scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Paleolimnology in 2006"


Journal ArticleDOI
TL;DR: In this paper, the authors used water midges, consisting of Chironomidae, Chaoboridae and Ceratopogonidae, as a biological proxy for palaeoclimate in eastern Beringia.
Abstract: Freshwater midges, consisting of Chironomidae, Chaoboridae and Ceratopogonidae, were assessed as a biological proxy for palaeoclimate in eastern Beringia. The northwest North American training set consists of midge assemblages and data for 17 environmental variables collected from 145 lakes in Alaska, British Columbia, Yukon, Northwest Territories, and the Canadian Arctic Islands. Canonical correspondence analyses (CCA) revealed that mean July air temperature, lake depth, arctic tundra vegetation, alpine tundra vegetation, pH, dissolved organic carbon, lichen woodland vegetation and surface area contributed significantly to explaining midge distribution. Weighted averaging partial least squares (WA-PLS) was used to develop midge inference models for mean July air temperature (r boot 2 = 0.818, RMSEP = 1.46°C), and transformed depth (ln (x+1); r boot 2 = 0.38, and RMSEP = 0.58).

181 citations


Journal ArticleDOI
TL;DR: In this article, the spectral properties of sedimentary chlorophyll a using visible-near infrared reflectance (VNIR) spectroscopy were determined from a dilution series (n = 10) involving incremental additions of pulverized modern algae to a lake sediment matrix of low organic content.
Abstract: Chlorophyll a preserved in lake sediments reflects, in part, past primary production. This study assesses the spectral properties of sedimentary chlorophyll a using visible-near infrared reflectance (VNIR) spectroscopy, with the objective of establishing a new, non-destructive paleolimnological proxy. Reflectance spectra were determined from a dilution series (n = 10) involving incremental additions of pulverized modern algae to a lake sediment matrix of low organic content. This enabled an assessment of the development of sediment reflectance spectra in relation to different sediment chlorophyll a concentrations, and subsequent regression of spectral features against measured concentrations of chlorophyll a and derivatives obtained by high performance liquid chromatography (HPLC). The experiment demonstrates that ubiquitous troughs in sediment reflectance near 675 nm are attributable to chlorophyll a and derivative compounds. A significant correlation (r 2 = 0.98, P < 0.01) was obtained between the area of the reflectance trough in the 650–700 nm interval and summed concentrations of chlorophyll a, all derivative isomers, and degradational pheopigments. A simple linear inference model derived from this experiment was applied to a down-core sequence of VNIR spectra from a productive prairie lake (Alberta, Canada), where it produced inferred sediment chlorophyll a concentrations in concordance with HPLC measurements. Although a larger training set is desirable to further refine the inference model, the analyses reported here demonstrate that reflectance spectroscopy provides a rapid, semi-quantitative method for assessing the chlorophyll a content of lake sediments.

140 citations


Journal ArticleDOI
TL;DR: Pollen assemblages (shrub-dominated, mixed herb-dominated and shrub-dominated) characterize the ~ 300,000 year palynological record from El'gygygytgyn Lake.
Abstract: Three types of pollen assemblages (shrub-dominated, mixed herb- and shrub-dominated, and herb-dominated) characterize the ~ 300,000 year palynological record from El’gygytgyn Lake. Despite major changes in global climatic forcings, all pollen spectra, with a few isolated exceptions, have strong to possible analogs in the modern plant communities of Northeast Siberia and Alaska. Paleoclimatic reconstructions based on squared chord-distance analog analyses indicate two periods (~8600–10,700 14C year B.P. and OIS 5e) when summers were perhaps ~2 to 4°C warmer than modern. January temperatures were also warmer than present, and both July and January were wetter than today. Palynological data remain inconclusive as to the establishment of forests near El’gygytgyn Lake at these times. The wettest Julys occurred during OIS 5 d. July temperatures were near modern, and Januarys were colder and drier than now. January temperatures, even into the Middle Pleistocene, generally show little variability, suggesting that the suppression of arboreal taxa during glaciations was likely caused by cool summers with low effective moisture and not by frigid winters. Because age schemes that correlate magnetic susceptibility to variations in summer insolation or ∂18O have cool plant taxa persisting in warm times (and vice versa), we propose an alternative age model based on the palynological data.

136 citations


Journal ArticleDOI
TL;DR: In this article, a ca. 13m long sediment core from the central part of Lake Elgygygytgyn, NE Siberia, was investigated for lithostratigraphy, water content, dry bulk density (DBD), total organic carbon (TOC), total nitrogen (TN), total sulphur (TS) and biogenic silica (opal) contents, and for TOC stable isotope ratios (δ13CTOC).
Abstract: The ca. 13 m long sediment core PG1351, recovered in 1998 from the central part of Lake El’gygytgyn, NE Siberia, was investigated for lithostratigraphy, water content, dry bulk density (DBD), total organic carbon (TOC), total nitrogen (TN), total sulphur (TS) and biogenic silica (opal) contents, and for TOC stable isotope ratios (δ13CTOC). The event stratigraphy recorded in major differences in sediment composition match variations in regional summer insolation, thus confirming a new age model for this core, which suggests that it spans the last 250 ka BP. Four depositional units of contrasting lithological and biogeochemical composition have been distinguished, reflecting past environmental conditions associated with relatively warm, peak warm, cold and dry, and cold but more moist climate modes. A relatively warm climate, resulting in complete summer melt of the lake ice cover and seasonal mixing of the water column, prevailed during the Holocene and Marine Isotope Stages (MIS) 3, 5.1, 5.3, 6.1, 6.3, 6.5, 7.1–7.3, 7.5, 8.1 and 8.3. MIS 5.5 (Eemian) was characterized by significantly enhanced aquatic primary production and organic matter supply from the catchment, indicating peak warm conditions. During MIS 2, 5.2, 5.4, 6.2 and 6.4 the climate was cold and dry, leading to perennial lake ice cover, little regional snowfall, and a stagnant water body. A cold but more moist climate during MIS 4, 6.6, 7.4, 8.2 and 8.4 is thought to have produced more snow cover on␣the perennial ice, strongly reducing light penetration and biogenic primary production in␣the lake. While the cold–warm pattern during␣the past three glacial–interglacial cycles is probably controlled by changes in regional summer insolation, differences in the intensity of the warm phases and in the degree of aridity (changing snowfall) during cold phases likely were due to changes in atmospheric circulation patterns.

