scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Neuroendocrinology in 2009"


Journal ArticleDOI
TL;DR: It is indicated that a limited number of mostly medial hypothalamic and lateral septal brain regions are innervated by the three hypothalamic kisspeptin cell populations; the functions of these projections remain to be established.
Abstract: Kisspeptin-GPR54 signalling is essential for normal reproductive functioning. However, the distribution of kisspeptin neuronal cell bodies and their projections is not well established. The present study aimed to provide a detailed account of kisspeptin neuroanatomy in the mouse brain. Using a polyclonal rabbit antibody AC566, directed towards the final ten C-terminal amino acids of murine kisspeptin, three populations of kisspeptin-expressing cell bodies were identified in the adult female mouse brain. One exists as a dense periventricular continuum of cells within the rostral part of the third ventricle, another is found within the arcuate nucleus, and another is identified as a low-density group of scattered cells within the dorsomedial nucleus and posterior hypothalamus. Kisspeptin-immunoreactive fibres were abundant within the ventral aspect of the lateral septum and within the hypothalamus running in periventricular and ventral retrochiasmatic pathways. Notable exclusions from the kisspeptin fibre innervation were the suprachiasmatic and ventromedial nuclei. Outside of the hypothalamus, a small number of kisspeptin fibres were identified in the bed nucleus of the stria terminalis, subfornical organ, medial amygdala, paraventricular thalamus, periaqueductal grey and locus coerulus. All kisspeptin cell body and fibre immunoreactivity was absent in brain tissue from Kiss1 knockout mice. These observations provide a map of kisspeptin neurones in the mouse brain and indicate that a limited number of mostly medial hypothalamic and lateral septal brain regions are innervated by the three hypothalamic kisspeptin cell populations; the functions of these projections remain to be established.

291 citations


Journal ArticleDOI
TL;DR: Observations suggest that the kisspeptin neurones in the ARC may be the intrinsic source of the GnRH pulse generator, and could plausibly reflect the pacemaker activity of kisspe leptin neurones, whose projections reach the median eminence where GnRH fibres project.
Abstract: Pulsatile release of gonadotrophin-releasing hormone (GnRH) is indispensable to maintain normal gonadotrophin secretion. The pulsatile secretion of GnRH is associated with synchronised electrical activity in the mediobasal hypothalamus (i.e. multiple unit activity; MUA), which is considered to reflect the rhythmic oscillations in the activity of the neuronal network that drives pulsatile GnRH secretion. However, the cellular source of this ultradian rhythm in GnRH activity is unknown. Direct input from kisspeptin neurones in the arcuate nucleus (ARC) to GnRH cell bodies in the medial preoptic area or their terminals in the median eminence could be the intrinsic source for driving the GnRH pulse generator. To determine whether kisspeptin signalling could be responsible for producing pulsatile GnRH secretion, we studied goats, measured plasma levels of luteinising hormone (LH) and recorded MUA in the posterior ARC, where the majority of kisspeptin neuronal cell bodies are located. Rhythmic volleys of MUA were found to be accompanied by LH pulses with regular intervals in the ARC, where kisspeptin neuronal cell bodies were found. Exogenous administration of kisspeptin stimulated a sustained increase in LH secretion, without influencing MUA, suggesting that the GnRH pulse generator, as reflected by MUA, originated from outside of the network of GnRH neurones, and could plausibly reflect the pacemaker activity of kisspeptin neurones, whose projections reach the median eminence where GnRH fibres project. These observations suggest that the kisspeptin neurones in the ARC may be the intrinsic source of the GnRH pulse generator.

190 citations


Journal ArticleDOI
TL;DR: Both acute and chronic stress levels of corticosterone resulted in a concomitant decrease in Kiss1 and an increase in kiss1r mRNA expression in the mPOA and ARC, suggesting that the reduced Kiss1‐Kiss1r expression may be a contributing factor in stress‐related suppression of LH secretion.
Abstract: Identification of kisspeptin (Kiss1) and its G protein-coupled receptor 54 (Kiss1r) as an essential component of the hypothalamic-pituitary-gonadal (HPG) axis controlling gonadotrophin secretion raises the possibility that kisspeptin-Kiss1r signalling may play a critical role in the transduction of stress-induced suppression of reproduction. We examined the effects of: (i) three different stressors, known to suppress pulsatile luteinising hormone (LH) secretion; (ii) corticotrophin-releasing factor (CRF); and (iii) corticosterone on Kiss1 and Kiss1r expression in key hypothalamic sites regulating gonadotrophin secretion: the medial preoptic area (mPOA) and arcuate nucleus (ARC). Ovariectomised oestrogen-replaced rats were implanted with i.v., subcutaneous or i.c.v. cannulae. Blood samples were collected at 5-min intervals for 5-6 h for detection of LH. Quantitative reverse transcriptase-polymerase chain reaction was used to determine Kiss1 and Kiss1r mRNA levels in brain punches of the mPOA and ARC collected 6 h after restraint, insulin-induced hypoglycaemia or lipopolysaccharide stress, or after i.c.v. administration of CRF, or acute or chronic subcutaneous administration of corticosterone. We observed down-regulation of at least one component of the kisspeptin-Kiss1r signalling system by each of the stress paradigms within the mPOA and ARC. CRF decreased Kiss1 and Kiss1r expression in both the mPOA and ARC. Both acute and chronic stress levels of corticosterone resulted in a concomitant decrease in Kiss1 and an increase in kiss1r mRNA expression in the mPOA and ARC. This differential regulation of Kiss1 and Kiss1r might account for the lack of effect corticosterone has on pulsatile LH secretion. Considering the pivotal role for kisspeptin-Kiss1r signalling in the control of the HPG axis, these results suggest that the reduced Kiss1-Kiss1r expression may be a contributing factor in stress-related suppression of LH secretion.

