scispace - formally typeset
Search or ask a question
JournalISSN: 1533-4880

Journal of Nanoscience and Nanotechnology 

American Scientific Publishers
About: Journal of Nanoscience and Nanotechnology is an academic journal. The journal publishes majorly in the area(s): Carbon nanotube & Nanoparticle. It has an ISSN identifier of 1533-4880. Over the lifetime, 17325 publications have been published receiving 169476 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Different aspects of CNT synthesis and growth mechanism are reviewed in the light of latest progresses and understandings in the field, and existing problems and challenges of the process are addressed with future directions.
Abstract: This review article deals with the growth mechanism and mass production of carbon nanotubes (CNTs) by chemical vapor deposition (CVD). Different aspects of CNT synthesis and growth mechanism are reviewed in the light of latest progresses and understandings in the field. Materials aspects such as the roles of hydrocarbon, catalyst and catalyst support are discussed. Many new catalysts and new carbon sources are described. Growth-control aspects such as the effects of temperature, vapor pressure and catalyst concentration on CNT diameter distribution and single- or multi-wall formation are explained. Latest reports of metal-catalyst-free CNT growth are considered. The mass-production aspect is discussed from the perspective of a sustainable CNT technology. Existing problems and challenges of the process are addressed with future directions.

1,235 citations

Journal ArticleDOI
TL;DR: The silver nanoparticles synthesized by inert gas condensation and co-condensation techniques were found to exhibit antibacterial effects at low concentrations and the antibacterial properties were related to the total surface area of the nanoparticles.
Abstract: Nanometer sized silver particles were synthesized by inert gas condensation and co-condensation techniques. Both techniques are based on the evaporation of a metal into an inert atmosphere with the subsequent cooling for the nucleation and growth of the nanoparticles. The antibacterial efficiency of the nanoparticles was investigated by introducing the particles into a media containing Escherichia coli. The antibacterial investigations were performed in solution and on petri dishes. The silver nanoparticles were found to exhibit antibacterial effects at low concentrations. The antibacterial properties were related to the total surface area of the nanoparticles. Smaller particles with a larger surface to volume ratio provided a more efficient means for antibacterial activity. The nanoparticles were found to be completely cytotoxic to E. coli for surface concentrations as low as 8 microg of Ag/cm2.

859 citations

Journal ArticleDOI
TL;DR: A range of remarkable characteristics of ZnO nanostructures are presented, organized into sections describing the mechanical, electrical, optical, magnetic, and chemical sensing properties.
Abstract: This article provides a comprehensive review of the current research activities that focus on the ZnO nanostructure materials and their physical property characterizations. It begins with the synthetic methods that have been exploited to grow ZnO nanostructures. A range of remarkable characteristics are then presented, organized into sections describing the mechanical, electrical, optical, magnetic, and chemical sensing properties. These studies constitute the basis for developing versatile applications of ZnO nanostructures.

758 citations

Journal ArticleDOI
TL;DR: This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues.
Abstract: The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection. Other approaches, such as the bone graft substitutes, have focused on improving the efficacy of bone grafts or other scaffolds by incorporating bone progenitor cells and growth factors to stimulate cells. An ideal bone graft or scaffold should be made of biomaterials that imitate the structure and properties of natural bone ECM, include osteoprogenitor cells and provide all the necessary environmental cues found in natural bone. However, creating living tissue constructs that are structurally, functionally and mechanically comparable to the natural bone has been a challenge so far. This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues.

694 citations

Journal ArticleDOI
TL;DR: This paper reports the extracellular synthesis of gold and silver nanoparticles using Emblica Officinalis (amla, Indian Gooseberry) fruit extract as the reducing agent to synthesize Ag and Au nanoparticles, their subsequent phase transfer to an organic solution and the transmetallation reaction of hydrophobizedsilver nanoparticles with hydrophOBized chloroaurate ions.
Abstract: The design, synthesis and characterization of biologically synthesized nanomaterials have become an area of significant interest. In this paper, we report the extracellular synthesis of gold and silver nanoparticles using Emblica Officinalis (amla, Indian Gooseberry) fruit extract as the reducing agent to synthesize Ag and Au nanoparticles, their subsequent phase transfer to an organic solution and the transmetallation reaction of hydrophobized silver nanoparticles with hydrophobized chloroaurate ions. On treating aqueous silver sulfate and chloroauric acid solutions with Emblica Officinalis fruit extract, rapid reduction of the silver and chloroaurate ions is observed leading to the formation of highly stable silver and gold nanoparticles in solution. Transmission Electron Microscopy analysis of the silver and gold nanoparticles indicated that they ranged in size from 10 to 20 nm and 15 to 25 nm respectively. Ag and Au nanoparticles thus synthesized were then phase transferred into an organic solution using a cationic surfactant octadecylamine. Transmetallation reaction between hydrophobized silver nanoparticles and hydrophobized chloroaurate ions in chloroform resulted in the formation of gold nanoparticles.

627 citations

Network Information
Related Journals (5)
ACS Applied Materials & Interfaces
49.4K papers, 2M citations
86% related
Applied Surface Science
54.8K papers, 1.4M citations
85% related
Journal of Materials Chemistry
38.5K papers, 1.9M citations
84% related
RSC Advances
69.5K papers, 1.4M citations
84% related
Journal of Physical Chemistry C
50.2K papers, 1.8M citations
84% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2021193
2020696
2019904
20181,000
20171,050
20161,621