131 citations


Journal ArticleDOI
TL;DR: A survey of the modern physical set-ting of Lake El'gygytgyn, northeastern Siberia, is presented in this paper to facilitate interpretation of a 250,000-year climate record derived from sedi- ment cores from the lake bottom.
Abstract: A survey of the modern physical set- ting of Lake El'gygytgyn, northeastern Siberia, is presented here to facilitate interpretation of a 250,000-year climate record derived from sedi- ment cores from the lake bottom. The lake lies inside a meteorite impact crater that is approxi- mately 18 km in diameter, with a total watershed area of 293 km 2 , 110 km 2 of which is lake surface. The only surface water entering the lake comes from the approximately 50 streams draining from within the crater rim; a numbering system for these inlet streams is adopted to facilitate scien- tific discussion. We created a digital elevation model for the watershed and used it to create hypsometries, channel networks, and drainage area statistics for each of the inlet streams. Many of the streams enter shallow lagoons dammed by gravel berms at the lakeshore; these lagoons may play a significant role in the thermal and biolog- ical dynamics of the lake due to their higher water temperatures (>6� C). The lake itself is approxi- mately 12 km wide and 175 m deep, with a vol- ume of 14.1 km 3 . Water temperature within a

115 citations


Journal ArticleDOI
TL;DR: It is concluded that macrofossil analysis may be very usefully employed to determine the dominant taxa in past aquatic plant communities of shallow, productive lakes and that the addition of pollen analysis provides further information on former species richness.
Abstract: We have explored the contemporary spatial relationship between aquatic vegetation and surficial macrofossil and pollen remains in a small, shallow, English lake. A detailed point-based (n = 87) underwater vegetation survey was undertaken in the middle of the plant-growing season in July 2000. Then following plant die-back in November 2000, surface sediment samples (upper 1.5 cm) were collected from 30 of these plant survey points and analysed for plant macro-remains (all 30 samples), and pollen (4 evenly spaced samples). All data were stored as separate layers in a geographical information system and spatial relationships between the aquatic vegetation and plant remains were explored. In contrast to pollen types, plant macrofossils were not evenly dispersed across all parts of the lake and, with the exception of Chara oospores, higher concentrations of remains (particularly for Potamogeton) were found close to areas of source-plant dominance. The spatial pattern of macrophyte–macrofossil relationships revealed that vegetative remains (particularly leaf fragments) were probably deposited at source, whereas seeds were recovered close to the shore suggesting slightly wider dispersal. Overall, however, macro-remains best represented local ‘patch-scale’ vegetation within 20– 30 m of the core site. The macro-remains effectively recorded the dominant plants in the lake with 63% of samples containing a combination of remains of Chara, Elodea, and Potamogeton. However, relationships between macrophytes and fossils were complex. Some species were significantly over-represented by macrofossils (e.g., Chara spp., Nitella flexilis agg., and Zannichellia palustris), while others were either underrepresented (e.g., Potamogeton spp.), or not represented at all (e.g., Lemna trisulca). Pollen represented macrophyte diversity poorly, but some taxa were found (e.g., Myriophyllum spicatum, Ceratophyllum demersum) that were not recorded by macro-remains. We conclude that macrofossil analysis may be very usefully employed to determine the dominant taxa in past aquatic plant communities of shallow, productive lakes and that the addition of pollen analysis provides further information on former species richness.

107 citations


Journal ArticleDOI
TL;DR: The inorganic geochemistry of sediments from Elgygygytgyn Lake shift in phase with interpreted paleoclimatic fluctuations seen in the record over the past 250 ka.
Abstract: The inorganic geochemistry of sediments from El’gygytgyn Lake shift in phase with interpreted paleoclimatic fluctuations seen in the record over the past 250 ka. Warm periods, when the lake was seasonally ice free and fully mixed, are characterized by increased concentrations of SiO2, CaO, Na2O, K2O, and Rb, by decreased contents of TiO2, Fe2O3, Al2O3, and MgO, and by a lower chemical index of alteration (CIA). Increased levels of SiO2 reflect increases in limnic productivity whereas many of the other elements and the CIA likely reflect increased hydrological activity coincident with an increase in coarser sand and silt content and a decrease in clay mineral content. For cold/cooler periods when perennial lake ice cover lead to a stratifed water column and anoxic bottom waters, the opposite is generally observed suggesting a decrease in hydrological activity and an increase in post-depositional chemical alteration.

89 citations


Journal ArticleDOI
TL;DR: In this article, a combined analysis of magnetic susceptibility, total organic carbon (TOC), biogenic silica (opal), and TiO2 content of the 12.6 m long composite core PG1351 recovered from Lake El’gygytgyn, Chukotka Peninsula, indicate a clear response of the lacustrine sedimentary record to climate variations.
Abstract: A combined analysis of magnetic susceptibility, total organic carbon (TOC), biogenic silica (opal), and TiO2 content of the 12.6 m long composite core PG1351 recovered from Lake El’gygytgyn, Chukotka Peninsula, indicate a clear response of the lacustrine sedimentary record to climate variations. The impact is not direct, but through variations in oxygenation of the bottom waters. Mixing of the water body is typical for warmer climates, whereas the development of a stratified water body associated with anoxic conditions at the lake floor appears during cold climates. Oxic conditions lead to a good magnetite preservation and thus to high magnetic susceptibilities, but also to a large-scale degradation of organic matter, as reflected by low TOC (total organic carbon) values. During anoxic conditions, magnetite is severely dissolved yielding very low susceptibility values, whereas organic matter is best preserved, reflected by high TOC values. Hence, in general, neither susceptibility reflects the lithogenic fraction, nor does TOC reflect bioproductivity in case of the studied El’gygytgyn sediments. Based on available infrared stimulated luminescence (IRSL) dating, the obtained susceptibility pattern of core PG1351 shows an obvious correlation to northern hemisphere insolation variations, with a dominating impact of the Earth’s 18 and 23 kyr precessional cycles for the upper half of PG1351, that is, during the past 150 ka. Therefore, the whole susceptibility record, together with biogenic silica (as a proxy for bioproductivity), TOC (as an indicator for redox conditions), and TiO2 (as a proxy for lithogenic input), was systematically tuned to the northern hemisphere insolation yielding an age of about 250 ka for the base of the composite core.