179 citations


Journal ArticleDOI
TL;DR: These mouse models examining alterations and hormonal effects on development of stress pathways provide necessary insight into how specific stress responses can be reprogrammed early in development resulting in sex differences in stress sensitivity and neuropsychiatric disease vulnerability.
Abstract: Sex-biased neuropsychiatric disorders, including major depressive disorder and schizophrenia, are the major cause of disability in the developed world. Elevated stress sensitivity has been proposed as a key underlying factor in disease onset. Sex differences in stress sensitivity are associated with corticotrophin-releasing factor (CRF) and serotonin neurotransmission, which are important central regulators of mood and coping responses. To elucidate the underlying neurobiology of stress-related disease predisposition, it is critical to develop appropriate animal models of stress pathway dysregulation. Furthermore, the inclusion of sex difference comparisons in stress responsive behaviours, physiology and central stress pathway maturation in these models is essential. Recent studies by our laboratory and others have begun to investigate the intersection of stress and sex where the development of mouse models of stress pathway dysregulation via prenatal stress experience or early-life manipulations has provided insight into points of developmental vulnerability. In addition, examination of the maturation of these pathways, including the functional importance of the organisational and activational effects of gonadal hormones on stress responsivity, is essential for determination of when sex differences in stress sensitivity may begin. In such studies, we have detected distinct sex differences in stress coping strategies where activational effects of testosterone produced females that displayed male-like strategies in tests of passive coping, but were similar to females in tests of active coping. In a second model of elevated stress sensitivity, male mice experiencing prenatal stress early in gestation showed feminised physiological and behavioural stress responses, and were highly sensitive to a low dose of selective serotonin reuptake inhibitors. Analyses of expression and epigenetic patterns revealed changes in CRF and glucocorticoid receptor genes in these mice. Mechanistically, stress early in pregnancy produced a significant sex-dependent effect on placental gene expression that was supportive of altered foetal transport of key growth factors and nutrients. These mouse models examining alterations and hormonal effects on development of stress pathways provide necessary insight into how specific stress responses can be reprogrammed early in development resulting in sex differences in stress sensitivity and neuropsychiatric disease vulnerability.

171 citations


Journal ArticleDOI
TL;DR: Functional evidence from immunoneutralisation and knockout studies suggests that RP3V kisspeptin neurones projecting to GnRH neurones are an essential component of the surge mechanism in rodents.
Abstract: Ovulation is central to mammalian fertility, yet the precise mechanism through which oestrogen triggers the gonadotrophin-releasing hormone (GnRH) surge that generates the pre-ovulatory luteinising hormone (LH) surge has remained elusive. The recent discovery that kisspeptin-GPR54 signalling is an essential regulator of the neuroendocrine axis at puberty has led investigators to evaluate the role of kisspeptin in the pre-ovulatory GnRH surge mechanism. Kisspeptin neurones are known to express oestrogen and progesterone receptors and have their cell bodies located in brain regions implicated in the positive-feedback mechanism in several mammalian species. In rodents, kisspeptin neurones located in the rostral periventricular area of the third ventricle (RP3V) are positively regulated by oestrogen and most likely are activated by oestrogen at the time of positive feedback. A similar scenario appears to exist for a sub-population of kisspeptin neurones located in the mediobasal hypothalamus of sheep and primates. The majority of GnRH neurones express GPR54, and kisspeptin causes an intense electrical activation of these cells. In concordance with this, kisspeptin administration in vivo results in an abrupt and prolonged release of LH in all mammalian species examined to date. Functional evidence from immunoneutralisation and knockout studies suggests that RP3V kisspeptin neurones projecting to GnRH neurones are an essential component of the surge mechanism in rodents. Taken together, the studies undertaken to date provide substantial evidence in support of a key role of kisspeptin-GPR54 signalling in the generation of the oestrogen-induced pre-ovulatory surge mechanism in mammals.

144 citations


Journal ArticleDOI
TL;DR: The results suggest that deprivation of the mother–infant interaction during the late lactating period results in behavioural and neurochemical changes in adulthood and that these stress responses are sexually dimorphic (i.e. the male is more vulnerable to early weaning stress).
Abstract: Among all mammalian species, pups are highly dependent on their mother not only for nutrition, but also for physical interaction. Therefore, disruption of the mother-pup interaction changes the physiology and behaviour of pups. We review how maternal separation in the early developmental period brings about changes in the behaviour and neuronal systems of the offspring of rats and mice. Early weaning in mice results in adulthood a persistent increase in anxiety-like and aggressive behaviour. The early-weaned mice also show higher hypothalamic-pituitary-adrenal activity in response to novelty stress. Neurochemically, the early-weaned male mice, but not female mice, show precocious myelination in the amygdala, decreased brain-derived neurotrophic factor protein levels in the hippocampus and prefrontal cortex, and reduced bromodeoxyuridine immunoreactivity in the dentate gyrus. Because higher corticosterone levels are persistently observed up to 48 h when the mice are weaned on postnatal day 14, the exposure of the developing brain to higher corticosterone levels may be one of the effects of early weaning. These results suggest that deprivation of the mother-infant interaction during the late lactating period results in behavioural and neurochemical changes in adulthood and that these stress responses are sexually dimorphic (i.e. the male is more vulnerable to early weaning stress).

138 citations


Journal ArticleDOI
TL;DR: This review discusses mouse models that have shed light on direct genetic effects of sex chromosomes that cause sex differences in physiology.
Abstract: XX and XY cells have a different number of X and Y genes. These differences in their genomes cause sex differences in the functions of cells, both in the gonads and in non-gonadal tissues. This review discusses mouse models that have shed light on these direct genetic effects of sex chromosomes that cause sex differences in physiology. Because many sex differences in tissues are caused by different effects of male and female gonadal hormones, it is important to attempt to discriminate between direct genetic and hormonal effects. Numerous mouse models exist in which the number of X or Y genes is manipulated, aiming to observe the effects on phenotype. In two models, namely the four core genotypes model and SF1 knockout gonadless mice, it is possible to detect sex chromosome effects that are not explained by group differences in gonadal hormones. Moreover, mouse models are available to determine whether the sex chromosome effects are caused by X or Y genes.

