scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Neural Transmission in 2018"


Journal ArticleDOI
TL;DR: Both DLB and PDD show heterogeneous pathology and neurochemistry, suggesting that they share important common underlying molecular pathogenesis with AD and other proteinopathies, and there remains a pressing need to differentiate them more clearly.
Abstract: Dementia with Lewy bodies (DLB) and Parkinson’s disease-dementia (PDD), although sharing many clinical, neurochemical and morphological features, according to DSM-5, are two entities of major neurocognitive disorders with Lewy bodies of unknown etiology. Despite considerable clinical overlap, their diagnosis is based on an arbitrary distinction between the time of onset of motor and cognitive symptoms: dementia often preceding parkinsonism in DLB and onset of cognitive impairment after onset of motor symptoms in PDD. Both are characterized morphologically by widespread cortical and subcortical α-synuclein/Lewy body plus β-amyloid and tau pathologies. Based on recent publications, including the fourth consensus report of the DLB Consortium, a critical overview is given. The clinical features of DLB and PDD include cognitive impairment, parkinsonism, visual hallucinations, and fluctuating attention. Intravitam PET and post-mortem studies revealed more pronounced cortical atrophy, elevated cortical and limbic Lewy pathologies (with APOE e4), apart from higher prevalence of Alzheimer pathology in DLB than PDD. These changes may account for earlier onset and greater severity of cognitive defects in DLB, while multitracer PET studies showed no differences in cholinergic and dopaminergic deficits. DLB and PDD sharing genetic, neurochemical, and morphologic factors are likely to represent two subtypes of an α-synuclein-associated disease spectrum (Lewy body diseases), beginning with incidental Lewy body disease—PD-nondemented—PDD—DLB (no parkinsonism)—DLB with Alzheimer’s disease (DLB-AD) at the most severe end, although DLB does not begin with PD/PDD and does not always progress to DLB-AD, while others consider them as the same disease. Both DLB and PDD show heterogeneous pathology and neurochemistry, suggesting that they share important common underlying molecular pathogenesis with AD and other proteinopathies. Cognitive impairment is not only induced by α-synuclein-caused neurodegeneration but by multiple regional pathological scores. Recent animal models and human post-mortem studies have provided important insights into the pathophysiology of DLB/PDD showing some differences, e.g., different spreading patterns of α-synuclein pathology, but the basic pathogenic mechanisms leading to the heterogeneity between both disorders deserve further elucidation. In view of the controversies about the nosology and pathogenesis of both syndromes, there remains a pressing need to differentiate them more clearly and to understand the processes leading these synucleinopathies to cause one disorder or the other. Clinical management of both disorders includes cholinesterase inhibitors, other pharmacologic and nonpharmacologic strategies, but these have only a mild symptomatic effect. Currently, no disease-modifying therapies are available.

196 citations


Journal ArticleDOI
TL;DR: Recent advances of understanding on the multifaceted roles of IL-1β in neuroinflammatory diseases are highlighted.
Abstract: It is becoming increasingly clear that neuroinflammation has a causal role in the pathogenesis of central nervous system (CNS)-related diseases, and therefore therapeutic strategies targeting the regulation or availability of inflammatory mediators can be used to prevent or mitigate pathology Interestingly, the proinflammatory cytokine, interleukin-1 beta (IL-1β), has been implicated in perpetuating immune responses and contributing to disease severity in a variety of CNS diseases ranging from multiple sclerosis, neurodegenerative diseases, traumatic brain injury, and diabetic retinopathy Moreover, pharmacological blockade of IL-1 signaling has shown to be beneficial in some autoimmune and autoinflammatory diseases, making IL-1β a promising therapeutic target in neuroinflammatory conditions This review highlights recent advances of our understanding on the multifaceted roles of IL-1β in neuroinflammatory diseases

117 citations


Journal ArticleDOI
TL;DR: Recent knowledge on microglia responses toward amyloid and tau pathology in AD is discussed, focusing on the role of Toll-like receptors and NOD-like receptor protein 3 (NLRP3) inflammasome activation in microglial cells.
Abstract: Neuroinflammatory responses in Alzheimer's disease (AD) are complex and not fully understood. They involve various cellular and molecular players and associate interaction between the central nervous system (CNS) and the periphery. Amyloid peptides within the senile plaques and abnormally phosphorylated tau in neurofibrillary tangles are able to initiate inflammatory responses, in brain of AD patients and in mouse models of this disease. The outcome of these responses on the pathophysiology of AD depends on several factors and can be either beneficial or detrimental. Thus, understanding the role of neuroinflammation in AD could help to develop safer and more efficient therapeutic strategies. This review discusses recent knowledge on microglia responses toward amyloid and tau pathology in AD, focusing on the role of Toll-like receptors and NOD-like receptor protein 3 (NLRP3) inflammasome activation in microglial cells.

105 citations


Journal ArticleDOI
TL;DR: Increased A β42/oligomer ratio in the CSF of AD/MCI patients indicated that the presence of soluble AβOs in CSF may be linked to lowering of natively measured monomeric Aβ42 by epitopes masking, and hence, concentrations of A βOs in theCSF are postulated to as useful AD biomarkers.
Abstract: The causative role of amyloid β 1–42 (Aβ42) aggregation in the pathogenesis of Alzheimer’s disease (AD) has been under debate for over 25 years. Primarily, scientific efforts have focused on the dyshomeostasis between production and clearance of Aβ42. This imbalance may result from mutations either in genes for the substrate, i.e., amyloid precursor protein or in genes encoding presenilin, the enzyme of the reaction that generates Aβ42. Currently, it is supposed that soluble oligomers of amyloid beta (AβOs) and not fibrillar Aβ42 within neuritic plaques may be the toxic factors acting on a very early stage of AD, perhaps even initiating pathological cascade. For example, soluble AβOs isolated from AD patients’ brains reduced number of synapses, inhibited long-term potentiation, and enhanced long-term synaptic depression in brain regions responsible for memory in animal models of AD. Concentrations of AβOs in the cerebrospinal fluid (CSF) of AD patients are often reported higher than in non-demented controls, and show a negative correlation with mini-mental state examination scores. Furthermore, increased Aβ42/oligomer ratio in the CSF of AD/MCI patients indicated that the presence of soluble AβOs in CSF may be linked to lowering of natively measured monomeric Aβ42 by epitopes masking, and hence, concentrations of AβOs in the CSF are postulated to as useful AD biomarkers.