88 citations


Journal ArticleDOI
TL;DR: Sediment piston cores from Lake El'gygygyygytgyn (67°N, 172°E), a 3.6 million year old meteorite impact crater in northeastern Siberia, have been analyzed to extract a multi-proxy millennial-scale climate record extending to nearly 250k years with distinct fluctuations in sedimentological, physical, biochemical, and paleoecological parameters.
Abstract: Sediment piston cores from Lake El’gygytgyn (67°N, 172°E), a 3.6 million year old meteorite impact crater in northeastern Siberia, have been analyzed to extract a multi-proxy millennial-scale climate record extending to nearly 250 ka, with distinct fluctuations in sedimentological, physical, biochemical, and paleoecological parameters. Five major themes emerge from this research. First the pilot cores and seismic data show that El’gygytygn Crater Lake contains what is expected to be the longest, most continuous terrestrial record of past climate change in the entire Arctic back to the time of impact. Second, processes operating in the El’gygytygn basin lead to changes in the limnogeology and the biogeochemistry that reflect robust changes in the regional climate and paleoecology over a large part of the western Arctic. Third, the magnetic susceptibility and other proxies record numerous rapid change events. The recovered lake sediment contains both the best-resolved record of the last interglacial and the longest terrestrial record of millennial scale climate change in the Arctic, yielding a high fidelity multi-proxy record extending nearly 150,000 years beyond what has been obtained from the Greenland Ice Sheet. Fourth, the potential for evaluating teleconnections under different mean climate states is high. Despite the heterogeneous nature of recent Arctic climate change, millennial scale climate events in the North Atlantic/Greenland region are recorded in the most distal regions of the Arctic under variable boundary conditions. Finally, deep drilling of the complete depositional record in Lake El’gygytgyn will offer new insights and, perhaps, surprises into the late Cenozoic evolution of Arctic climate.

85 citations


Journal ArticleDOI
TL;DR: In this article, a one-year sequence of diatoms obtained from sediment traps and water samples, as well as the sedimentary diatom record covering the past ca. 1000 years in Bates Pond, Connecticut (USA), was used to investigate which variables influence the seasonal distribution of diatsoms and how this can be used for the interpretation of the fossil record.
Abstract: The seasonality of physical, chemical, and biological water variables is a major characteristic of temperate, dimictic lakes. Yet, few investigations have considered the potential information that is encoded in seasonal dynamics with respect to the paleolimnological record. We used a one-year sequence of diatoms obtained from sediment traps and water samples, as well as the sedimentary diatom record covering the past ca. 1000 years in Bates Pond, Connecticut (USA), to investigate which variables influence the seasonal distribution of diatoms and how this can be used for the interpretation of the fossil record. The seasonal patterns in diatom assemblages were related to stratification and, to a lesser extent, to nitrate, silica, and phosphorus. During mixing periods in spring and autumn, both planktonic and benthic species were collected in the traps, while few lightly silicified, spindle-shaped planktonic diatoms dominated during thermal stratification in summer. Changes in fossil diatom assemblages reflected human activity in the watershed after European settlement and subsequent recovery in the 20th century. A long-term trend in diatom assemblage change initiated before European settlement was probably related to increased length of mixing periods during the Little Ice Age, indicated by the increase of taxa that presently grow during mixing periods and by application of a preliminary seasonal temperature model. We argue that the analysis of seasonal diatom dynamics in temperate lakes may provide important information for the refinement of paleolimnological interpretations. However, investigations of several lakes and years would be desirable in order to establish a more robust seasonal data set for the enhancement of paleolimnological interpretations.

80 citations


Journal ArticleDOI
TL;DR: In this paper, a training set for palaeohydrological reconstruction from testate amoebae assemblages was obtained by collecting surface samples from 13 peatlands, including 9 from Hungary and 4 from Transylvania ( Romania).
Abstract: Peatlands offer the potential for high resolution records of water balance over Holocene timescales, yet this potential is under-exploited in many areas of the world. Within Europe, peatlands are mostly confined to areas north of 55° N, but several areas of southern and eastern Europe contain small peatlands which may be suitable for palaeoclimatic reconstruction. In this paper we test the potential of peatlands in the Carpathian region for deriving quantified estimates of water table changes using testate amoebae analysis. A training set for palaeohydrological reconstruction from testate amoebae assemblages was obtained by collecting surface samples from 13 peatlands, including 9 from Hungary and 4 from Transylvania (Romania). Using a simple measure of mean annual water tables estimated from staining of PVC tape, we found that some peatlands were heavily influenced by runoff and groundwater, and were therefore not suitable as modern analogues of ombrotrophic climatically sensitive sites. The relationship between the testate amoebae assemblages in the modern samples and the environmental variables was explored using CCA. The CCA biplot showed that the most important variables are depth to water table and moisture content, confirming that hydrology is a key control on taxon distribution. pH was a secondary gradient. A transfer function for % moisture and depth to water table was established and applied to fossil assemblages from a sequence from Fenyves-tető, Transylvania, Romania. The reconstructed water table shows a number of variations which have parallels with other palaeoclimatic records from Europe and the North Atlantic prominent phases of higher water tables are associated with the periods 8000–8300 cal BP, 3000–2500 cal BP and after 600 cal BP. We suggest that these were periods of particular intensification of westerly airflow which affected eastern Europe as well as western and central Europe.

Journal ArticleDOI
TL;DR: Temperature was the strongest driver of chironomid distribution and consequently produced the most robust inference models, and both of these transfer functions could be improved by a revision of the taxonomy for the New Zealand chironOMid taxa, particularly the genus Chironomus.
Abstract: The analysis of chironomid taxa and environmental datasets from 46 New Zealand lakes identified temperature (February mean air temperature) and lake production (chlorophyll a (Chl a)) as the main drivers of chironomid distribution. Temperature was the strongest driver of chironomid distribution and consequently produced the most robust inference models. We present two possible temperature transfer functions from this dataset. The most robust model (weighted averaging-partial least squares (WA-PLS), n = 36) was based on a dataset with the most productive (Chl a > 10 µg l−1) lakes removed. This model produced a coefficient of determination ( $$r^{2}_{\rm jack}$$ ) of 0.77, and a root mean squared error of prediction (RMSEPjack) of 1.31°C. The Chl a transfer function (partial least squares (PLS), n = 37) was far less reliable, with an $$r^{2}_{\rm jack}$$ of 0.49 and an RMSEPjack of 0.46 Log10µg l−1. Both of these transfer functions could be improved by a revision of the taxonomy for the New Zealand chironomid taxa, particularly the genus Chironomus. The Chironomus morphotype was common in high altitude, cool, oligotrophic lakes and lowland, warm, eutrophic lakes. This could reflect the widespread distribution of one eurythermic species, or the collective distribution of a number of different Chironomus species with more limited tolerances. The Chl a transfer function could also be improved by inputting mean Chl a values into the inference model rather than the spot measurements that were available for this study.