136 citations


Journal ArticleDOI
TL;DR: The present study suggests that a pubertal increase of Kiss1/kisspeptin expression both in the ARC and AVPV is involved in the onset of puberty, and suggests that both LH pulses and ARC Kiss1 expression are more negatively regulated by oestrogen in prepubertal female rats compared to adult rats.
Abstract: Kisspeptin, a peptide encoded by the Kiss1 gene, has been considered as a potential candidate for a factor triggering the onset of puberty, and its expression in the hypothalamus was found to increase during peripubertal period in rodent models. The present study aimed to clarify the oestrogenic regulation of peripubertal changes in Kiss1 mRNA expression in the anteroventral periventricular nucleus (AVPV) and hypothalamic arcuate nucleus (ARC), and to determine which population of kisspeptin neurones shows a change in kisspeptin expression parallel to that in luteinising hormone (LH) pulses at the peripubertal period. Quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry revealed an apparent increase in the ARC Kiss1 mRNA expression and kisspeptin immunoreactivity around the time of vaginal opening in intact female rats. The AVPV Kiss1 mRNA levels also increased at day 26, but decreased at day 31, and then increased at day 36/41. In ovariectomised (OVX) rats, ARC Kiss1 mRNA expression did not show peripubertal changes and was kept at a high level throughout peripubertal periods. Apparent LH pulses were found in these prepubertal OVX rats. Oestradiol replacement suppressed ARC Kiss1 mRNA expression in OVX prepubertal rats, but not in adults. Similarly, LH pulses were suppressed by oestradiol in the prepubertal period (days 21 and 26), but regular pulses were found in adulthood. The present study suggests that a pubertal increase of Kiss1/kisspeptin expression both in the ARC and AVPV is involved in the onset of puberty. These results also suggest that both LH pulses and ARC Kiss1 expression are more negatively regulated by oestrogen in prepubertal female rats compared to adult rats.

123 citations


Journal ArticleDOI
TL;DR: Why and how rats play, some brain regions controlling play behaviour, and how neurotransmitters and the social environment converge within the developing brain to influence sexual differentiation of juvenile play behaviour are focused on.
Abstract: Juvenile social play behaviour is one of the earliest forms of non-mother directed social behaviour in rodents. Juvenile social play behaviour is sexually dimorphic, with males exhibiting higher levels compared to females, making it a useful model to study both social development and sexual differentiation of the brain. As with most sexually dimorphic behaviour, juvenile play behaviour is organised by neonatal steroid hormone exposure. The developmental organisation of juvenile play behaviour also appears to be influenced by the early maternal environment. This review will focus briefly on why and how rats play, some brain regions controlling play behaviour, and how neurotransmitters and the social environment converge within the developing brain to influence sexual differentiation of juvenile play behaviour.

115 citations


Journal ArticleDOI
TL;DR: It is concluded that RFRP‐3 neurones project to hypothalamic regions and cells involved in regulation of energy balance and reproduction in the ovine brain.
Abstract: RFamide-related peptide-3 (RFRP-3) is a neuropeptide produced in cells of the paraventricular nucleus and dorsomedial nucleus of the ovine hypothalamus. In the present study, we show that these cells project to cells in regions of the hypothalamus involved in energy balance and reproduction. A retrograde tracer (FluoroGold) was injected into either the arcuate nucleus, the lateral hypothalamic area or the ventromedial nucleus. The distribution and number of retrogradely-labelled RFRP-3 neurones was determined. RFRP-3 neurones projected to the lateral hypothalamic area and, to a lesser degree, to the ventromedial nucleus and the arcuate nucleus. Double-label immunohistochemistry was employed to identify cells receiving putative RFRP-3 input to cells in these target regions. RFRP-3 cells were seen to project to neuropeptide Y and pro-opiomelanocortin neurones in the arcuate nucleus, orexin and melanin-concentrating hormone neurones in the lateral hypothalamic area, as well as orexin cells in the dorsomedial nucleus and corticotrophin-releasing hormone and oxytocin cells in the paraventricular nucleus. Neurones expressing gonadotrophin-releasing hormone in the preoptic area were also seen to receive input from RFRP-3 projections. We conclude that RFRP-3 neurones project to hypothalamic regions and cells involved in regulation of energy balance and reproduction in the ovine brain.

114 citations


Journal ArticleDOI
TL;DR: It is demonstrated that, although kisspeptin signalling is critical for the high levels of GnRH activity required for normal sexual maturation and for ovulation, Kiss1+/− and Gpr54−/− mice retain some degree of Gn RH activity.
Abstract: The kisspeptin/Gpr54 signalling pathway plays a critical role in reproduction by stimulating the secretion of gonadotrophin-releasing hormone (GnRH), yet mice carrying mutations in Kiss1 (which encodes kisspeptin) or Gpr54 exhibit partial sexual maturation. For example, a proportion of female Kiss1(-/-) and Gpr54(-/-) mice exhibit vaginal oestrus, and some male Kiss1(-/-) and Gpr54(-/-) mice exhibit spermatogenesis. To characterise this partial sexual maturation, we examined the vaginal cytology of female Kiss1(-/-) and Gpr54(-/-) mice over time. Almost all mutant mice eventually enter oestrus, and then spontaneously transition from oestrus to dioestrus and back to oestrus again. These transitions are not associated with ovulation, and the frequency of these transitions increases with age. The oestrus exhibited by female Kiss1(-/-) and Gpr54(-/-) mice was disrupted by the administration of the competitive GnRH antagonist acyline, which also resulted in lower uterine weights and, in Kiss1(-/-) mice, lower serum follicle-stimulating hormone (FSH) and luteinising hormone (LH) concentrations. Similarly, male Kiss1(-/-) and Gpr54(-/-) mice treated with acyline had smaller testicular sizes and an absence of mature sperm. In addition to examining intact Kiss1(-/-) and Gpr54(-/-) mice, we also assessed the effects of acyline on gonadotrophin concentrations in gonadectomised mice. Gonadectomy resulted in a significant increase in serum FSH concentrations in male Gpr54(-/-) and Kiss1(-/-) mice. Acyline administration to gonadectomised Kiss1(-/-) and Gpr54(-/-) male mice lowered serum FSH and LH concentrations significantly. By contrast to males, gonadectomy did not result in significant gonadotrophin changes in female Kiss1(-/-) and Gpr54(-/-) mice, but acyline administration was followed by a decrease in LH concentrations. These results demonstrate that, although kisspeptin signalling is critical for the high levels of GnRH activity required for normal sexual maturation and for ovulation, Kiss1(-/-) and Gpr54(-/-) mice retain some degree of GnRH activity. This GnRH activity is sufficient to produce significant effects on vaginal cytology and uterine weights in female mice and on spermatogenesis and testicular weights in male mice.

