scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Parkinson's disease in 2017"


Journal ArticleDOI
TL;DR: The work, which led to the identification of α-synuclein in Lewy bodies, Lewy neurites and Papp-Lantos bodies, is reviewed as well as what has happened since.
Abstract: In 2017, it is two hundred years since James Parkinson provided the first complete clinical description of the disease named after him, fifty years since the introduction of high-dose D,L-DOPA treatment and twenty years since α-synuclein aggregation came to the fore. In 1998, multiple system atrophy joined Parkinson’s disease and dementia with Lewy bodies as the third major synucleinopathy. Here we review our work, which led to the identification of α-synuclein in Lewy bodies, Lewy neurites and Papp-Lantos bodies, as well as what has happened since. Some of the experiments described were carried out in collaboration with ML Schmidt, VMY Lee and JQ Trojanowski.

358 citations


Journal ArticleDOI
TL;DR: Overall, this article attempts to describe how the discovery of this nigral neurotoxicant began, where it is currently, and what the future may hold.
Abstract: The identification of MPTP, a relatively simple compound which causes selective degeneration of the substantia nigra after systemic administration, has had an a significant impact on the understanding and treatment of Parkinson’s disease (PD) over the last 30 years. This article is prefaced by the intriguing “medical detective story” that lead to the discovery of the biological effects of MPTP in humans. The steps that lead to the unraveling its mechanism of action and their impact on research into pathways underlying nigrostriatal degeneration are reviewed. The impact of the animal models that have been developed utilizing MPTP is also described with a focus on the translational implications of MPTP-related research. These include use of MAO-B inhibitors aimed at neuroprotection in PD and the importance of a stable primate model for PD which was utilized to better understand the circuitry of the basal ganglia, and the identification of the subthalamic nucleus as a target for deep brain stimulation. Finally, the results of a broad range of epidemiologic studies aimed as assessing the impact of environmental factors in PD that have been inspired by MPTP are summarized, including the discovery of other neurotoxicants (rotenone and paraquat) with parkinsonogenic effects. Overall, this article attempts to describe how the discovery of this nigral neurotoxicant began, where it is currently, and what the future may hold.

283 citations


Journal ArticleDOI
TL;DR: It now appears that the earliest lesions could develop at nonnigral (dopamine agonist nonresponsive) sites, where the surrounding environment is potentially hostile: the olfactory bulb and, possibly, the ENS.
Abstract: A relatively small number of especially susceptible nerve cell types within multiple neurotransmitter systems of the human central, peripheral, and enteric nervous systems (CNS, PNS, ENS) become involved in the degenerative process underlying sporadic Parkinson's disease (sPD). The six-stage model we proposed for brain pathology related to sPD (Neurobiol Aging 2003) was a retrospective study of incidental and clinically diagnosed cases performed on unconventionally thick tissue sections (100 μm) from a large number of brain regions.The staging model emphasized what we perceived to be a sequential development of increasing degrees of Lewy pathology in anatomically interconnected regions together with the loss of aminergic projection neurons in, but not limited to, the locus coeruleus and substantia nigra. The same weight was assigned to axonal and somatodendritic Lewy pathology, and the olfactory bulb was included for the first time in a sPD staging system. After years of research, it now appears that the earliest lesions could develop at nonnigral (dopamine agonist nonresponsive) sites, where the surrounding environment is potentially hostile: the olfactory bulb and, possibly, the ENS. The current lack of knowledge regarding the development of Lewy pathology within the peripheral autonomic nervous system, however, means that alternative extra-CNS sites of origin cannot be disregarded as possible candidates. The PD staging system not only caused controversy but contributed a framework for (1) assessing pathology in the spinal cord, ENS, and PNS in relationship to that evolving in the brain, (2) defining prodromal disease and cohorts of at-risk individuals, (3) developing potential prognostic biomarkers for very early disease, (4) testing novel hypotheses and experimental models of α-synuclein propagation and disease progression, and (5) finding causally-oriented therapies that intervene before the substantia nigra becomes involved. The identification of new disease mechanisms at the molecular and cellular levels indicates that physical contacts (transsynaptic) and transneuronal transmission between vulnerable nerve cells are somehow crucial to the pathogenesis of sPD.