Journal ArticleDOI
TL;DR: Trace metals and polycyclic aromatic hydrocarbons (PAH) were analyzed in sediment cores from three central Alberta lakes to determine the contributions of local coal-fired power plants to contaminant loadings as discussed by the authors.
Abstract: Trace metals and polycyclic aromatic hydrocarbons (PAH) were analyzed in sediment cores from three central Alberta lakes to determine the contributions of local coal-fired power plants to contaminant loadings. In Wabamun Lake, with four power plants built since 1950 within a 35-km radius, sediment concentrations of mercury, copper, lead, arsenic and selenium have increased by 1.2- to 4-fold. Trace metal enrichments were less pronounced in Lac Ste. Anne and Pigeon Lake, situated 20 km north and 70 km south of Wabamun Lake, respectively. Total Hg flux to Wabamun Lake sediments (21–32μg m−2 yr−1) has increased 6-fold since 1950, compared to 2- and 1.5-fold increases in Lac Ste. Anne and Pigeon Lake, respectively, since circa 1900. Total PAH flux to surface sediments was 730–1100μg m−2 yr−1 in Wabamun Lake, 290–420μg m−2 yr−1 in Lac Ste. Anne, and 140–240μg m−2 yr−1 in Pigeon Lake. Without adoption of pollution-abatement technology that compensates for increases in generating capacity, continued expansion of coal-burning industry in Alberta will result in increased contaminant deposition, primarily from local sources.

Journal ArticleDOI
TL;DR: In this article, the magnetic susceptibility of limnic sediment from Elgygygytgyn Crater Lake, NE Siberia was investigated for sedimentological proxies for regional climate change with a focus on the past 65-ka.
Abstract: El’gygytgyn Crater Lake, NE Siberia was investigated for sedimentological proxies for regional climate change with a focus on the past 65 ka. Sedimentological parameters assessed relative to magnetic susceptibility include stratigraphy, grain size, clay mineralogy and crystallinity. Earlier work suggests that intervals of high susceptibility in these sediments are coincident with warmer (interglacial-like) conditions and well-mixed oxygenated bottom waters. In contrast, low susceptibility intervals correlate with cold (glacial-like) conditions when perennial ice-cover resulted in anoxia and the dissolution of magnetic carrier minerals. The core stratigraphy contains both well-laminated to non-laminated sequences. Reduced oxygen and lack of water column mixing preserved laminated sequences in the core. A bioturbation index based upon these laminated and non- laminated sequences co-varies with total organic carbon (TOC) and magnetic susceptibility. Clay mineral assemblages include illite, highly inter-stratified illite/smectite, and chlorite. Under warm or hydrolyzing conditions on the landscape around the lake, chlorite weathers easily and illite/smectite abundance increase, which produces an inverse relationship in the relative abundance of these clays. Trends in relative abundance show distinct down-core changes that correlate with shifts in susceptibility. The mean grain-size (6.92 µm) is in the silt-size fraction, with few grains larger than 65 µm. Terrigenous input to the lake comes from over 50 streams that are filtered through storm berms, which limits clastic deposition into the lake system. The sedimentation rate and terrigenous input grain-size is reduced during glacial intervals. Measurements of particle-size distribution indicate that the magnetic susceptibility fluctuations are not related to grain size. Lake El’gygytgyn’s magnetic susceptibility and clay mineralogy preserves regional shifts in climate including many globally recognized␣events like the Younger Dryas and Bolling/Allerod. The sedimentary deposits reflect the climatic transitions starting with MIS4 through the Holocene transition. This work represents the first extensive sedimentological study of limnic sediment proxies of this age from Chukotka (Fig. 1).

Journal ArticleDOI
TL;DR: In this article, the authors used palaeolimnological approaches to determine how Holocene climatic and environmental changes affected aquatic assemblages in a subarctic lake.
Abstract: This study used palaeolimnological approaches to determine how Holocene climatic and environmental changes affected aquatic assemblages in a subarctic lake. Sediments of the small Lake Njargajavri, in northern Finnish Lapland above the present treeline, were studied using multi-proxy methods. The palaeolimnological development of the lake was assessed by analyses of chironomids, Cladocera and diatoms. The lake was formed in the early Holocene and was characterized by prominent erosion and leaching from poorly developed soils before the establishment of birch forests, resulting in a high pH and trophic state. The lake level started to lower as early as ca. 10,200 cal. BP. In the resulting shallow basin, rich in aquatic mosses, pH decreased and a diverse cladoceran and chironomid assemblage developed. It is likely that there was a slight rise in the water level ca. 8000 cal. BP. Later, during the mid-Holocene characterized by low effective moisture detected elsewhere in Fennoscandia, the lake probably completely dried out; this is manifest as a hiatus in the stratigraphy. The sediment record continues from ca. 5000 cal. BP onwards as the lake formed again due to increased effective moisture. The new lake was characterized by very low pH. The possible spread of pine to the catchment and the development of heath community may have contributed to the unusually steep (for northern Fennoscandia) decline in pH via change in soils, together with the natural decrease in leaching of base cations. Furthermore, the change in pH may have been driven by cooling climate, affecting the balance of dissolved inorganic carbon in the lake.

Journal ArticleDOI
TL;DR: In this paper, the authors used the palaeolimnological record of subfossil diatoms to study the rate and magnitude of eutrophication over the last ca. 200 years in two urban and three rural sites.
Abstract: Marine eutrophication of estuaries and coastal waters is considered to be a significant problem worldwide. In the semi-enclosed Baltic Sea, where the nutrient load has strongly increased from its natural level, this has led to marked changes in the coastal ecosystems. A key to successful management of coastal waters is reliable scientific evidence of their past state. The palaeolimnological record of subfossil diatoms was used to study the rate and magnitude of eutrophication over the last ca. 200 years in two urban and three rural sites. The urban sites showed marked increases in the percentage abundance of planktonic diatoms (from <50 to ca. 90% and from <5 to ca. 70%) and diatom-inferred total dissolved nitrogen (from <800 to ca. 3000 μg l−1 and from <400 to ca. 800 μg l−1), and a decrease in species richness starting in the 19th – early 20th century with increased urbanisation. At both sites a clear recovery was observed after the cessation of waste water loading by the mid 1980s. The present planktonic diatom assemblages of these embayments, however, show no change back to the pre-disturbance diverse benthic communities. In contrast, the changes observed in the rural sites were only moderate and occurred later starting in the 1940s. No marked increases in diatom-inferred total dissolved nitrogen were seen, however, all sites showed an increase in small planktonic taxa (from ca. 1–6% to 8–36%) indicating increased nutrient enrichment and turbidity. These small floristic changes could be seen as an early warning signal despite little change in the inferred nutrient concentrations. The results have implications for the European Water Framework Directive, which requires European surface waters to be of good ecological status, defined both by biological and chemical quality elements.