Journal ArticleDOI
TL;DR: The results suggest that chronic stress changes the brain physiology of wild birds and provides important information for the understanding of the underlying mechanisms that result in dysregulation of the HPA axis in wild animals by chronic stress.
Abstract: Although the glucocorticoid response to acute short-term stress is an adaptive physiological mechanism that aids in the response to and survival of noxious stimuli, chronic stress is associated with a negative impact on health. In wild-caught European starlings (Sturnus vulgaris), chronic stress alters the responsiveness of hypothalamic-pituitary-adrenal (HPA) axis as measured by the acute corticosterone response. In the present study, we investigated potential underlying neuroendocrine mechanisms by comparing glucocorticoid receptor and mineralocorticoid receptor mRNA expression in the brains of chronically and nonchronically-stressed starlings. Hypothalamic paraventricular nucleus, but not hippocampal, glucocorticoid receptor mRNA expression in chronically-stressed birds was significantly lower compared to controls, suggesting changes in the efficacy of corticosterone negative feedback. In addition, chronically-stressed birds showed a significant decrease in hippocampal MR mRNA expression. Together, these results suggest that chronic stress changes the brain physiology of wild birds and provides important information for the understanding of the underlying mechanisms that result in dysregulation of the HPA axis in wild animals by chronic stress.

Journal ArticleDOI
TL;DR: It is proposed that VTA dopamine cells, similar to cells in the mediobasal hypothalamus, are first‐order sensory neurones that regulate appetitive behaviour in response to metabolic and nutritional signals.
Abstract: A review is provided of current evidence supporting the actions of the stomach-derived peptide ghrelin on ventral tegmental area (VTA) dopamine cells to increase food intake and other appetitive behaviours. Ghrelin is a 28 amino-acid peptide that was first identified as an endogenous ligand to growth hormone secretagogue receptors (GHS-R). In addition to the hypothalamus and brain stem, GHS-R message and protein are distributed throughout the brain, with high expression being detected in regions associated with goal directed behaviour. Of these, the VTA shows relatively high levels of mRNA transcript and protein. Interestingly, ghrelin infusions into the VTA increase food intake dramatically, and stimulate dopamine release from the VTA. Moreover, VTA dopamine neurones increase their activity in response to ghrelin in slice preparations, suggesting that ghrelin increases food intake by modulating the activity of dopaminergic neurones in the VTA. On the basis of these data as well as the fact that VTA dopamine cells respond to other metabolic hormones such as insulin and leptin, it is proposed that VTA dopamine cells, similar to cells in the mediobasal hypothalamus, are first-order sensory neurones that regulate appetitive behaviour in response to metabolic and nutritional signals.

Journal ArticleDOI
TL;DR: It is found that young ovariectomised females responded with increased cell proliferation to most oestrogens, except oestradiol benzoate, after 30 min of exposure, however, administration of oestrogen for a longer time interval was ineffective at increasing cell proliferation.
Abstract: Oestrogens are known to exert significant structural and functional effects in the hippocampus of adult rodents The dentate gyrus of the hippocampus retains the ability to produce neurones throughout adulthood and 17beta-oestradiol has been shown to influence hippocampal neurogenesis in adult female rats The effects of other oestrogens, such as oestrone and 17alpha-oestradiol, on neurogenesis have not been investigated The present study aimed to investigate the effects of 17beta-oestradiol, oestradiol benzoate, oestrone, and 17alpha-oestradiol on cell proliferation in ovariectomised adult female rats at two different time points Young ovariectomised female rats were injected with one of the oestrogens at one of three doses In Experiment 1, rats were exposed to the hormone for 4 h and, in Experiment 2, rats were exposed to the hormone for 30 min prior to 5-bromo-2-deoxyuridine injection to label proliferating cells and their progeny We found that young ovariectomised females responded with increased cell proliferation to most oestrogens, except oestradiol benzoate, after 30 min of exposure However, administration of oestrogens for a longer time interval was ineffective at increasing cell proliferation After 30 min, 17beta-oestradiol and oestrone increased cell proliferation at low (03 microg) and high (10 microg) doses, whereas 17alpha-oestradiol increased cell proliferation at medium (1 microg) and high doses The results of the present study indicate that different oestrogens rapidly increase cell proliferation in a dose-dependent manner, possibly through a nonclassical, nongenomic mechanism Future experiments should focus on further elucidating the specific pathways utilised by each oestrogen These results have important therapeutic implications because it may be possible to use 17alpha-oestradiol and lower doses of oestrogens in hormone replacement therapies

Journal ArticleDOI
TL;DR: Results indicate that basal cortisol and testosterone concentrations and HPA axis function are state variables that differentially reflect position in the dominance hierarchy, rather than trait variables that predict future social status.
Abstract: In nonhuman primate social groups, biological differences related to social status have proven useful for investigating the mechanisms of sensitivity to various disease states. Physiological and neurobiological differences between dominant and subordinate monkeys have been interpreted in the context of chronic social stress. The present experiments were designed to investigate the relationships between basal cortisol and testosterone concentrations and the establishment and maintenance of the social hierarchy in male cynomolgus monkeys. Cortisol concentrations were measured at baseline and following suppression with dexamethasone (DEX) and subsequent administration of adrenocorticotrophic hormone (ACTH) while monkeys were individually housed (n = 20) and after 3 months of social housing (n = 4/group), by which time dominance hierarchies had stabilised. Cortisol was also measured during the initial 3 days of social housing. Neither pre-social housing hormone concentrations, nor hypothalamic-pituitary-adrenal (HPA) axis sensitivity predicted eventual social rank. During initial social housing, cortisol concentrations were significantly higher in monkeys that eventually became subordinate; this effect dissipated within 3 days. During the 12 weeks of social housing, aggressive and submissive behaviours were observed consistently, forming the basis for assignment of social ranks. At this time, basal testosterone and cortisol concentrations were significantly higher in dominant monkeys and, after DEX suppression, cortisol release in response to a challenge injection of ACTH was significantly greater in subordinates. These results indicate that basal cortisol and testosterone concentrations and HPA axis function are state variables that differentially reflect position in the dominance hierarchy, rather than trait variables that predict future social status.