278 citations


Journal ArticleDOI
TL;DR: The influence of changes in the nature and levels of lipids on the aggregation propensity of α-synuclein in vivo and in vitro will be discussed within a common general framework.
Abstract: α-synuclein is a small protein abundantly expressed in the brain and mainly located in synaptic terminals. The conversion of α-synuclein into oligomers and fibrils is the hallmark of a range of neurodegenerative disorders including Parkinson's disease and dementia with Lewy bodies. α-synuclein is disordered in solution but can adopt an α-helical conformation upon binding to lipid membranes. This lipid-protein interaction plays an important role in its proposed biological function, i.e., synaptic plasticity, but can also entail the aggregation of the protein. Both the chemical properties of the lipids and the lipid-to-protein-ratio have been reported to modulate the aggregation propensity of α-synuclein. In this review, the influence of changes in the nature and levels of lipids on the aggregation propensity of α-synuclein in vivo and in vitro will be discussed within a common general framework. In particular, while biophysical measurements and kinetic analyses of the time courses of α-synuclein aggregation in the presence of different types of lipid vesicles allow a mechanistic dissection of the influence of the lipids on α-synuclein aggregation, biological studies of cellular and animal models of Parkinson's disease allow the determination of changes in lipid levels and properties associated with the disease.

176 citations


Journal ArticleDOI
TL;DR: This review summarizes the latest findings on PINK1/Parkin-directed mitochondrial quality control, its integration and cross-talk with other disease factors and pathways as well as the implications for idiopathic PD.
Abstract: The first clinical description of Parkinson's disease (PD) will embrace its two century anniversary in 2017. For the past 30 years, mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of this devastating neurodegenerative disease. The identifications of mutations in genes encoding PINK1 (PTEN-induced kinase 1) and Parkin (E3 ubiquitin ligase) in familial PD and their functional association with mitochondrial quality control provided further support to this hypothesis. Recent research focused mainly on their key involvement in the clearance of damaged mitochondria, a process known as mitophagy. It has become evident that there are many other aspects of this complex regulated, multifaceted pathway that provides neuroprotection. As such, numerous additional factors that impact PINK1/Parkin have already been identified including genes involved in other forms of PD. A great pathogenic overlap amongst different forms of familial, environmental and even sporadic disease is emerging that potentially converges at the level of mitochondrial quality control. Tremendous efforts now seek to further detail the roles and exploit PINK1 and Parkin, their upstream regulators and downstream signaling pathways for future translation. This review summarizes the latest findings on PINK1/Parkin-directed mitochondrial quality control, its integration and cross-talk with other disease factors and pathways as well as the implications for idiopathic PD. In addition, we highlight novel avenues for the development of biomarkers and disease-modifying therapies that are based on a detailed understanding of the PINK1/Parkin pathway.

170 citations


Journal ArticleDOI
TL;DR: A critical discussion of the emerging data regarding the mechanisms underlying mutant VPS35-mediated neurodegeneration gleaned from genetic cell and animal models is provided and recent advances that may provide insight into the interplay between V PS35 and several other PD-linked gene products are highlighted.
Abstract: Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene encoding a core component of the retromer complex, have recently emerged as a new cause of late-onset, autosomal dominant familial Parkinson's disease (PD). A single missense mutation, AspD620Asn (D620N), has so far been unambiguously identified to cause PD in multiple individuals and families worldwide. The exact molecular mechanism(s) by which VPS35 mutations induce progressive neurodegeneration in PD are not yet known. Understanding these mechanisms, as well as the perturbed cellular pathways downstream of mutant VPS35, is important for the development of appropriate therapeutic strategies. In this review, we focus on the current knowledge surrounding VPS35 and its role in PD. We provide a critical discussion of the emerging data regarding the mechanisms underlying mutant VPS35-mediated neurodegeneration gleaned from genetic cell and animal models and highlight recent advances that may provide insight into the interplay between VPS35 and several other PD-linked gene products (i.e. α-synuclein, LRRK2 and parkin) in PD. Present data support a role for perturbed VPS35 and retromer function in the pathogenesis of PD.

116 citations


Journal ArticleDOI
TL;DR: The main features of GBA-PD are summarized and insights into the pathological relevance of G BA mutations on molecular pathways and the therapeutic implications for PD resulting from investigation of the role of Gba in PD are provided.
Abstract: Following the discovery of a higher than expected incidence of Parkinson Disease (PD) in Gaucher disease, a lysosomal storage disorder, mutations in the glucocerebrocidase (GBA) gene, which encodes a lysosomal enzyme involved in sphingolipid degradation were explored in the context of idiopathic PD. GBA mutations are now known to be the single largest risk factor for development of idiopathic PD. Clinically, on imaging and pharmacologically, GBA PD is almost identical to idiopathic PD, other than certain features that can be identified in the specialist research setting but not in routine clinical practice. In patients with a known GBA mutation, it is possible to monitor for prodromal signs of PD. The clinical similarity with idiopathic PD and the chance to identify PD at a pre-clinical stage provides a unique opportunity to research therapeutic options for early PD, before major irreversible neurodegeneration occurs. However, to date, the molecular mechanisms which lead to this increased PD risk in GBA mutation carriers are not fully elucidated. Experimental models to define the molecular mechanisms and test therapeutic options include cell culture, transgenic mice and other in vivo models amenable to genetic manipulation, such as drosophilia. Some key pathological pathways of interest in the context of GBA mutations include alpha synuclein aggregation, lysosomal-autophagy axis changes and endoplasmic reticulum stress. Therapeutic agents that exploit these pathways are being developed and include the small molecule chaperone Ambroxol. This review aims to summarise the main features of GBA-PD and provide insights into the pathological relevance of GBA mutations on molecular pathways and the therapeutic implications for PD resulting from investigation of the role of GBA in PD.