Journal ArticleDOI
TL;DR: The authors examined lake sediment cores from three lakes in the Windmill Islands, East Antarctica; Beall Lake, Holl Lake and Lake M. Cores were sectioned at 2.5 mm intervals and their diatom species composition was examined to detect changes in lake salinity using a diatom-salinity transfer function.
Abstract: Research in East Antarctica has shown several recent environmental changes that may be linked to human impacts on climate. In order to detect the influence and context of these changes on coastal aquatic ecosystems we examined lake sediment cores from three lakes in the Windmill Islands, East Antarctica; Beall Lake, Holl Lake and ȁ8Lake Mȁ9. Cores were sectioned at␣2.5 mm intervals. Their diatom species composition was examined to detect changes in lake salinity using a diatom-salinity transfer function, and their algal pigment content was examined to detect photoautotrophic community responses to environmental change. Results showed that Holl Lake originated in a depression exposed by Holocene recession of the continental ice sheet and that Beall Lake and Lake M originated as isolated marine basins formed by changes in relative sea level. A general late Holocene trend of declining lake salinity was evident in all three lakes, interrupted by one short-term high salinity event in Beall Lake. This is consistent with a long-term positive moisture balance. This general decline in salinity has been followed by a remarkable recent rapid increase in salinity in all three lakes in the last few decades. We speculate that this rapid increase in salinity might be linked to changes taking place in the region including feedbacks resulting from decreasing sea ice extent as recorded in the nearby Law Dome ice core, and positive feedbacks in the catchments whereby reduced snow cover has led to decreased albedo, which in turn has caused increased evaporation and sublimation. Collectively these changes have shifted the lakes across a threshold from positive to negative moisture balance. A minor, but not rapid shift in the abundance of diatom pigments relative to pigments from green algae and cyanobacteria was also detected suggesting that some changes in photoautotrophic community composition have occurred. Measurements of modern nutrient levels are also higher than would be expected in Beall Lake and Holl Lake, given the extremely low sediment accumulation rates. This may be associated with a c. 300% increase in the population of Adelie penguins in the Windmill Islands recorded since the 1950s, or may a first signs of a rapid increase in catchment development and associated lake productivity as experienced in Antarctic and Arctic lakes subject to recent rapid regional warming. The most marked feature of the records is the rapid increase in salinity in all three lakes in␣the last few decades, which has occurred in lakes both with and without resident penguin populations.

Journal ArticleDOI
TL;DR: Authigenic vivianite and siderite microconcretions were found, respectively, in hemipelagic and deltaic facies of 600m-long BDP-98 sediment section from Lake Baikal as discussed by the authors.
Abstract: Authigenic vivianite and siderite microconcretions were found, respectively, in hemipelagic and deltaic facies of 600-m-long BDP-98 sediment section from Lake Baikal. Textural investigations of these microconcretions show that they are typically <1 mm in size, irregular in shape and composed of aggregated crystallites. Dissimilar orientation of vivianite and siderite crystallites suggests formation at different depths in the sediment; up to tens of centimeters for vivianite and tens of meters for siderite. Chemical analyses of both the vivianite and the siderite indicate cation composition characterized by minor amounts of Mn, Ca and Mn apart from the dominating Fe. Rather limited and distinctive carbon isotopic composition of the siderite, with d 13 CVPDB values between about +13 and þ16‰, implies formation of the mineral in the metha- nogenic zone of diagenesis. Isotopic composition of oxygen in the siderite (d 18 OVPDB values be- tween about )10 and � 11‰) is consistent with crystallization temperature at about 10-30� C and water d 18 OSMOW values between about )10 and � 16‰. The distribution of the authigenic miner- als in the section suggests changes in both sedi- mentary facies and climate, where vivianite formation was controlled by hemipelagic deposi- tional conditions during the Pliocene and Qua- ternary, whereas siderite reflects impact of deltaic conditions during the Miocene.

Journal ArticleDOI
TL;DR: Sediment cores from Lake Qarun have been used to examine the potential of paleolimnology for reconstructing the recent environmental history of the site as mentioned in this paper, showing that during most of this period both lake water level and salinity increased and that by the late 1980s lake water salinity was approximately that of seawater.
Abstract: Lake Qarun has been profoundly affected by a combination of human activities and climatic changes during the past 5000 years. Instrumental records available for the 20th century show that during most of this period both lake water level and salinity increased and that by the late 1980s lake water salinity was approximately that of seawater. Sediment cores (c. 1 m long) were collected from this shallow (Z max 8.4 m) saline lake in 1998 and the master core (QARU1) was used to examine the potential of paleolimnology for reconstructing the recent environmental history of the site. According to 137Cs and 210Pb radio-assay, the recent sediment accumulation rate in QARU1 was around 5 mm year−1 during the latter half of the 20th century but radionuclide levels were low. Spheroidal carbonaceous particles (SCPs) were present in the upper c. 30 cm of QARU1 and indicates contamination by low level particulate pollution, probably beginning around 1950. The record of exotic pollen (Casuarina) indicated that sediment at 51–52 cm depth dated to around 1930. Otherwise the pollen spectra indicated a strongly disturbed landscape with high ruderals and increased tree planting particularly since c. 1950. Diatom records were strongly affected by taphonomic processes including reworking and differential preservation but typical marine diatoms increased after the 1920s. Instrumental records show that the lake became more saline at this time. Freshwater taxa were present at approximately similar abundances throughout the core. This distribution probably reflected a combination of processes. Reworking of ancient freshwater diatomites is one likely source for freshwater diatoms in QARU1 but some taxa must also be contributed via the freshwater inflows. Overall, the diatom stratigraphy indicated increasingly salinity since the 1920s but provided no firm evidence of lake eutrophication. Diatom inferred salinity reconstructions were in only partial agreement with instrumental records but inferred for the lower section of the core (pre 20th century to the 1960s) accord with measured water salinity values. Surficial sediments of Lake Qarun contain environmental change records for the 20th century period but high sediment accumulation rate and pollen reflect the high degree of human disturbance in the region. Because of poor preservation and evidence of reworking, the relationships between diatom records and past water quality changes require careful interpretation, especially in the upper section of the core. Nevertheless, early to mid 20th century measurements of increasing lake water salinity are well supported by sediment records, a change that is probably linked to ingress of saline ground water