Journal ArticleDOI
TL;DR: A reconsideration of the potential widespread action that this traditional reproductive hormone exerts may lead to the generation of novel therapies and provide insight into seemingly incongruent outcomes from current treatments using GnRH analogues to combat diseases such as prostate cancer.
Abstract: Gonadotrophin-releasing hormone (GnRH) is a hypothalamic decapeptide with an undisputed role as a primary regulator of gonadal function. It exerts this regulation by controlling the release of gonadotrophins. However, it is becoming apparent that GnRH may have a variety of other vital roles in normal physiology. A reconsideration of the potential widespread action that this traditional reproductive hormone exerts may lead to the generation of novel therapies and provide insight into seemingly incongruent outcomes from current treatments using GnRH analogues to combat diseases such as prostate cancer.

Journal ArticleDOI
TL;DR: Possible mechanisms by which testosterone may regulate cell death in the nervous system are discussed, as are the behavioural effects of eliminating sex differences in neuronal cell number.
Abstract: The hormonal control of cell death is currently the best-established mechanism for creating sex differences in cell number in the brain and spinal cord. For example, males have more cells than do females in the principal nucleus of the bed nucleus of the stria terminalis (BNSTp) and spinal nucleus of the bulbocavernosus (SNB), whereas females have a cell number advantage in the anteroventral periventricular nucleus (AVPV). In each case, the difference in cell number in adulthood correlates with a sex difference in the number of dying cells at some point in development. Mice with over- or under-expression of cell death genes have been used to test more directly the contribution of cell death to neural sex differences, to identify molecular mechanisms involved, and to determine the behavioural consequences of suppressing developmental cell death. Bax is a pro-death gene of the Bcl-2 family that is singularly important for apoptosis in neural development. In mice lacking bax, the number of cells in the BNSTp, SNB and AVPV are significantly increased, and sex differences in total cell number in each of these regions are eliminated. Cells rescued by bax gene deletion in the BNSTp express markers of differentiated neurones and the androgen receptor. On the other hand, sex differences in other phenotypically identified populations, such as vasopressin-expressing neurones in the BNSTp or dopaminergic neurones in AVPV, are not affected by either bax deletion or bcl-2 over-expression. Possible mechanisms by which testosterone may regulate cell death in the nervous system are discussed, as are the behavioural effects of eliminating sex differences in neuronal cell number.

Journal ArticleDOI
TL;DR: DNA microarray analysis for oestrogen‐responsive genes and western blotting demonstrated site‐specific regulation of apoptosis‐ and migration‐related genes in the SDN‐POA and AVPV, indicating that sexual differentiation may be due to neurogenesis, migration or survival.
Abstract: Gonadal steroids that establish sexually dimorphic characteristics of brain morphology and physiology act at a particular stage of ontogeny. Testosterone secreted by the testes during late gestational and neonatal periods causes significant brain sexual dimorphism in the rat. This results in both sex-specific behaviour and endocrinology in adults. Sexual differentiation may be due to neurogenesis, migration or survival. Each mechanism appears to be uniquely regulated in a site-specific manner. Thus, the volume of an aggregate of neurones in the rat medial preoptic area (POA), termed the sexually dimorphic nucleus of the POA (SDN-POA), is larger in males than in females. The anteroventral periventricular nucleus (AVPV) is packed with neurones containing oestrogen receptor (ER)beta in female rats but, in males, ERbeta-positive neurones scatter into the more lateral portion of the POA. POA neurones are born up to embryonic days 16-17 and not after parturition. Therefore, neurogenesis is unlikely to contribute to the larger SDN-POA in males. DNA microarray analysis for oestrogen-responsive genes and western blotting demonstrated site-specific regulation of apoptosis- and migration-related genes in the SDN-POA and AVPV.

Journal ArticleDOI
TL;DR: The possibility that testosterone inhibits HPA reactivity by metabolising to 5α‐androstane‐3β,17β‐diol, a compound that binds ERβ and regulates oxytocin containing neurones of the PVN is addressed, suggesting a re‐evaluation of studies examining pathways for androgen receptor signalling.
Abstract: Activation of the hypothalamic-pituitary-adrenal (HPA) axis is a basic response of animals to environmental perturbations that threaten homeostasis. These responses are regulated by neurones in the paraventricular nucleus of the hypothalamus (PVN) that synthesise and secrete corticotrophin-releasing hormone (CRH). Other PVN neuropeptides, such as arginine vasopressin and oxytocin, can also modulate activity of CRH neurones in the PVN and enhance CRH secretagogue activity of the anterior pituitary gland. In rodents, sex differences in HPA reactivity are well established; females exhibit a more robust activation of the HPA axis after stress than do males. These sex differences primarily result from opposing actions of sex steroids, testosterone and oestrogen, on HPA function. Ostreogen enhances stress activated adrenocorticotrophic hormone (ACTH) and corticosterone (CORT) secretion, whereas testosterone decreases the gain of the HPA axis and inhibits ACTH and CORT responses to stress. Data show that androgens can act directly on PVN neurones in the male rat through a novel pathway involving oestrogen receptor (ER)β, whereas oestrogen acts predominantly through ERα. Thus, we examined the hypothesis that, in males, testosterone suppresses HPA function via an androgen metabolite that binds ERβ. Clues to the neurobiological mechanisms underlying such a novel action can be gleaned from studies showing extensive colocalisation of ERβ in oxytocin-containing cells of the PVN. Hence, in this review, we address the possibility that testosterone inhibits HPA reactivity by metabolising to 5α-androstane-3β,17β-diol, a compound that binds ERβ and regulates oxytocin containing neurones of the PVN. These findings suggest a re-evaluation of studies examining pathways for androgen receptor signalling.

