate to determine snow distribution patterns in areas characterized by a thick snowpack. The results indicated that in most cases there was temporal consistency in the spatial distribution of the snowpack, even in different years. The spatial patterns were particularly similar amongst the surveys conducted during the period dominated by snow accumulation (generally until end of April), or amongst those conducted during the period dominated by melting processes (generally after mid of April or early May). Simple linear correlation analyses for the 11 survey dates, and the application of Random Forests analysis to two days representative of snow accumulation and melting periods indicated the importance of topography to the snow distribution. The results also highlight that elevation and the Topographic Position index (TPI) were the main variables explaining the snow distribution, especially during periods dominated by melting. The intra- and inter-annual spatial consistency of the snowpack distribution suggests that the geomorphological processes linked to presence/absence of snow cover act in a similar way in the long term, and that these spatial patterns can be easily identified through several years of adequate monitoring.

Journal ArticleDOI
Tomasz Dudek1
TL;DR: In this paper, the authors presented research findings related to recreational use of forests located in protected mountainous areas with forestage of over 80% and compared these findings with the actual number of visitors.
Abstract: The article presents research findings related to recreational use of forests located in protected mountainous areas with forestage of over 80%. The study was designed to identify recreational potential of the Carpathian national parks (Bieszczady National Park, Babia Gora National Park, Gorce National Park and Magura National Park; southern Poland) and to compare these findings with the actual number of visitors. The information received on the recreational potential of parks is important from the point of view of protection of natural resources and the financial situation of the parks. The calculated ratio may be an effective tool of management for park administration, that allows to reconcile statutory social and protective functions of national parks. The study determined the recreational potential of the forests with the use of recreational valorisation method designed for areas with varied terrain, and the evaluated factors included the stands of trees with their habitat and land relief. The permissible number of national park visitors, expressed as manhour/ ha/year ranges from 19.31 in Bieszczady National Park (BG: 19o 35' E, 49o 35' N) to 32.06 in in Bieszczady National Park (B: 22o 40' E, 49o 10' N). In 3 out of 4 investigated parks, Magura National Park (M: 21°25' E, 49o 30' N), Gorce National Park (G: 20o 10' E, 49o 35' N), B) recreation carrying capacity was not exceeded, whether or not the strictly protected area is taken into account. Only in BG was the recreation carrying capacity exceeded by nearly 24%, or by 85% if the strictly protected area is excluded from tourism-related exploitation. The presented procedure for monitoring access to mountain forests in national parks, from the viewpoint of natural resources conservation, can be applied in other mountainous areas covered with forests and exposed to tourist and recreational traffic, and in forests facing particular risk of recreational damage, e.g. in urban and suburban forests growing in areas with varied orography.

Journal ArticleDOI
TL;DR: In this paper, the authors quantified the rainfall regime impacts on soil loss at loessial hillslope with ephemeral gully using K-mean clustering method and discriminant analysis.
Abstract: Understanding the relationship between hillslope soil loss with ephemeral gully and rainfall regime is important for soil loss prediction and erosion control. Based on 12-year field observation data, this paper quantified the rainfall regime impacts on soil loss at loessial hillslope with ephemeral gully. According to three rainfall parameters including precipitation (P), rainfall duration (t), and maximum 30-minute rainfall intensity (I30), 115 rainfall events were classified by using K-mean clustering method and Discriminant Analysis. The results showed that 115 rainfall events could be divided into three rainfall regimes. Rainfall Regime 1 (RR1) had large I30 values with low precipitation and short duration, while the three rainfall parameters of Rainfall Regime 3 (RR3) were inversely different compared with those of RR1; for Rainfall Regime 2 (RR2), the precipitation, duration and I30 values were all between those of RR1 and RR3. Compared with RR2 and RR3, RR1 was the dominant rainfall regime for causing soil loss at the loessial hillslope with ephemeral gully, especially for causing extreme soil loss events. PI30 (Product of P and I30) was selected as the key index of rainfall characteristics to fit soil loss equations. Two sets of linear regression equations between soil loss and PI30 with and without rainfall regime classification were fitted. Compared with the equation without rainfall regime classification, the cross validation results of the equations with rainfall regime classification was satisfactory. These results indicated that rainfall regime classification could not only depict rainfall characteristics precisely, but also improve soil loss equation prediction accuracy at loessial hillslope with ephemeral gully.