99 citations


Journal ArticleDOI
TL;DR: Novel role of MAOA and serotonin in the pathogenesis and therapy of depressive disorders is discussed, which helps protect neurons from cell death in depression through induction of anti-apoptotic Bcl-2 and prosurvival neurotrophic factors.
Abstract: Type A monoamine oxidase (MAOA) catabolizes monoamine transmitters, serotonin, norepinephrine and dopamine, and plays a major role in the onset, progression and therapy of neuropsychiatric disorders. In depressive disorders, increase in MAOA expression and decrease in brain levels of serotonin and norepinephrine are proposed as the major pathogenic factors. The functional polymorphism of MAOA gene and genes in serotonin signal pathway are associated with depression. This review presents recent advance in studies on the role of MAOA in major depressive disorder and related emotional disorders. MAOA and serotonin regulate the prenatal development and postnatal maintenance of brain architecture and neurocircuit, as shown by MAOA-deficient humans and MAO knockout animal models. Impaired neurogenesis in the mature hippocampus has been proposed as "adult neurogenesis" hypothesis of depression. MAOA modulates the sensitivity to stress in the stages of brain development and maturation, and the interaction of gene-environmental factors in the early stage regulates the onset of depressive behaviors in adulthood. Vice versa environmental factors affect MAOA expression by epigenetic regulation. MAO inhibitors not only restore compromised neurotransmitters, but also protect neurons from cell death in depression through induction of anti-apoptotic Bcl-2 and prosurvival neurotrophic factors, especially brain-derived neurotrophic factor, the deficiency of which is detected in depression. This review discusses novel role of MAOA and serotonin in the pathogenesis and therapy of depressive disorders.

97 citations


Journal ArticleDOI
TL;DR: This review will summarize and discuss the current knowledge of the differential contributions of microglia and monocytes in the common neurodegenerative diseases AD, PD, and ALS, as well as multiple sclerosis, which is now regarded as a combination of inflammatory processes and Neurodegeneration.
Abstract: Neuroinflammation is a hallmark of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Microglia, the innate immune cells of the CNS, are the first to react to pathological insults. However, multiple studies have also demonstrated an involvement of peripheral monocytes in several neurodegenerative diseases. Due to the different origins of these two cell types, it is important to distinguish their role and function in the development and progression of these diseases. In this review, we will summarize and discuss the current knowledge of the differential contributions of microglia and monocytes in the common neurodegenerative diseases AD, PD, and ALS, as well as multiple sclerosis, which is now regarded as a combination of inflammatory processes and neurodegeneration. Until recently, it has been challenging to differentiate microglia from monocytes, as there were no specific markers. Therefore, the recent identification of specific molecular signatures of both cell types will help to advance our understanding of their differential contribution in neurodegenerative diseases.

83 citations


Journal ArticleDOI
TL;DR: Recent novel therapeutic drugs for neurodegenerative diseases has led to the development of multi target drugs, that possess selective brain MAO A and B inhibitory moiety, iron chelating and antioxidant activities and the ability to increase brain levels of endogenous neurotrophins.
Abstract: In early 1920s, tyramine oxidase was discovered that metabolized tyramine and in 1933 Blaschko demonstrated that this enzyme also metabolized adrenaline, noradrenaline and dopamine. Zeller gave it the name monoamine oxidase (MAO) to distinguish it from the enzyme that oxidatively deaminated diamines. MAO was recognized as an enzyme of crucial interest to pharmacologists because it catalyzed the major inactivation pathway for the catecholamines (and, later, 5-hydroxytryptamine, as well). Within the few decade, the inhibitors of MAO were discovered and introduced for the treatment of depressive illness which was established clinically. However, the first clinical use exposed serious side effects, pharmacological interest in, and investigation of, MAO continued, resulting in the characterization of two forms, distinct forms, MAO-A and -B, and selective inhibitors for them. Selective inhibitors of MAO-B (selegiline, rasagiline and safinamide) have found a therapeutic role in the treatment of Parkinson's disease and reversible inhibitors of MAO-A offered antidepressant activity without the serious side effects of the earlier nonselective MAO inhibitors. Subsequent molecular pharmacological have also generated the concept of neuroprotection, reflecting the possibility of slowing, halting and maybe reversing, neurodegeneration in Parkinson's or Alzheimer's diseases. Increased levels of oxidative stress through the accumulation of iron in the Parkinsonian and Alzheimer brains has been suggested to be critical for the initiation and progress of neurodegeneration. Selective inhibition of brain MAO could contribute importantly to lowering such stress, preventing the formation of hydrogen peroxide. Interaction of Iron with hydrogen peroxide and lead to Fenton reaction and production of the most reactive radical, namely hydroxyl radical. There are complex interactions between free iron levels in brain and MAO, and cascade of neurotoxic events may have practical outcomes for depressive disorders and neurodegenerative diseases. As consequence recent novel therapeutic drugs for neurodegenerative diseases has led to the development of multi target drugs, that possess selective brain MAO A and B inhibitory moiety, iron chelating and antioxidant activities and the ability to increase brain levels of endogenous neurotrophins, such as BDNF, GDNF VEGF and erythropoietin and induce mitochondrial biogenesis.