Journal ArticleDOI
TL;DR: It is determined that the critical period for a significant delay in puberty as a result of neonatal LPS exposure is before 7 days of age in the female rat, and it is demonstrated that Kiss1, but not Kiss1r mRNA, expression in the mPOA is down‐regulated in pre‐pubertal females.
Abstract: Immunological challenge experienced in early life can have long-term programming effects on the hypothalamic-pituitary-adrenal axis that permanently influence the stress response. Similarly, neonatal exposure to immunological stress enhances stress-induced suppression of the hypothalamic-pituitary gonadal (HPG) axis in adulthood, but may also affect earlier development, including the timing of puberty. To investigate the timing of the critical window for this programming of the HPG axis, neonatal female rats were injected with lipopolysaccharide (LPS; 50 microg/kg i.p.) or saline on postnatal days 3 + 5, 7 + 9, or 14 + 16 and monitored for vaginal opening and first vaginal oestrus as markers of puberty. We also investigated the effects of neonatal programming on the development of the expression patterns of kisspeptin (Kiss1) and its receptor (Kiss1r) in hypothalamic sites known to contain kisspeptin-expressing neuronal populations critical to reproductive function: the medial preoptic area (mPOA) and the arcuate nucleus in neonatally-stressed animals. We determined that the critical period for a significant delay in puberty as a result of neonatal LPS exposure is before 7 days of age in the female rat, and demonstrated that Kiss1, but not Kiss1r mRNA, expression in the mPOA is down-regulated in pre-pubertal females. These data suggest that the mPOA population of kisspeptin neurones play a pivotal role in controlling the onset of puberty, and that their function can be affected by neonatal stress.

Journal ArticleDOI
TL;DR: It is the interactions of all the receptor‐mediated processes in hypothalamus and other areas of the central nervous system that will determine the anorectic effects of oestrogen and its control of energy homeostasis.
Abstract: The control of energy homeostasis in women is correlated with the anorectic effects of oestrogen, which can attenuate body weight gain and reduce food intake in rodent models. This review investigates the multiple signalling pathways and cellular targets that oestrogen utilises to control energy homeostasis in the hypothalamus. Oestrogen affects all of the hypothalamic nuclei that control energy homeostasis. Oestrogen controls the activity of hypothalamic neurones through gene regulation and neuronal excitability. Oestrogen's primary cellular pathway is the control of gene transcription through the classical oestrogen receptors (ERs) (ERalpha and ERbeta) with ERalpha having the primary role in energy homeostasis. Oestrogen also controls energy homeostasis through membrane-mediated events via membrane-associated ERs or a novel, putative membrane ER that is coupled to G-proteins. Therefore, oestrogen is coupled to at least two receptors with multiple signalling and transcriptional pathways to mediate immediate and long-term anorectic effects. Ultimately, it is the interactions of all the receptor-mediated processes in hypothalamus and other areas of the central nervous system that will determine the anorectic effects of oestrogen and its control of energy homeostasis.

Journal ArticleDOI
TL;DR: Activation of the motor pathway for song production is linked to local elevations in synaptic aromatase activity within the forebrain of male zebra finches, and this elevation occurs only within the cellular compartment that contains synaptic terminals.
Abstract: The enzyme aromatase, which converts androgens into oestrogens, is expressed throughout the brain in zebra finches. Aromatase is enzymatically active in both cell bodies and synaptic terminals of neurones of the songbird brain, particularly within the forebrain motor and auditory networks. Aromatisation within synaptic terminals could thus provide localised and acute modulatory oestrogens within the forebrain during singing and/or audition. In male zebra finches, we tested the hypothesis that forebrain aromatase activity is elevated during singing behaviour and/or hearing male song. The present study reports that aromatase activity is elevated in males that were singing for 30 min compared to nonsinging males, and that this elevation occurs only within the cellular compartment that contains synaptic terminals. In a separate experiment, males that heard acoustic playback of song for 30 min exhibited no differences in aromatase activity or in aromatase mRNA levels, as revealed by quantitative polymerase chain reaction analysis. Therefore, these results indicate that activation of the motor pathway for song production is linked to local elevations in synaptic aromatase activity within the forebrain of male zebra finches. Future experiments could assess whether elevated synaptic aromatase activity during song is dependent on acute regulation of the aromatase protein.

Journal ArticleDOI
TL;DR: Although 11β‐HSD1 appears to contribute to regulation of the HPA axis, the genetic background is crucial in governing the response to (and hence the consequences of) its loss, as shown in the present study.
Abstract: Inter-individual differences in hypothalamic-pituitary-adrenal (HPA) axis activity underlie differential vulnerability to neuropsychiatric and metabolic disorders, although the basis of this variation is poorly understood. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) has previously been shown to influence HPA axis activity. 129/MF1 mice null for 11β-HSD1 (129/MF1 HSD1−/−) have greatly increased adrenal gland size and altered HPA activity, consistent with reduced glucocorticoid negative feedback. On this background, concentrations of plasma corticosterone and adrenocorticotrophic hormone (ACTH) were elevated in unstressed mice, and showed a delayed return to baseline after stress in HSD1-null mice with reduced sensitivity to exogenous glucocorticoid feedback compared to same-background genetic controls. In the present study, we report that the genetic background can dramatically alter this pattern. By contrast to HSD1−/− mice on a 129/MF1 background, HSD1−/− mice congenic on a C57Bl/6J background have normal basal plasma corticosterone and ACTH concentrations and exhibit normal return to baseline of plasma corticosterone and ACTH concentrations after stress. Furthermore, in contrast to 129/MF1 HSD1−/− mice, C57Bl/6J HSD1−/− mice have increased glucocorticoid receptor expression in areas of the brain involved in glucocorticoid negative feedback (hippocampus and paraventricular nucleus), suggesting this may be a compensatory response to normalise feedback control of the HPA axis. In support of this hypothesis, C57Bl/6J HSD1−/− mice show increased sensitivity to dexamethasone-mediated suppression of peak corticosterone. Thus, although 11β-HSD1 appears to contribute to regulation of the HPA axis, the genetic background is crucial in governing the response to (and hence the consequences of) its loss. Similar variations in plasticity may underpin inter-individual differences in vulnerability to disorders associated with HPA axis dysregulation. They also indicate that 11β-HSD1 inhibition does not inevitably activate the HPA axis.