Journal ArticleDOI
TL;DR: The role of submersed aquatic vegetation (SAV) plays in the sedimentation of organic matter (OM) and phosphorus (P) in Lake Panasoffkee, Florida (USA), a shallow, hard-water, macrophyte-dominated water body was studied in this paper.
Abstract: We studied the role that submersed aquatic vegetation (SAV) plays in the sedimentation of organic matter (OM) and phosphorus (P) in Lake Panasoffkee, Florida (USA), a shallow, hard-water, macrophyte-dominated water body. Carbon/Nitrogen ratios (C/N) and stable isotope signatures (δ13C and δ15N) in algae, higher plants, and surface sediments were measured to identify sources of OM to the lake mud. Pollen, plant macrofossils, and geochemistry in sediment cores indicated that primary productivity and SAV abundance in Lake Panasoffkee increased in the late 1800s, probably as a response to increased P loading from human settlement and forest clearance. SAV and associated periphyton served as temporary sinks for soluble P, maintaining relatively clear-water, low-nutrient conditions in the lake. P accumulation in Lake Panasoffkee sediments increased together with indicators for greater SAV presence. This suggests that SAV and associated epiphytes promote P burial and retention in sediments. Although it might be assumed that rooted submersed macrophytes are directly responsible for P uptake from water and transfer to sediments, C/N and stable carbon isotope results argue for the importance of other macrophyte growth forms, and perhaps epiphytic algae, in permanent OM and P sequestration. For instance, high rates of photosynthesis by epiphytes in hard-water systems consume CO2 and promote CaCO3 precipitation. Sloughing of accumulated carbonates from macrophyte leaves transfers epiphytes and associated P to the sediment. Our paleolimnological findings are relevant to restoration efforts in the Florida Everglades and support the claim that constructed SAV wetlands remove P from waters effectively.

Journal ArticleDOI
TL;DR: There are considerable differences among the three organism groups, suggesting that different environmental factors may influence the rates of compositional change within and among groups.
Abstract: In this study, we analyse the cumulative rate of compositional change along an altitudinal gradient in the Swiss Alps for three different groups of aquatic organisms – Cladocera, chironomids, and diatoms. In particular, we are interested in the magnitude of unusually large changes in species composition that allows the detection of critical ecotones for each of these three organism groups. The estimated rate-of-change is the distance in ordination space using principal coordinate analysis based on chord distance and chi-square distance. These analyses highlight the cumulative rate-of-change and the cumulative relative rate-of-change, as the chi-square distance is relative to the total species composition. We found that the major changes in taxonomic composition for the three organism groups and therefore also the major ecotones are just below the modern tree-line (1900–2000 m a.s.l.), which may indirectly be an effect of the tree-line. For diatoms and Cladocera (only chi-square distance) there is also an ecotone at 2055 m a.s.l., which may be a direct or indirect response to climate. Further, the ecotone region below the modern tree-line is much wider for chironomids, with an extension downwards due to a shift in relative abundance patterns. For diatoms there is a stronger rate-of-change above 1650 m a.s.l. when chi-square distance is used. Coupled with the even distribution of diatom richness, this suggests that at higher altitudes the change is more strongly associated with a few species becoming dominant compared to lower elevations. Hence, there are considerable differences among the three organism groups, suggesting that different environmental factors may influence the rates of compositional change within and among groups. This supports the general usefulness of multi-proxy studies, namely the study of several independent groups of organisms to reconstruct past environmental conditions but also points to the importance of careful site selection in such studies.

Journal ArticleDOI
TL;DR: The Lillooet flood of 2003 as mentioned in this paper produced the largest floods in almost a century of record on rivers in the Cordillera of southwestern British Columbia, and the sediment deposited in the lake as a result of this event is clearly distinguished by stratigraphy, colour, texture, magnetic properties, and organic content.
Abstract: Severe rainfall in mid October, 2003 produced the largest floods in almost a century of record on rivers in the Cordillera of southwestern British Columbia. Sediment deposited in Lillooet Lake as a result of this event is clearly distinguished by stratigraphy, colour, texture, magnetic properties, and organic content. Each of these physical properties is related to the lacustrine processes, especially turbid underflow, that distributed the sediment through the lake. The flood, which lasted less than a week, delivered 8–12 times the amount of sediment that accumulates in most entire years in the deepest, central parts of the lake. Recognition of events of this type in the stratigraphic record offers a means of assessing the changing nature of extreme hydroclimatic events, and their relation to more ubiquitous, lower-energy processes.

Journal ArticleDOI
TL;DR: A multi-core, multidisciplinary palaeolimnological study of the partially varved sediment of a deep, meromictic, arctic lake, Kongressvatnet (Svalbard, Western Spitsbergen), provides a record of environmental and climatic changes during last ca. 1800 years as mentioned in this paper.
Abstract: A multi-core, multidisciplinary palaeolimnological study of the partially varved sediment of a deep, meromictic, arctic lake, Kongressvatnet (Svalbard, Western Spitsbergen), provides a record of environmental and climatic changes during last ca. 1800 years. The chronology of sedimentation was established using several dating techniques (137Cs, 210Pb, varve counts, palaeomagnetic correlation). A multiproxy record of palaeolimnological variability was compiled based on sedimentation rates, magnetic properties, varve thickness, organic matter, geochemistry, pigments from algal and photosynthetic bacteria, mineralogy and biological assemblages (diatoms, Cladocera). The major features recognised in our master core K99-3 include a shift in sediment source and supply (magnetic measurements, geochemistry) probably caused by glaciological changes in the catchment around 38–32 cm core depth (AD 700–820). Additional environmental changes are inferred at 20–18, 8–4.5 and 3–2 cm (AD ca. 1160–1255; 1715–1880; 1940–1963, respectively). During the past ca. 120 years a prominent sedimentological change from brownish-grey, partly laminated silt-clay (varves) to black organic-rich deposits was observed. From AD 1350 to AD1880 the sediment is comprised of a continuous sequence of varves, whereas the earlier sediments are mostly homogeneous with only a few short intercalated laminated sections between AD 860 and 1350. Sedimentation and accumulation rates increased during the last 30 years (modern warming). Pigment concentrations are very low in the lower ca. 32 cm of the core (AD 820) probably because of the high turbidity high energy environment. The high sulphur content in the uppermost 32 cm of sediment has given rise to two horizontally stratified populations of sulphur anaerobic photosynthetic bacteria, as inferred from their specific carotenoids. These bacteria populations are much more abundant during the Little Ice Age (LIA) than during warmer periods (e.g., during the Medieval Warm Period and 20th century). Diatoms are lacking from the core base up to 18 cm (ca. AD 1255); at this level, species indicative of mesotrophic water are present, whereas from 17 cm to the top of the core, oligotrophic taxa such as Staurosira construens/S. pinnata complex dominate, indicating extended ice coverage and more oligotrophic waters during the LIA. The concentration of Cladocera subfossil remains (dominated by Chydorus) are relatively high in the deepest sections (54–32 cm), whereas the upper 32 cm are characterized by a very low concentration of remains, possibly because of the strongly anoxic conditions, and in this upper sediment section rotifer resting eggs become prevalent. We interpret these changes as responses to climate forcing through its impact on glacial melt water, lake ice cover duration and mainly redox conditions in deep water. The observed changes suggest that at least some of our recorded changes may parallel the Greenland Ice core, although our study added more details about the inferred climatic changes. Further aspects are discussed, such as catchment processes, glacial activity, duration of the Medieval Warm Period, the Little Ice Age, local human activity, and limnology.