81 citations


Journal ArticleDOI
TL;DR: This account concentrates key advances that explain why the monoamine oxidases remain of pharmacological and biochemical interest and on some areas of continuing uncertainty.
Abstract: It would not be practical to attempt to deal with all the advances that have informed our understanding of the behavior and functions of this enzyme over the past 90 years. This account concentrates key advances that explain why the monoamine oxidases remain of pharmacological and biochemical interest and on some areas of continuing uncertainty. Some issues that remain to be understood or are in need of further clarification are highlighted.

81 citations


Journal ArticleDOI
TL;DR: The prevalence of LID mainly depends on age at onset, disease duration, and severity, and duration of levodopa therapy, and some of the risk factors for the development of dyskinesia are modifiable.
Abstract: Symptoms of Parkinson’s disease have been controlled with levodopa for many years; however, motor complications consisting of wearing off of medication effect and dyskinesias tend to occur within a few years of starting levodopa. Motor complications can begin a few months after taking levodopa, with the average time to onset estimated to be 6.5 years. Dyskinesias can be troublesome and require intervention. Levodopa-induced dyskinesia can be composed of a variety of movement disorders including chorea, dystonia, ballism, myoclonus, and akathisia. Based on the clinical pattern, the most common dyskinesia is chorea and choreoathetosis. The clinical manifestations can be divided into three main categories based on their clinical movement patterns and the temporal correlation between the occurrence of dyskinesia and the levodopa dosing: on or peak-dose dyskinesias, biphasic dyskinesias, and Off dyskinesias. Severe cases of dyskinesia have been reported, with the extreme being dyskinesia–hyperpyrexia syndrome. The prevalence of LID has been reported in many studies, but the reported incidence varies. The rate of LID development is from 3 to 94%. The prevalence of LID mainly depends on age at onset, disease duration, and severity, and duration of levodopa therapy. Some of the risk factors for the development of dyskinesia are modifiable. Modifiable risk factors include levodopa dose and body weight. Non-modifiable risk factors include age, gender, duration of disease, clinical subtype, disease progression, disease severity, and genetic factors.

78 citations


Journal ArticleDOI
TL;DR: A summary of the current state of opto- and chemogenetic techniques in NHP research is presented and some of the main challenges associated with the use of these genetic-based approaches in monkeys are outlined.
Abstract: Over the last 10 years, the use of opto- and chemogenetics to modulate neuronal activity in research applications has increased exponentially. Both techniques involve the genetic delivery of artificial proteins (opsins or engineered receptors) that are expressed on a selective population of neurons. The firing of these neurons can then be manipulated using light sources (for opsins) or by systemic administration of exogenous compounds (for chemogenetic receptors). Opto- and chemogenetic tools have enabled many important advances in basal ganglia research in rodent models, yet these techniques have faced a slow progress in non-human primate (NHP) research. In this review, we present a summary of the current state of these techniques in NHP research and outline some of the main challenges associated with the use of these genetic-based approaches in monkeys. We also explore cutting-edge developments that will facilitate the use of opto- and chemogenetics in NHPs, and help advance our understanding of basal ganglia circuits in normal and pathological conditions.

68 citations


Journal ArticleDOI
TL;DR: The role of MAO A and B in several cancer types opens new avenues for cancer therapies and NIR dye-conjugated clorgyline (MAO A inhibitor) is developed as a novel dual therapeutic/diagnostic agent for cancer.
Abstract: Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamine neurotransmitters and dietary amines. Two pharmacological types with different substrate and inhibitor specificities were reported. Molecular cloning revealed that the two types of MAO were different genes expressed as different proteins with different functions. MAO A and B have identical intron-exon organization derived by duplication of a common ancestral gene thus they are termed isoenzymes. MAO A knockout mice exhibited aggression, the first clear evidence linking genes to behavior. MAO A KO mice exhibited autistic-like behaviors which could be prevented by reducing serotonin levels at an early developmental age (P1-P7) providing potential therapy. MAO B KO mice were non-aggressive and resistant to Parkinsongenic neurotoxin. More recently it was found that MAO A is overexpressed in prostate cancer and correlates with degree of malignancy. The oncogenic mechanism involves a ROS-activated AKT/FOXO1/TWIST1 signaling pathway. Deletion of MAO A reduced prostate cancer stem cells and suppressed invasive adenocarcinoma. MAO A was also overexpressed in classical Hodgkin lymphoma and glioma brain tumors. MAO B was overexpressed in glioma and non-small cell lung cancer. MAO A inhibitors reduce the growth of prostate cancer, drug sensitive and resistant gliomas and classical Hodgkin lymphoma, and enhance standard chemotherapy. Currently, we are developing NIR dye-conjugated clorgyline (MAO A inhibitor) as a novel dual therapeutic/diagnostic agent for cancer. A phase II clinical trial of MAO inhibitor for biochemical recurrent prostate cancer is ongoing. The role of MAO A and B in several cancer types opens new avenues for cancer therapies.