Journal ArticleDOI
TL;DR: Depletion of endogenous IL‐6, a body fat suppressing cytokine, is associated with the decreased expression of CRH and oxytocin as well as AVP in the paraventricular nucleus (PVN), which is a nucleus that has been attributed an adipostatic function.
Abstract: Interleukin (IL)-6 is a pro-inflammatory cytokine that also affects metabolic function because IL-6 depleted (IL-6(-/-)) mice develop late-onset obesity. IL-6 appears to act in the central nervous system, presumably in the hypothalamus, to increase energy expenditure that appears to involve stimulation of the sympathetic nervous system. In the present study, we explored possible central mechanisms for the effects exerted by IL-6 on body fat. Therefore, we measured the effects of IL-6 depletion in IL-6(-/-) mice on expression of key hypothalamic peptide genes involved in energy balance by the real time polymerase chain reaction. Additionally, co-localisation between such peptides and IL-6 receptor alpha was investigated by immunohistochemistry. IL-6 deficiency decreased the expression of several peptides found in the paraventricular nucleus (PVN), which is a nucleus that has been attributed an adipostatic function. For example, corticotrophin-releasing hormone (CRH), which is reported to stimulate the sympathetic nervous system, was decreased by 40% in older IL-6(-/-) mice. Oxytocin, which is reported to prevent obesity, was also decreased in older IL-6(-/-) animals, as was arginine vasopressin (AVP). The IL-6 receptor alpha was abundantly expressed in the PVN, but also in the supraoptic nucleus, and was shown to be co-expressed to a high extent with CRH, AVP, oxytocin and thyrotrophin-releasing hormone. These data indicate that depletion of endogenous IL-6, a body fat suppressing cytokine, is associated with the decreased expression of CRH and oxytocin (i.e. energy balance regulating peptides) as well as AVP in the PVN. Because IL-6 receptor alpha is co-expressed with CRH, oxytocin and AVP, IL-6 could stimulate the expression of these peptides directly.

Journal ArticleDOI
TL;DR: Sex differences in cell positions in the developing hypothalamus, and steroid hormone influences on cell movements in vitro, suggest that cell migration may be one target for early molecular actions that impact brain development and sexual differentiation.
Abstract: Sex differences in the nervous system come in many forms. Although a majority of sexually dimorphic characteristics in the brain have been described in older animals, mechanisms that determine sexually differentiated brain characteristics often operate during critical perinatal periods. Both genetic and hormonal factors likely contribute to physiological mechanisms in development to generate the ontogeny of sexual dimorphisms in brain. Relevant mechanisms may include neurogenesis, cell migration, cell differentiation, cell death, axon guidance and synaptogenesis. On a molecular level, there are several ways to categorise factors that drive brain development. These range from the actions of transcription factors in cell nuclei that regulate the expression of genes that control cell development and differentiation, to effector molecules that directly contribute to signalling from one cell to another. In addition, several peptides or proteins in these and other categories might be referred to as ‘biomarkers’ of sexual differentiation with undetermined functions in development or adulthood. Although a majority of sex differences are revealed as a direct consequence of hormone actions, some may only be revealed after genetic or environmental disruption. Sex differences in cell positions in the developing hypothalamus, and steroid hormone influences on cell movements in vitro, suggest that cell migration may be one target for early molecular actions that impact brain development and sexual differentiation.

Journal ArticleDOI
TL;DR: This review focuses on one potential mechanism by which surface‐localised ERα and ERβ stimulate intracellular signalling events in cells of the nervous system, and a potential means by which oestrogens can both rapidly and for extended periods, influence a variety of intrACEllular signalling processes and behaviours.
Abstract: Until recently, the idea that oestradiol could affect cellular processes independent of nuclear oestrogen receptors (ERs) was controversial. This was despite the large number of carefully controlled studies performed both within and outside the nervous system demonstrating that oestrogens regulate various intracellular signalling pathways by acting at the membrane surface of cells and/or at biological rates incompatible with the time course of genomic-initiated events. At present, it is far less controversial that oestradiol acts at surface membrane receptors to regulate nervous system function. Recent studies have demonstrated that the classical intracellular ERs, ERα and ERβ, are major players in mediating the actions of oestradiol on the membrane surface. This review focuses on one potential mechanism by which surface-localised ERα and ERβ stimulate intracellular signalling events in cells of the nervous system. After oestradiol treatment, both ERα and ERβ are capable of activating different classes of metabotropic glutamate receptors (mGluRs). Oestradiol activation of mGluRs is independent of glutamate, but requires expression of several different caveolin proteins to compartmentalise the different ERs with mGluRs into functional signalling microdomains. ER/mGluR signalling is a potential means by which oestrogens can both rapidly and for extended periods, influence a variety of intracellular signalling processes and behaviours.