Journal ArticleDOI
TL;DR: In this paper, the authors present 137Cs profiles for three low lying coastal lagoons in Southwest England that show a decline in activity with sediment depth, despite the fact that sampling was undertaken in the deep-water zone of each lake where sediment and 137Cs focusing would be expected.
Abstract: We present 137Cs profiles for three low lying coastal lagoons in Southwest England that show a decline in activity with sediment depth. 137Cs inventories are lower than expected by comparison with local reference inventories despite the fact that sampling was undertaken in the deep-water zone of each lake where sediment and 137Cs focusing would be expected. At all three locations, lake sediment 7Be and unsupported 210Pb (210Pbun) inventories are not significantly lower than the local reference inventory. 137Cs inventories in the study cores range from 38 to 95% of local reference inventories. The standing water level and mud: water interface at two sites are below maximum tide level and, at all three sites, salinity increases significantly in the water columns between low and high tide and in the pore waters of the underlying sediments. We suggest that the difference in hydrostatic pressure between sea level and standing water levels in the lagoons forces salt water up through the sediment column and that monovalent cations (especially Na+ and K+) replace 137Cs on exchange sites leading to the upward migration and loss of 137Cs. Rising sea levels may therefore contribute to remobilisation and release of 137Cs to the aquatic environment from the sediments of coastal lagoons.

Journal ArticleDOI
TL;DR: In this article, the impacts of past mining activities on the aquatic ecosystem of nearby Lake Orijarvi were studied using a combination of paleolimnological methods (analysis of sedimentary diatom frustules, chrysophycean cysts, metal concentrations and radiometric datings).
Abstract: The Cu (Pb, Zn) mine of Orijarvi (1757–1956) was the first mining operation in Finland where flotation techniques (1911–1955) were used to enrich ore. Large quantities of tailings were produced. The impacts of past mining activities on the aquatic ecosystem of nearby Lake Orijarvi were studied using a combination of paleolimnological methods (analysis of sedimentary diatom frustules, chrysophycean cysts, metal concentrations and radiometric datings). The acid mine drainage (AMD) – derived metal impact to the lake was found to be the strongest thus far recorded in Finland. Concentrations of Cu, Pb and Zn in sediments are two to three orders of magnitude higher than background values. During the most severe loading phase, there were practically no algae in the lake. Achnanthes minutissima was the hardiest species able to tolerate increased metal contents. The metal load has changed the properties of sediments in such a way that chrysophycean cysts were impossible to identify because of coating and corrosion. Lake water still has elevated heavy metal concentrations, indicating that the impact from the tailings area continues to affect the lake. It has low productivity, and the planktic diatom community is still not developed. The study demonstrates that unremediated mining areas form a major risk to the environment. The damage to aquatic ecosystem can remain severe for decades after the mining activities have ceased.

Journal ArticleDOI
TL;DR: In this article, a multidisciplinary study of sediment cores from Laguna Zonar (37°29′00′′ N, 4°41′22′′ W, 300 m a.s.l., Andalucia, Spain) provides a detailed record of environmental, climatic and anthropogenic changes in a Mediterranean watershed since Medieval times.
Abstract: The multidisciplinary study of sediment cores from Laguna Zonar (37°29′00′′ N, 4°41′22′′ W, 300 m a.s.l., Andalucia, Spain) provides a detailed record of environmental, climatic and anthropogenic changes in a Mediterranean watershed since Medieval times, and an opportunity to evaluate the lake restoration policies during the last decades. The paleohydrological reconstructions show fluctuating lake levels since the end of the Medieval Warm Period (ca. AD 1300) till the late 19th century and a more acute dry period during the late 19th century – early 20th century, after the end of the Little Ice Age. Human activities have played a significant role in Laguna Zonar hydrological changes since the late 19th century, when the outlet was drained, and particularly in the mid-20th century (till 1982) when the spring waters feeding the lake were diverted for human use. Two main periods of increased human activities in the watershed are recorded in the sediments. The first started with the Christian conquest and colonization of the Guadalquivir River Valley (13th century) particularly after the fall of the Granada Kingdom (15th century). The second one corresponds to the late 19th century when more land was dedicated to olive cultivation. Intensification of soil erosion occurred in the mid-20th century, after the introduction of farm machinery. The lake was declared a protected area in the early 1980s, when some agricultural practices were restricted, and conservation measures implemented. As a consequence, the lake level increased, and some littoral zones were submerged. Pollen indicators reflect this limnological change during the last few decades. Geochemical indicators show a relative decrease in soil erosion, but not changes in the amount of chemical fertilizers reaching the lake. This study provides an opportunity to evaluate the relative significance of human vs. climatic factors in lake hydrology and watershed changes during historical times. Paleolimnological reconstructions should be taken into account by natural resources agencies to better define lake management policies, and to assess the results of restoration policies.

Journal ArticleDOI
TL;DR: In this article, the authors used stratigraphic profiles of heavy metals, 137Cs, PCBs and pollen as independent dating markers to validate the sediment chronology as determined by 210Pb for three cores from the central mud zone of the lake.
Abstract: Reconstructing recent limnological history often relies on lead-210 dating to accurately ascribe a chronology to a sediment profile. In Lake Okeechobee, Florida, a large, shallow subtropical lake that may experience severe mixing, multiple dating methods are required to confirm that conformable sedimentation has been preserved and that the assumptions of the 210Pb method are satisfied. This study uses stratigraphic profiles of heavy metals, 137Cs, PCBs and pollen as independent dating markers to validate the sediment chronology as determined by 210Pb for three cores from the central mud zone of the lake. Unsupported 210Pb and most dating markers show distinct concentration/depth profiles, suggesting that the sediments have not been severely mixed for at least the last 75 years. Onset and maximum activity of the radioisotope 137Cs in the cores coincides with the 210Pb-dated interval of 1945–1970. This agrees well with the known timing of atmospheric deposition of 137Cs that resulted from above-ground nuclear testing during late 1940s until 1963. Sediment core profiles of atmospherically deposited metals such as Zn and Pb, which reflect regional increases during industrialization and decreases after regulation in the 1970s, exhibit expected concentration increases and peaks coinciding within 5–15 years of the predicted 210Pb dates. Uranium, a contaminant in some phosphate fertilizers, shows large concentration increases at core depths dated to be about 1950 by 210Pb, matching the intensification of agriculture after WWII. PCBs, which are expected to peak in the early 1970s, were measured in one core, and the observed peak corresponds to a 210Pb date of about 1960. Pollen makers were unable to verify specific events, but increases in disturbance taxa and declines in native types correspond generally with the expected dates assigned by 210Pb dating. Conformity between the 210Pb defined dates and independent markers of < ±15 years confirm that Lake Okeechobee sediments do preserve a sequential and reliable stratigraphic history of the lake, useful for reconstructing past limnological conditions.