Journal ArticleDOI
TL;DR: In this paper, the authors attempted to estimate the bursting debris flow peak discharges along the main gully and analyzed the scale amplification process, showing that the antecedent and triggering rainfalls for 11 July debris flow event were 88.0 mm and 21.6 mm respectively.
Abstract: In the Wenchuan Earthquake area, many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes. The catastrophic debris flow that occurred in Qipan gully (Wenchuan, Southwest China) on July 11, 2013 was caused by intense rainfall and upstream cascading bursting of landslide dams. To gain an understanding of the processes of dam bursting and subsequent debris flow scale amplification effect, we attempted to estimate the bursting debris flow peak discharges along the main gully and analyzed the scale amplification process. The results showed that the antecedent and triggering rainfalls for 11 July debris flow event were 88.0 mm and 21.6 mm, respectively. The event highlights the fact that lower rainfall intensity can trigger debris flows after the earthquake. Calculations of the debris flow peak discharge showed that the peak discharges after the dams-bursting were 1.17–1.69 times greater than the upstream peak discharge. The peak discharge at the gully outlet reached 2553 m3/s which was amplified by 4.76 times in comparison with the initial peak discharge in the upstream. To mitigate debris flow disasters, a new drainage channel with a trapezoidal V-shaped cross section was proposed. The characteristic lengths (h1 and h2) under optimal hydraulic conditions were calculated as 4.50 m and 0.90 m, respectively.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper used the Global Land Surface Satellite (GLASS) data to evaluate the response of vegetation to drought occurrence across Yunnan Province, China (2001-2010).
Abstract: Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to a large extent by drought. Therefore, it is important to understand the spatial and temporal responses of vegetation to drought across the various land cover types and different regions. Leaf area index (LAI) derived from Global Land Surface Satellite (GLASS) data was used to evaluate the response of vegetation to drought occurrence across Yunnan Province, China (2001–2010). The meteorological drought was assessed based on Standardized Precipitation Index (SPI) values. Pearson’s correlation coefficients between LAI and SPI were examined across several timescales within six sub-regions of the Yunnan. Further, the drought-prone area was identified based on LAI anomaly values. Lag and cumulative effects of lack of precipitation on vegetation were evident, with significant correlations found using 3-, 6-, 9- and 12-month timescale. We found 9-month timescale has higher correlations compared to another timescale. Approximately 29.4% of Yunnan’s area was classified as drought-prone area, based on the LAI anomaly values. Most of this drought-prone area was distributed in the mountainous region of Yunnan. From the research, it is evident that GLASS LAI can be effectively used as an indicator for assessing drought conditions and it provide valuable information for drought risk defense and preparedness.

Journal ArticleDOI
TL;DR: In this paper, spectral information from two Landsat-5 TM scenes (04.08.1994 and 28.07.2009, respectively) was combined with reference information obtained in the field to run supervised classifications of eight landscape types for both time steps.
Abstract: Considerable efforts have been dedicated to desertification research in the arid and semi-arid drylands of central Asia. However, there are few quantitative studies in conjunction with proper qualitative evaluation concerning land degradation and aeolian activity in the alpine realm. In this study, spectral information from two Landsat-5 TM scenes (04.08.1994 and 28.07.2009, respectively) was combined with reference information obtained in the field to run supervised classifications of eight landscape types for both time steps. Subsequently, the temporal and spatial patterns of the alpine wetlands/grasslands evolutions in the Zoige Basin were quantified and assessed based on these two classification maps. The most conspicuous change is the sharp increase of ~627 km2 degraded meadow. Concerning other land-covers, shallow wetland increases ~107 km2 and aeolian sediments (mobile dunes and sand sheets) have an increase of ~30 km2. Considering the deterioration, an obvious decrease of ~440 km2 degraded wetland can be observed. Likewise, decrease of deep wetland (~78 km2), humid meadow (~80 km2) and undisturbed meadow (~88 km2) were determined. These entire evolution matrixes undoubtedly hint a deteriorating tendency of the Zoige Basin ecosystem, which is characterized by significantly declined proportion of intact wetlands, meadow, rangeland and a considerable increase of degraded meadow and larger areas of mobile dunes. In particular, not only temporal alteration of the land-cover categories, the spatial and topographical characteristics of the land degradation also deserves more attention. In the alpine rangelands, the higher terraces of the river channels along with their slopes are more liable to the degradation and desertification. This tendency has significantly impeded the nomadic and agriculture activities. The set of anthropozoogenic factors encompassing enclosures, overgrazing and trampling, rodent damaging and exceedingly ditching in the wetlands are assumed to be the main controlling mechanisms for the landscape degradation. A suite of strict protection policies is urgent and indispensable for self-regulation and restoration of the alpine meadow ecosystem. Controlling the size of livestock, less ditching in the rangeland, and the launching of a more strict nature reserve management by adjacent Ruoergai, Maqu and Hongyuan Counties would be practical and efficacious in achieving these objectives.

Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper evaluated regional ecological security in underdeveloped regions of China by using entropy matter-element model, comprehensive index and GIS spatial method, and diagnosed its obstacle factors through obstacle degree model.
Abstract: In order to clarify regional ecological security status and formation mechanism of regional ecological security barriers in underdeveloped regions of China, we took Yunnan province as a case to evaluate its regional ecological security by using entropy matter-element model, comprehensive index and GIS spatial method, and we diagnosed its obstacle factors through obstacle degree model. We found a low overall level of regional ecological security in Yunnan. Only Kunming fell into the good level, 68% of the regions were below the critical safe level. For the vast majority of regions in Yunnan, their regional ecological security was unstable. The indexes related to per capita resources, geological and topography environment, economic, and technology were at the unsafe or dangerous level. The indexes related to urban expansion, level of income, cultivated land quality were at the level of critical safety. The indexes concerning urban management capacity, air quality and water environment were at the good or ideal level. Yunnan’s regional ecological security was not good due to natural obstructive environment itself, simultaneously lower backward economic and social level restricted the ability of ecological security response to manage ragile ecological environment. The results of the composite index were roughly consistent with those of the entropy weight matter-element model. The mean values of the classification index, from high to low, were: the state index > the response index > the pressure index. The state index and the response index had a significant mutual promotion to each other. The regions with good composite index, state index and response index mainly distributed in the central regions of Yunnan Province. Spatial autocorrelation of regional ecological security level in Yunnan was not obvious. Water resources, economic and social development were main obstacle factors of the regional ecological security. When distinguishing with obstacle type, Kunming belonged to natural ecological environment barrier type, while other regions belonged to economic and social barrier type.

Journal ArticleDOI
TL;DR: In this article, the authors focus on the analytical derivation and the numerical simulation analyses to predict the interaction influences between a landslide and a new tunnel in mountain areas, based on the slip-line theory, the disturbance range induced by tunneling and the minimum safe distance between the tunnel vault and the sliding belt are obtained in consideration of the mechanical analyses of relaxed rocks over the tunnel opening.
Abstract: This paper focuses on the analytical derivation and the numerical simulation analyses to predict the interaction influences between a landslide and a new tunnel in mountain areas. Based on the slip-line theory, the disturbance range induced by tunneling and the minimum safe distance between the tunnel vault and the sliding belt are obtained in consideration of the mechanical analyses of relaxed rocks over the tunnel opening. The influence factors for the minimum safe crossing distance are conducted, including the tunnel radius, the friction angle of surrounding rocks, the inclination angle of sliding belt, and the friction coefficient of surrounding rocks. Secondly, taking account of the compressive zone and relaxed rocks caused by tunneling, the Sarma method is employed to calculate the safety factor of landslide. Finally, the analytical solutions for interaction between the tunnel and the landslide are compared with a series of numerical simulations, considering the cases for different perpendicular distances between the tunnel vault and the sliding belt. Results show that the distance between the tunnel vault and the slip zone has significant influence on the rock stress and strain. For the case of the minimum crossing distance, a plastic zone in the landslide traversed by tunneling would be formed with rather large range, which seriously threatens the stability of landslide. This work demonstrates that the minimum safe crossing distance obtained from numerical simulation is in a good agreement with that calculated by the proposed analytical solutions.