Journal ArticleDOI
TL;DR: The data indicate that prolonged ovarian hormone deprivation alters the ability of subsequent oestradiol replacement to regulate ERα protein levels in brain areas important for cognition.
Abstract: Beneficial effects of oestrogen administration on cognition are attenuated if treatment is initiated following long-term ovarian hormone deprivation. The mechanisms underlying this attenuation are unknown. The present study aimed to assess the effects of long-term ovarian hormone deprivation on the ability of subsequent oestradiol treatment to regulate oestrogen receptor (ER) alpha and ERbeta, and steroid receptor coactivator (SRC)-1 in the hippocampus and prefrontal cortex of middle-aged rats. In an initial experiment to assess oestradiol regulation of these proteins, 2-month-old rats were ovariectomised and immediately implanted with capsules containing cholesterol or oestradiol. Brains were collected 10 days later. In a second experiment, middle-aged (10-month-old) rats were ovariectomised or underwent sham surgeries. Five months later, sham-operated rats were ovariectomised and received oestradiol implants. Previously ovariectomised rats underwent sham surgeries and received oestradiol or cholesterol implants. Protein levels of ERalpha, ERbeta, and SRC-1 were measured following 10 days of oestradiol treatment using western blotting. In young animals, oestradiol treatment significantly increased ERalpha in the hippocampus and prefrontal cortex relative to control treatment. In middle-aged animals, immediate oestradiol treatment significantly increased ERalpha in hippocampus, but not the prefrontal cortex. However, delayed oestradiol treatment failed to significantly increase ERalpha protein levels in hippocampus, but did so in prefrontal cortex. Levels of ERbeta and SRC-1 were unaffected by oestradiol treatment in either brain area in either of the age groups. These data indicate that prolonged ovarian hormone deprivation alters the ability of subsequent oestradiol replacement to regulate ERalpha protein levels in brain areas important for cognition.

Journal ArticleDOI
TL;DR: A diminished central nervous system response to apelin that is coincident with obesity is demonstrated.
Abstract: The central administration of apelin, a recently identified adipokine, has been shown to affect food and water intake. The present study investigated whether body weight could affect an animal’s response to apelin. The effects of centrally-administered apelin-13 on food and water intake, activity and metabolic rate were investigated in adult male diet-induced obese (DIO) rats fed either a high fat (32%) or control diet. Rats were administered i.c.v. apelin-13, 15–30 min prior to lights out, and food and water intake, activity and metabolic rate were assessed. Intracerebroventricular administration of apelin-13 decreased food and water intake and respiratory exchange ratio in DIO rats on the control diet, but had no effect in DIO rats on the high-fat diet. In an effort to identify potential central mechanisms explaining the observed physiological responses, the mRNA level of the apelin receptor, APJ, was examined in the hypothalamus. A high-fat diet induced an up-regulation of the expression of the receptor. Apelin induced a down-regulation of the receptor, but only in the DIO animals on the high-fat diet. In conclusion, we have demonstrated a diminished central nervous system response to apelin that is coincident with obesity.

Journal ArticleDOI
TL;DR: E2 can activate multiple receptor‐mediated pathways to modulate excitability and gene transcription in CNS neurones that are critical for controlling homeostasis and motivated behaviors.
Abstract: It is increasingly evident that 17β-oestradiol (E2) via a distinct membrane oestrogen receptor (Gq-mER) can rapidly activate kinase pathways to have multiple downstream actions in CNS neurons. We have found that E2 can rapidly reduce the potency of the GABAB receptor agonist baclofen and mu-opioid receptor agonist DAMGO to activate G protein-coupled, inwardly rectifying K+ (GIRK) channels in hypothalamic neurons, thereby increasing the excitability (firing activity) of POMC and dopamine neurons. These effects are mimicked by the membrane impermeant E2-BSA and a new ligand (STX) that is selective for the Gq-mER that does not bind to ERα or ERβ. Both E2 and STX are fully efficacious in attenuating the GABAB response in ERα, ERβ and GPR 30 knockout mice in an ICI 182,780 reversible manner. These findings are further proof that E2 signals through a unique plasma membrane ER. We have characterised the coupling of this Gq-mER to a Gq-mediated activation of phospholipase C leading to the up-regulation of protein kinase Cδ and protein kinase A activity in these neurons, which ultimately alters gene transcription. Finally as proof of principle, we have found that STX, like E2, reduces food intake and body weight gain in ovariectomised females. STX, presumably via the Gq-mER, also regulates gene expression of a number of relevant targets including cation channels and signalling molecules that are critical for regulating (as a prime example) POMC neuronal excitability. Therefore, E2 can activate multiple receptor-mediated pathways to modulate excitability and gene transcription in CNS neurons that are critical for controlling homeostasis and motivated behaviors.

Journal ArticleDOI
TL;DR: The results obtained in the present study show that MPU changes the time course of production of BDNF and cell proliferation in specific hippocampal and hypothalamic areas during sensitive developmental windows, suggesting that these early perinatal modifications may have long‐lasting consequences.
Abstract: Maternal perinatal undernutrition (MPU) modifies the activity of the hypothalamic-pituitary-adrenal axis and sensitises to the development of metabolic and cognitive adult diseases. Because the hypothalamus and hippocampus are involved in the regulation of neuroendocrine activity, energy metabolism and cognition, we hypothesised that a maternal 50% food restriction (FR50) from day 14 of pregnancy (E14) until postnatal day 21 (P21) would affect the development of these structures in male rat offspring. Protein and mRNA levels of brain-derived neurotrophic factor (BDNF) and cell proliferation [analysed by 5-bromodeoxyuridine (BrdU) incorporation] were compared in both control and FR50 rats from E21 to P22. Although the pattern of the evolution of BDNF concentration and cell proliferation throughout development was not strikingly different between groups, several disturbances at specific developmental stages were observed. FR50 rats exhibited a delayed increase of hippocampal BDNF content whereas, in the hypothalamus, BDNF level was augmented from E21 to P14 and associated, at this latter stage, with an increased mRNA expression of TRkB-T2. In both groups, a correlation between BDNF content and the number of BrdU positive cells was noted in the dentate gyrus, whereas opposite variations were observed in CA1, CA2 and CA3 layers, and in the arcuate and ventromedial nuclei. In the hippocampus, P15-FR50 rats showed an increased number of BrdU positive cells in all regions, whereas, at P22, a decrease was observed in the CA2. In the hypothalamus, between E21 and P8, MPU increases the number of BrdU positive cells in all regions analysed and, until P15, marked differences were noticed in the median eminence, the paraventricular nucleus and the arcuate nucleus. Taken together, the results obtained in the present study show that MPU changes the time course of production of BDNF and cell proliferation in specific hippocampal and hypothalamic areas during sensitive developmental windows, suggesting that these early perinatal modifications may have long-lasting consequences.