Journal ArticleDOI
TL;DR: The era of MAO-B inhibitors dates back more than 50 years and began with Kálmán Magyar’s outstanding discovery of the selective inhibitor, selegiline, which is still regarded as the gold standard, although newer drugs have also been introduced to the field.
Abstract: The era of MAO-B inhibitors dates back more than 50 years It began with Kalman Magyar’s outstanding discovery of the selective inhibitor, selegiline This compound is still regarded as the gold standard of MAO-B inhibition, although newer drugs have also been introduced to the field It was revealed early on that selective, even irreversible inhibition of MAO-B is free from the severe side effect of the non-selective MAO inhibitors, the potentiation of tyramine, resulting in the so-called ‘cheese effect’ Since MAO-B is involved mainly in the degradation of dopamine, the inhibitors lack any antidepressant effect; however, they became first-line medications for the therapy of Parkinson’s disease based on their dopamine-sparing activity Extensive studies with selegiline indicated its complex pharmacological activity profile with MAO-B-independent mechanisms involved Some of these beneficial effects, such as neuroprotective and antiapoptotic properties, were connected to its propargylamine structure The second MAO-B inhibitor approved for the treatment of Parkinson’s disease, rasagiline also possesses this structural element and shows similar pharmacological characteristics The preclinical studies performed with selegiline and rasagiline are summarized in this review

Journal ArticleDOI
TL;DR: In this evaluative review, information on potential diagnostic biomarkers for use in the clinical and preclinical stages of PD is summarized.
Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder whose aetiology remains unclear: degeneration involves several neurotransmission systems, resulting in a heterogeneous disease characterized by motor and non-motor symptoms. PD causes progressive disability that responds only to symptomatic therapies. Future advances include neuroprotective strategies for use in at-risk populations before the clinical onset of disease, hence the continuing need to identify reliable biomarkers that can facilitate the clinical diagnosis of PD. In this evaluative review, we summarize information on potential diagnostic biomarkers for use in the clinical and preclinical stages of PD.

Journal ArticleDOI
TL;DR: The current state of knowledge about the striatal SPN subtypes affected, the role of spine changes in the altered activity of SPNs in the parkinsonisn state, and the importance of striatal spine plasticity in the pathophysiology of l-DOPA-induced dyskinesia are examined.
Abstract: In Parkinson's disease (PD) patients and animal models of PD, the progressive degeneration of the nigrostriatal dopamine (DA) projection leads to two major changes in the morphology of striatal projection neurons (SPNs), ie, a profound loss of dendritic spines and the remodeling of axospinous glutamatergic synapses Striatal spine loss is an early event tightly associated with the extent of striatal DA denervation, but not the severity of parkinsonian motor symptoms, suggesting that striatal spine pruning might be a form of homeostatic plasticity that compensates for the loss of striatal DA innervation and the resulting dysregulation of corticostriatal glutamatergic transmission On the other hand, the remodeling of axospinous corticostriatal and thalamostriatal glutamatergic synapses might represent a form of late maladaptive plasticity that underlies changes in the strength and plastic properties of these afferents and the resulting increased firing and bursting activity of striatal SPNs in the parkinsonian state There is also evidence that these abnormal synaptic connections might contribute to the pathophysiology of L-DOPA-induced dyskinesia Despite the significant advances made in this field over the last thirty years, many controversial issues remain about the striatal SPN subtypes affected, the role of spine changes in the altered activity of SPNs in the parkinsonisn state, and the importance of striatal spine plasticity in the pathophysiology of L-DOPA-induced dyskinesia In this review, we will examine the current state of knowledge of these issues, discuss the limitations of the animal models used to address some of these questions, and assess the relevance of data from animal models to the human-diseased condition

Journal ArticleDOI
TL;DR: The kinetic behaviour of MAO A and B and the kinetic evaluation of reversible inhibitors that transiently decrease catalysis are summarized and the mechanism of irreversible inhibition by hydrazine, cyclopropylamine, and propargylamine drugs will be discussed.
Abstract: Monoamine oxidases (MAOs) catalyse the oxidation of neurotransmitter amines and a wide variety of primary, secondary and tertiary amine xenobiotics, including therapeutic drugs. While inhibition of MAO activity in the periphery removes protection from biogenic amines and so is undesirable, inhibition in the brain gives vital antidepressant and behavioural advantages that make MAO a major pharmaceutical target for inhibitor design. In neurodegenerative diseases, MAO inhibitors can help to maintain neurotransmitter levels, making it a common feature in novel multi-target combinations designed to combat Alzheimer's disease, albeit not yet proven clinically. Vital information for inhibitor design comes from an understanding of the structure, mechanism, and kinetics of the catalyst. This review will summarize the kinetic behaviour of MAO A and B and the kinetic evaluation of reversible inhibitors that transiently decrease catalysis. Kinetic parameters and crystal structures have enabled computational approaches to ligand discovery and validation of hits by docking. Kinetics and a wide variety of substrates and inhibitors along with theoretical modelling have also contributed to proposed schemes for the still debated chemical mechanism of amine oxidation. However, most of the marketed MAO drugs are long-lasting irreversible inactivators. The mechanism of irreversible inhibition by hydrazine, cyclopropylamine, and propargylamine drugs will be discussed. The article finishes with some examples of the propargylamine moiety in multi-target ligand design to combat neurodegeneration.

Journal ArticleDOI
TL;DR: The repurposing of tetracyclines, a multitarget antibiotic, is proposed to treat Parkinson’s disease based on their excellent safety profiles in humans from their use for over 50 years as antibiotics.
Abstract: The prevalence of Parkinson’s disease, which affects millions of people worldwide, is increasing due to the aging population. In addition to the classic motor symptoms caused by the death of dopaminergic neurons, Parkinson’s disease encompasses a wide range of nonmotor symptoms. Although novel disease-modifying medications that slow or stop Parkinson’s disease progression are being developed, drug repurposing, which is the use of existing drugs that have passed numerous toxicity and clinical safety tests for new indications, can be used to identify treatment compounds. This strategy has revealed that tetracyclines are promising candidates for the treatment of Parkinson’s disease. Tetracyclines, which are neuroprotective, inhibit proinflammatory molecule production, matrix metalloproteinase activity, mitochondrial dysfunction, protein misfolding/aggregation, and microglial activation. Two commonly used semisynthetic second-generation tetracycline derivatives, minocycline and doxycycline, exhibit effective neuroprotective activity in experimental models of neurodegenerative/ neuropsychiatric diseases and no substantial toxicity. Moreover, novel synthetic tetracyclines with different biological properties due to chemical tuning are now available. In this review, we discuss the multiple effects and clinical properties of tetracyclines and their potential use in Parkinson’s disease treatment. In addition, we examine the hypothesis that the anti-inflammatory activities of tetracyclines regulate inflammasome signaling. Based on their excellent safety profiles in humans from their use for over 50 years as antibiotics, we propose the repurposing of tetracyclines, a multitarget antibiotic, to treat Parkinson’s disease.