Journal ArticleDOI
TL;DR: In this article, a study has been carried out in part of Chenab basin, Himalaya to understand the relationship between glacio-morphological factors and change in glacial area.
Abstract: A study has been carried out in part of Chenab basin, Himalaya to understand the relationship between glacio-morphological factors and change in glacial area. Initially change in areal extent of glaciers was derived for two time frames (1962-2001/02 and 2001/02-2010/11). The study comprised of 324 glaciers for the monitoring period of 1962-2001/02 for, which 11% loss in glacial area was observed. Two hundred and thirty-eight glaciers were further monitored between 2001/02 and 2010/11. These glaciers showed an area loss of 1.1%. The annual deglaciation has been found to be higher during the period of 1962-2001/02 compared to 2001/02-2010/11. The spatial and temporal variability in deglaciation was also addressed using glacio-morphic parameters. Area, length, percentage of debris cover, and various elevation parameters of glaciers were observed to have significant controls on relationships to the rate of glacial shrinkage. Larger-area and longer glaciers show a lower percentage of retreat than smaller and shorter ones. Moreover, glaciers located at lower altitudes and having gentle slopes show more area retreat. The results of area retreat in debris covered and debris free glaciers supports that the glaciers covered by debris retard ice melting at some extent. 158 glaciers were observed having no debris cover, and these exhibit 14% of loss in surface area. In glaciers having 40% debris cover, 8% of deglaciation was observed. The glaciers located below equilibrium line altitude (ELA) have experienced 4.6% of deglaciation for the time frame 2001/02–2010/11 whereas it was found to be 1.1% for the glaciers occurring above ELA. However, the orientation of glaciers did not show any considerable influence on glacial change based on hypothesis.

Journal ArticleDOI
TL;DR: In this paper, the authors present the findings of a study on the distribution of, and area changes in, glacial lakes in the Koshi basin in the central Himalayas.
Abstract: Changes in glacial lakes and the consequences of these changes, particularly on the development of water resources and management of glacial lake outburst flood (GLOF) risk, has become one of the challenges in the sustainable development of high mountain areas in the context of global warming. This paper presents the findings of a study on the distribution of, and area changes in, glacial lakes in the Koshi basin in the central Himalayas. Data on the number of glacial lakes and their area was generated for the years 1977, 1990, 2000, and 2010 using Landsat satellite images. According to the glacial lake inventory in 2010, there were a total of 2168 glacial lakes with a total area of 127.61 km2 and average size of 0.06 km2 in the Koshi basin. Of these, 47% were moraine dammed lakes, 34.8% bedrock dammed lakes and 17.7% ice dammed lakes. The number of glacial lakes increased consistently over the study period from 1160 in 1977 to 2168 in 2010, an overall growth rate of 86.9%. The area of glacial lakes also increased from 94.44 km2 in 1977 to 127.61 km2 in 2010, a growth rate of 35.1%. A large number of glacial lakes in the inventory are small in size (≤ 0.1 km2). End moraine dammed lakes with area greater than 0.1 km2 were selected to analyze the change characteristics of glacial lakes in the basin. The results show that, in 2010, there were 129 lakes greater than 0.1 km2 in area; these lakes had a total area of 42.92 km2 in 1997, increasing to 63.28 km2 in 2010. The distribution of lakes on the north side of the Himalayas (in China) was three times higher than on the south side of the Himalayas (in Nepal). Comparing the mean growth rate in area for the 33 year study period (1977-2010), the growth rate on the north side was found to be a little slower than that on the south side. A total of 42 glacial lakes with an area greater than 0.2 km2 are rapidly growing between 1977 and 2010 in the Koshi basin, which need to be paid more attention to monitoring in the future and to identify how critical they are in terms of GLOF.