Journal ArticleDOI
TL;DR: Geomorphic, lithologhic, and stratigraphic field studies as well as pollen data and mineralogical study have been used to propose Pliocene and Pleistocene paleogeographic reconstructions of the El'gygytgyn meteorite crater area as discussed by the authors.
Abstract: Geomorphic, lithologhic, and stratigraphic field studies as well as pollen data and mineralogical study have been used to propose Pliocene and Pleistocene paleogeographic reconstructions of the El’gygytgyn meteorite crater area. The moment of impact is recorded above the early Pliocene hill denudation plain as a “chaotic horizon” consisting of fragments of impactite rocks. This chaotic horizon lies between layers of late Pliocene alluvial sediments. During the second half of the late Pliocene, the region was tectonically active, when the Anadyr lowland was uplifted causing alluvial sediments to accumulate in the basins to the south of the crater. Regional climatic cooling, which supported the spread of tundra and the formation of permafrost is characteristically to late Pliocene. The 35–40 m high terrace that roughly follows the 530 m contour interval along the Enmyvaam River formed during the middle Pleistocene. This terrace represents the maximum lake level. Erosion and incision of the upper Enmyvaam River increased due to another wave of uplift. Additionally, El’gygytgyn Lake discharge increased causing lake level to begin to drop in the Middle Pleistocene. Cooling continued, which led to the development of herb-dominated arctic tundra. middle and late Pleistocene glaciations did not reach the El’gygytgyn lake region. The 9–11 m high lacustrine terrace was formed around the lake during the late Pleistocene and the 2–3 m high lacustrine terrace formed later during the Holocene. During the last 5000 years, the lake level has continued to drop as the modern coastline developed.

Journal ArticleDOI
TL;DR: In this article, the authors measured water column chemistry and sampled the water column and sediments of two epishelf lakes along vertical and horizontal transects, Moutonnee and Ablation, to detect past changes in the presence or absence of the ice shelf.
Abstract: George VI Ice Shelf is the largest ice shelf on the western side of the Antarctic Peninsula and its northern margin marks the southern most latitudinal limit of recent ice shelf retreat. As part of a project to reconstruct the long-term (Holocene) history of George VI Ice Shelf we studied two epishelf lakes impounded by the ice shelf at Ablation Point, on the east coast of Alexander Island. These lakes, Moutonnee and Ablation, are stratified water bodies with a lower marine layer and an upper freshwater layer. To determine if their sediment records could be used to detect past changes in the presence or absence of the ice shelf it was necessary to describe their present-day limnology and sedimentology. We measured water column chemistry and sampled the water column and sediments of the lakes along vertical and horizontal transects. We analysed these samples for diatoms, stable isotopes (δ18O, δ2H, δ13CDIC, δ13Corg), geochemistry (TOC, TN, C/N ratios) and physical sedimentology (grain-size). This was supplemented by chemical and biological reference data from the catchments. Results showed that the water columns of both lakes are nutrient limited and deficient in phytoplankton. Benthic productivity is low and decreases with depth. Comparison of water column chemistry with an earlier survey shows a net increase in the thickness of the freshwater layer in Moutonnee Lake between 1973 and 2001, which could indicate that George VI Ice Shelf has thinned during this period. However, a similar trend was not observed in Ablation Lake (5 km to the north) and an alternative explanation is that the changes are a seasonal phenomena. Data from the surface sediment transects identified a number of proxies that respond to the present day stratification of the water column including diatom species composition, stable isotopes and geochemistry, particularly in Moutonnee Lake. Collectively these data have been used to develop a conceptual model for determining past ice shelf configuration in epishelf lakes. Specifically, periods of past ice shelf loss, and the removal of the ice dam, would see the present stratified epishelf lake replaced by a marine embayment. It is suggested that this change would leave a clear signature in the lake sediment record, notably the deposition of an exclusively marine biological assemblage, increased ice rafted debris and δ13Corg values that are indicative of marine derived organic matter.

Journal ArticleDOI
TL;DR: In this paper, the environmental history of the Kootenay valley in the southern Canadian Rockies was reconstructed using lake sediment from Dog Lake, British Columbia, and compared to other paleoenvironmental studies in the region to understand how vegetation dynamics and fire regimes responded to climate change during the Holocene.
Abstract: The environmental history of the Kootenay Valley in the southern Canadian Rockies was reconstructed using lake sediment from Dog Lake, British Columbia, and compared to other paleoenvironmental studies in the region to understand how vegetation dynamics and fire regimes responded to climate change during the Holocene. A pollen-based vegetation reconstruction indicates five periods of vegetation change. At 10,300 cal yr B.P. Pinus-Juniperus parkland colonized the valley and by 7600 cal yr B.P. was replaced by mixed stands of Pinus, Picea and Pseudotsuga/Larix. Fire frequencies increased to their Holocene maximums during the 8200–4000 cal yr B.P. period. From 5500–4500 cal yr B.P. Pseudotsuga/Larix reached its maximum extent in the Kootenay Valley under a more frequent fire regime. At 5000 cal yr B.P. Picea and Abies began to expand in the area and by 4500 cal yr B.P. the forest shifted to a closed montane spruce forest type with dramatically reduced fire frequency. The shift to less frequent forest fires after 4500 cal yr B.P., along with a moisterPicea – dominated closed forest, corresponds to Neoglacial advances in the Canadian Rockies and Coast Mountains. Fire intervals after 4000 cal yr B.P. are significantly longer than the shorter fire intervals of the early to mid Holocene. A return to drier, more open forest condition occurs between 2400–1200 cal yr B.P. with a slight increase in fire activity and summer drought events. Lower lake levels inferred by charophyte accumulation rates during the 2400–1200 cal yr B.P. interval support this moisture regime shift. An abrupt shift toPicea dominated forest occurred from 1200–1000 cal yr B.P. and a final period of wet-closed forest cover reaches its maximum extent from 700–150 cal yr B.P. that appears to be a response to Little Ice Age cooling. Present forests are within their natural range of variability but are predicted to shift again to a drier more open structure with increased Pseudotsuga/Larix cover. More frequent stand replacing fires and increased area burned likely will accompany this change due to continued global warming.