Journal ArticleDOI
TL;DR: Amantadine immediate and extended-release are effective and safe for the treatment of LIDs and may have possible effects on other PD symptoms such as apathy or fatigue.
Abstract: L-DOPA induced dyskinesias (LIDs) may affect up to 40% of Parkinson's disease (PD) and impact negatively health-related quality of life. Amantadine has demonstrated significant antidyskinetic effects in animal PD models and in randomized double-blind placebo-controlled trials (RCTs) in patients with PD. These effects are thought to be related to the blockade of NMDA receptors modulating cortico-striatal glutamatergic-dopaminergic interactions involved in the genesis of LIDs. There are three pharmaceutical forms of amantadine currently available in the market: an oral immediate-release (IR) formulation, which is widely available; an extended-release (ER) formulation (ADS-5102) which has been recently developed and approved by the FDA; and an intravenous infusion (IV) solution, which is not commonly used in clinical practice. RCTs with amantadine IR or ER, involving more than 650 patients have shown consistent and long-lasting reductions in LIDs. Interestingly, ADS-5102 not only reduced LIDs, but also reduced significantly at the same time the duration of daily OFF-time, a unique finding compared with other antiparkinsonian medications that usually reduce time spent OFF at the cost of worsening of LIDs. Amantadine IR might also have possible effects on other PD symptoms such as apathy or fatigue. The most common adverse reactions with amantadine are constipation, cardiovascular dysfunction including QT prolongation, orthostatic hypotension and edema, neuropsychiatric symptoms such as hallucinations, confusion and delirium, nausea and livedo reticularis. Corneal degeneration is rare but critical. In summary, amantadine immediate and extended-release are effective and safe for the treatment of LIDs.

Journal ArticleDOI
TL;DR: Evidence is provided that the type-I IFNs play a critical role in the exacerbation of neuroinflammation and actively contribute to the progression of AD.
Abstract: Past research in Alzheimer's disease (AD) has largely been driven by the amyloid hypothesis; the accompanying neuroinflammation seen in AD has been assumed to be consequential and not disease modifying or causative. However, recent data from both clinical and preclinical studies have established that the immune-driven neuroinflammation contributes to AD pathology. Key evidence for the involvement of neuroinflammation in AD includes enhanced microglial and astroglial activation in the brains of AD patients, increased pro-inflammatory cytokine burden in AD brains, and epidemiological evidence that chronic non-steroidal anti-inflammatory drug use prior to disease onset leads to a lower incidence of AD. Identifying critical mediators controlling this neuroinflammation will prove beneficial in developing anti-inflammatory therapies for the treatment of AD. The type-I interferons (IFNs) are pleiotropic cytokines that control pro-inflammatory cytokine secretion and are master regulators of the innate immune response that impact on disorders of the central nervous system. This review provides evidence that the type-I IFNs play a critical role in the exacerbation of neuroinflammation and actively contribute to the progression of AD.

Journal ArticleDOI
TL;DR: It is concluded that PET imaging of neuroinflammation is a promising way of deciphering the enigma of the pathophysiology of AD and of monitoring the effect of new therapies.
Abstract: Increasing evidence suggests that neuroinflammation contributes to the pathophysiology of many neurodegenerative diseases, especially Alzheimer’s disease (AD) Molecular imaging by PET may be a useful tool to assess neuroinflammation in vivo, thus helping to decipher the complex role of inflammatory processes in the pathophysiology of neurodegenerative diseases and providing a potential means of monitoring the effect of new therapeutic approaches For this objective, the main target of PET studies is the 18 kDa translocator protein (TSPO), as it is overexpressed by activated microglia In the present review, we describe the most widely used PET tracers targeting the TSPO, the methodological issues in tracer quantification and summarize the results obtained by TSPO PET imaging in AD, as well as in neurodegenerative disorders associated with AD, in psychiatric disorders and ageing We also briefly describe alternative PET targets and imaging modalities to study neuroinflammation Lastly, we question the meaning of PET imaging data in the context of a highly complex and multifaceted role of neuroinflammation in neurodegenerative diseases This overview leads to the conclusion that PET imaging of neuroinflammation is a promising way of deciphering the enigma of the pathophysiology of AD and of monitoring the effect of new therapies

Journal ArticleDOI
TL;DR: In this article, the centromedian and parafascicular nuclei of the thalamus were found to contribute to the activity of the cholinergic interneurons of the striatum.
Abstract: The thalamus provides a massive input to the striatum, but despite accumulating evidence, the functions of this system remain unclear. It is known, however, that the centromedian (CM) and parafascicular (Pf) nuclei of the thalamus can strongly influence particular striatal neuron subtypes, notably including the cholinergic interneurons of the striatum (CINs), key regulators of striatal function. Here, we highlight the thalamostriatal system through the CM-Pf to striatal CINs. We consider how, by virtue of the direct synaptic connections of the CM and PF, their neural activity contributes to the activity of CINs and striatal projection neurons (SPNs). CM-Pf neurons are strongly activated at sudden changes in behavioral context, such as switches in action-outcome contingency or sequence of behavioral requirements, suggesting that their activity may represent change of context operationalized as associability. Striatal CINs, on the other hand, acquire and loose responses to external events associated with particular contexts. In light of this physiological evidence, we propose a hypothesis of the CM-Pf-CINs system, suggesting that it augments associative learning by generating an associability signal and promotes reinforcement learning guided by reward prediction error signals from dopamine-containing neurons. We discuss neuronal circuit and synaptic organizations based on in vivo/in vitro studies that we suppose to underlie our hypothesis. Possible implications of CM-Pf-CINs dysfunction (or degeneration) in brain diseases are also discussed by focusing on Parkinson's disease.

Journal ArticleDOI
TL;DR: The relevance of these findings is supported by the demonstration, in NHP models of parkinsonism, of the antiparkinsonian effects of inactivation of the motor circuit at the level of the subthalamic nucleus, one of the major components of the basal ganglia.
Abstract: Studies in non-human primates (NHPs) have led to major advances in our understanding of the function of the basal ganglia and of the pathophysiologic mechanisms of hypokinetic movement disorders such as Parkinson's disease and hyperkinetic disorders such as chorea and dystonia. Since the brains of NHPs are anatomically very close to those of humans, disease states and the effects of medical and surgical approaches, such as deep brain stimulation (DBS), can be more faithfully modeled in NHPs than in other species. According to the current model of the basal ganglia circuitry, which was strongly influenced by studies in NHPs, the basal ganglia are viewed as components of segregated networks that emanate from specific cortical areas, traverse the basal ganglia, and ventral thalamus, and return to the frontal cortex. Based on the presumed functional domains of the different cortical areas involved, these networks are designated as 'motor', 'oculomotor', 'associative' and 'limbic' circuits. The functions of these networks are strongly modulated by the release of dopamine in the striatum. Striatal dopamine release alters the activity of striatal projection neurons which, in turn, influences the (inhibitory) basal ganglia output. In parkinsonism, the loss of striatal dopamine results in the emergence of oscillatory burst patterns of firing of basal ganglia output neurons, increased synchrony of the discharge of neighboring basal ganglia neurons, and an overall increase in basal ganglia output. The relevance of these findings is supported by the demonstration, in NHP models of parkinsonism, of the antiparkinsonian effects of inactivation of the motor circuit at the level of the subthalamic nucleus, one of the major components of the basal ganglia. This finding also contributed strongly to the revival of the use of surgical interventions to treat patients with Parkinson's disease. While ablative procedures were first used for this purpose, they have now been largely replaced by DBS of the subthalamic nucleus or internal pallidal segment. These procedures are not only effective in the treatment of parkinsonism, but also in the treatment of hyperkinetic conditions (such as chorea or dystonia) which result from pathophysiologic changes different from those underlying Parkinson's disease. Thus, these interventions probably do not counteract specific aspects of the pathophysiology of movement disorders, but non-specifically remove the influence of the different types of disruptive basal ganglia output from the relatively intact portions of the motor circuitry downstream from the basal ganglia. Knowledge gained from studies in NHPs remains critical for our understanding of the pathophysiology of movement disorders, of the effects of DBS on brain network activity, and the development of better treatments for patients with movement disorders and other neurologic or psychiatric conditions.

Journal ArticleDOI
TL;DR: The symptomatic effects of MAO-B inhibition for a limited amelioration of impaired motor behaviour and wearing-off phenomena in patients with Parkinson’s disease are well proven, even when MAo-B inhibitors are only applied together with dopamine agonists.
Abstract: This invited narrative review emphasizes the role of MAO-B inhibition in the drug portfolio for dopamine substitution in patients with Parkinson’s disease. Neuronal and glial MAO-B inhibition contributes to more stable levels of dopamine and other biogenic amines in the synaptic cleft. Accordingly, symptomatic effects of MAO-B inhibition for a limited amelioration of impaired motor behaviour and wearing-off phenomena in patients with Parkinson’s disease are well proven, even when MAO-B inhibitors are only applied together with dopamine agonists. Delay of disease progression by MAO-B inhibition is under debate despite positive experimental findings. This discussion does not consider, that levodopa, respectively, dopamine agonists, are substrates, respectively, inhibitors of the ABCB1 (P-gp, MDR1, and CD243) transporter system. It supports toxin efflux over the blood–brain barrier. ABCB1 transporters have a limited capacity. MAO-B inhibitors do not weaken it. Treatment with MAO-B inhibitors is advantageous as it enables sparing of dopamine agonist and levodopa dosing.

Journal ArticleDOI
TL;DR: It is argued that long-term chronic administration of MPTP leads to brain pathology beyond the dopaminergic system that displays close similarities to that seen in PD patients and suggests that the chronically MPTP-treated nonhuman primate model may be suitable to study the pathophysiology and therapeutics of some non-motor features of PD.
Abstract: Parkinson's disease (PD) is a progressive neurodegenerative disorder clinically characterized by cardinal motor deficits including bradykinesia, tremor, rigidity and postural instability. Over the past decades, it has become clear that PD symptoms extend far beyond motor signs to include cognitive, autonomic and psychiatric impairments, most likely resulting from cortical and subcortical lesions of non-dopaminergic systems. In addition to nigrostriatal dopaminergic degeneration, pathological examination of PD brains, indeed, reveals widespread distribution of intracytoplasmic inclusions (Lewy bodies) and death of non-dopaminergic neurons in the brainstem and thalamus. For that past three decades, the MPTP-treated monkey has been recognized as the gold standard PD model because it displays some of the key behavioral and pathophysiological changes seen in PD patients. However, a common criticism raised by some authors about this model, and other neurotoxin-based models of PD, is the lack of neuronal loss beyond the nigrostriatal dopaminergic system. In this review, we argue that this assumption is largely incorrect and solely based on data from monkeys intoxicated with acute administration of MPTP. Work achieved in our laboratory and others strongly suggest that long-term chronic administration of MPTP leads to brain pathology beyond the dopaminergic system that displays close similarities to that seen in PD patients. This review critically examines these data and suggests that the chronically MPTP-treated nonhuman primate model may be suitable to study the pathophysiology and therapeutics of some non-motor features of PD.

Journal ArticleDOI
TL;DR: The flexible and stable circuits in the basal ganglia, working together but independently, enable animals (and humans) to reach valuable goals in various contexts.
Abstract: The basal ganglia control body movements, mainly, based on their values. Critical for this mechanism is dopamine neurons, which sends unpredicted value signals, mainly, to the striatum. This mechanism enables animals to change their behaviors flexibly, eventually choosing a valuable behavior. However, this may not be the best behavior, because the flexible choice is focused on recent, and, therefore, limited, experiences (i.e., short-term memories). Our old and recent studies suggest that the basal ganglia contain separate circuits that process value signals in a completely different manner. They are insensitive to recent changes in value, yet gradually accumulate the value of each behavior (i.e., movement or object choice). These stable circuits eventually encode values of many behaviors and then retain the value signals for a long time (i.e., long-term memories). They are innervated by a separate group of dopamine neurons that retain value signals, even when no reward is predicted. Importantly, the stable circuits can control motor behaviors (e.g., hand or eye) quickly and precisely, which allows animals to automatically acquire valuable outcomes based on historical life experiences. These behaviors would be called 'skills', which are crucial for survival. The stable circuits are localized in the posterior part of the basal ganglia, separately from the flexible circuits located in the anterior part. To summarize, the flexible and stable circuits in the basal ganglia, working together but independently, enable animals (and humans) to reach valuable goals in various contexts.

Journal ArticleDOI
TL;DR: First evidence for MAOA methylation to be involved in treatment response prediction and as a potential mechanistic correlate of fear extinction is presented, and altered MAOA gene DNA methylation emerges as a possible pathogenetically relevant epigenetic mechanism in mental disorders.
Abstract: Epigenetic processes such as DNA methylation are considered key mechanisms at the crossroads between genetics and environment in the etiology of mental disorders. The monoamine oxidases A and B (MAOA/MAOB) are prime candidates for the investigation into the role of DNA methylation in mental disorders, given their pivotal role in the metabolism of monoamines and as pharmacological targets of potent antidepressant drugs such as tranylcypromine, phenelzine or moclobemide. The present mini-review aims at summarizing and critically discussing the growing body of the literature supporting a role of DNA methylation of the MAOA gene promoter/exon I/intron I region and its interaction with environmental factors in several mental disorders, i.e., anxiety disorders, depression, posttraumatic stress disorder, substance use disorder, conduct disorder/antisocial personality disorder, borderline personality disorder and schizophrenia, as well as some pilot data on MAOB methylation in smokers and patients with borderline personality disorder. Furthermore, first evidence for MAOA methylation to be involved in treatment response prediction and as a potential mechanistic correlate of fear extinction is presented. Altered MAOA gene DNA methylation emerges as a possible pathogenetically relevant epigenetic mechanism in mental disorders. Given robust replication and further functional characterization, MAOA methylation patterns might serve as a peripheral biomarker of disease risk and treatment response informing preventive and personalized therapeutic approaches in the future.

Journal ArticleDOI
TL;DR: The preliminary results demonstrate the implication of the basal ganglia in two types of neocortical seizures and the necessity of studying the network to identify the important nodes implicated in the propagation and control of each type of seizure.
Abstract: Epilepsy is a network disorder and each type of seizure involves distinct cortical and subcortical network, differently implicated in the control and propagation of the ictal activity. The role of the basal ganglia has been revealed in several cases of focal and generalized seizures. Here, we review the data that show the implication of the basal ganglia in absence, temporal lobe, and neocortical seizures in animal models (rodent, cat, and non-human primate) and in human. Based on these results and the advancement of deep brain stimulation for Parkinson's disease, basal ganglia neuromodulation has been tested with some success that can be equally seen as promising or disappointing. The effect of deep brain stimulation can be considered promising with a 76% in seizure reduction in temporal lobe epilepsy patients, but also disappointing, since only few patients have become seizure free and the antiepileptic effects have been highly variable among patients. This variability could probably be explained by the heterogeneity among the patients included in these clinical studies. To illustrate the importance of specific network identification, electrophysiological activity of the putamen and caudate nucleus has been recorded during penicillin-induced pre-frontal and motor seizures in one monkey. While an increase of the firing rate was found in putamen and caudate nucleus during pre-frontal seizures, only the activity of the putamen cells was increased during motor seizures. These preliminary results demonstrate the implication of the basal ganglia in two types of neocortical seizures and the necessity of studying the network to identify the important nodes implicated in the propagation and control of each type of seizure.

Journal ArticleDOI
TL;DR: How the convergence of clinical reports and behavioral phenotyping in mutant mice has helped frame a complex picture of psychopathological features in MAO-deficient individuals is summarized, posing novel conceptual challenges towards the identification of the endophenotypes shared by autism-spectrum disorder, antisocial behavior and impulse-control problems, as well as their monoaminergic underpinnings.
Abstract: The two monoamine oxidase (MAO) enzymes, A and B, catalyze the metabolism of monoamine neurotransmitters, such as serotonin, norepinephrine, and dopamine. The phenotypic outcomes of MAO congenital deficiency have been studied in humans and animal models, to explore the role of these enzymes in behavioral regulation. The clinical condition caused by MAOA deficiency, Brunner syndrome, was first described as a disorder characterized by overt antisocial and aggressive conduct. Building on this discovery, subsequent studies were focused on the characterization of the role of MAOA in the neurobiology of antisocial conduct. MAO A knockout mice were found to display high levels of intermale aggression; however, further analyses of these mutants unveiled additional behavioral abnormalities mimicking the core symptoms of autism-spectrum disorder. These findings were strikingly confirmed in newly reported cases of Brunner syndrome. The role of MAOB in behavioral regulation remains less well-understood, even though Maob-deficient mice have been found to exhibit greater behavioral disinhibition and risk-taking responses, supporting previous clinical studies showing associations between low MAO B activity and impulsivity. Furthermore, lack of MAOB was found to exacerbate the severity of psychopathological deficits induced by concurrent MAOA deficiency. Here, we summarize how the convergence of clinical reports and behavioral phenotyping in mutant mice has helped frame a complex picture of psychopathological features in MAO-deficient individuals, which encompass a broad spectrum of neurodevelopmental problems. This emerging knowledge poses novel conceptual challenges towards the identification of the endophenotypes shared by autism-spectrum disorder, antisocial behavior and impulse-control problems, as well as their monoaminergic underpinnings.

Journal ArticleDOI
TL;DR: This review appraises over 150 recent original papers reporting data that demonstrate the greatly reduced tyramine content of modern-day ‘foods’, about which the medical literature has a paucity of information.
Abstract: This review appraises over 150 recent original papers reporting data that demonstrate the greatly reduced tyramine content of modern-day 'foods', about which the medical literature has a paucity of information. It discusses the cardiovascular pharmacology of tyramine and the characteristics, extent, risks, and treatment of the blood pressure increases that sometimes result from tyramine ingestion (the pressor response). In past decades, cheese was the only food associated with documented fatalities resulting from hypertension. Today, few foods contain problematically high tyramine levels, which is a result of changes in international food production techniques (especially the use of starter cultures), and hygiene regulations. Nowadays, even 'matured' cheeses are usually safe in healthy-sized portions. The mechanism by which tyramine may be produced in foods (by certain micro-organisms) is explained and hundreds of recent estimations of cheeses are reviewed. Numerous other previously inadequately documented foods are reviewed, including fish and soy sauces, salami-type sausages, dried meats, beers, wines, and various condiments. Evidence that the risk of harm from the pressor response has previously been overstated is reviewed, and the iatrogenic harms from hasty and aggressive treatment of hypertensive urgency are re-evaluated. Evidence now suggests that MAOIs are of comparable safety to many newer drugs and are straightforward to use. Previously held concerns about MAOIs are misplaced and some are of over-estimated consequence. The variability of pressor sensitivity to tyramine between individuals means that the knowledge and judgement of doctors, and some care, are still required.

Journal ArticleDOI
TL;DR: The anatomical and physiological organisation of cortico-basal ganglia-thalamocortical circuits, and the changes affecting these circuits in animal models of parkinsonism and LID are reviewed to provide new clues about the interplay between different brain circuits in the control of movement.
Abstract: With the advent of rodent models of l-DOPA-induced dyskinesia (LID), a growing literature has linked molecular changes in the striatum to the development and expression of abnormal involuntary movements. Changes in information processing at the striatal level are assumed to impact on the activity of downstream basal ganglia nuclei, which in turn influence brain-wide networks, but very little is actually known about systems-level mechanisms of dyskinesia. As an aid to approach this topic, we here review the anatomical and physiological organisation of cortico-basal ganglia-thalamocortical circuits, and the changes affecting these circuits in animal models of parkinsonism and LID. We then review recent findings indicating that an abnormal cerebellar compensation plays a causal role in LID, and that structures outside of the classical motor circuits are implicated too. In summarizing the available data, we also propose hypotheses and identify important knowledge gaps worthy of further investigation. In addition to informing novel therapeutic approaches, the study of LID can provide new clues about the interplay between different brain circuits in the control of movement.

Journal ArticleDOI
TL;DR: Non-human primate models of Parkinson disease show many similarities with the human disease and have been useful to seek new drug targets, since they reproduce motor complications observed in parkinsonian patients as reviewed here.
Abstract: Non-human primate (NHP) models of Parkinson disease show many similarities with the human disease. They are very useful to test novel pharmacotherapies as reviewed here. The various NHP models of this disease are described with their characteristics including the macaque, the marmoset, and the squirrel monkey models. Lesion-induced and genetic models are described. There is no drug to slow, delay, stop, or cure Parkinson disease; available treatments are symptomatic. The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-Dopa) still remains the gold standard symptomatic treatment of Parkinson. However, involuntary movements termed L-Dopa-induced dyskinesias appear in most patients after chronic treatment and may become disabling. Dyskinesias are very difficult to manage and there is only amantadine approved providing only a modest benefit. In this respect, NHP models have been useful to seek new drug targets, since they reproduce motor complications observed in parkinsonian patients. Therapies to treat motor symptoms in NHP models are reviewed with a discussion of their translational value to humans. Disease-modifying treatments tested in NHP are reviewed as well as surgical treatments. Many biochemical changes in the brain of post-mortem Parkinson disease patients with dyskinesias are reviewed and compare well with those observed in NHP models. Non-motor symptoms can be categorized into psychiatric, autonomic, and sensory symptoms. These symptoms are present in most parkinsonian patients and are already installed many years before the pre-motor phase of the disease. The translational usefulness of NHP models of Parkinson is discussed for non-motor symptoms.