102 citations


Journal ArticleDOI
TL;DR: Significantly delayed colonic transit time and increased volume were frequent findings in PD patients, and objective dysfunction was considerably more prevalent than subjective constipation symptoms, and this findings highlight the need for more research on how to define constipation in PD.
Abstract: BACKGROUND Gastrointestinal function has received increased interest in the context of Parkinson's disease (PD). Constipation is among the most frequent non-motor symptoms, but our understanding of the underlying pathology is limited. Subjective constipation correlates poorly with objective markers. OBJECTIVE The aims were to evaluate colonic transit time and volume in PD and to correlate these measures with subjective symptoms and gastric emptying. METHODS Thirty-two PD patients and 26 controls were included. Colonic transit time, computed tomography-based volume estimation, and gastric emptying were performed as objective markers of gastrointestinal function. Subjective gastrointestinal symptoms were evaluated by three different questionnaires. RESULTS Seventy-nine percent of PD patients displayed prolonged colonic transit time (p < 0.0001) and 66% of patients had significantly increased colonic volume (p = 0.0002). Particularly the transverse and rectosigmoid segments were affected. There was no difference in gastric emptying time between groups. The prevalence of subjective constipation in PD patients was significantly lower and ranged from 3% to 38% depending on the type of questionnaire. CONCLUSIONS Significantly delayed colonic transit time and increased volume were frequent findings in PD patients, and objective dysfunction was considerably more prevalent than subjective constipation symptoms. Also, the prevalence of subjective constipation varied widely depending upon which questionnaire was employed. These findings highlight the need for more research on how to define constipation in PD and also the need for improved understanding of the relationship between subjective symptoms and objective dysfunction.

84 citations


Journal ArticleDOI
TL;DR: Consistently exercising and starting regular exercise after baseline were associated with small but significant positive effects on HRQL and mobility changes over two years, which supports improving encouragement and facilitation of exercise in advanced PD.
Abstract: BACKGROUND Research-based exercise interventions improve health-related quality of life (HRQL) and mobility in people with Parkinson's disease (PD). OBJECTIVE To examine whether exercise habits were associated with changes in HRQL and mobility over two years. METHODS We identified a cohort of National Parkinson Foundation Quality Improvement Initiative (NPF-QII) participants with three visits. HRQL and mobility were measured with the Parkinson's Disease Questionnaire (PDQ-39) and Timed Up and Go (TUG). We compared self-reported regular exercisers (≥2.5 hours/week) with people who did not exercise 2.5 hours/week. Then we quantified changes in HRQL and mobility associated with 30-minute increases in exercise, across PD severity, using mixed effects regression models. RESULTS Participants with three observational study visits (n = 3408) were younger, with milder PD, than participants with fewer visits. After 2 years, consistent exercisers and people who started to exercise regularly after their baseline visit had smaller declines in HRQL and mobility than non-exercisers (p < 0.05). Non-exercisers worsened by 1.37 points on the PDQ-39 and a 0.47 seconds on the TUG per year. Increasing exercise by 30 minutes/week was associated with slower declines in HRQL (-0.16 points) and mobility (-0.04 sec). The benefit of exercise on HRQL was greater in advanced PD (-0.41 points) than mild PD (-0.14 points; p < 0.02). CONCLUSIONS Consistently exercising and starting regular exercise after baseline were associated with small but significant positive effects on HRQL and mobility changes over two years. The greater association of exercise with HRQL in advanced PD supports improving encouragement and facilitation of exercise in advanced PD.

82 citations


Journal ArticleDOI
TL;DR: Due to its distinct, but highly relevant mechanism of inducing neuronal death, the proteasome inhibition model represents a useful addition to the repertoire of toxin-based models of Parkinson's disease that might provide novel clues to unravel the complex pathogenesis of this disorder.
Abstract: The pathological hallmarks of Parkinson’s disease are the progressive loss of nigral dopaminergic neurons and the formation of intracellular inclusion bodies, termed Lewy bodies, in surviving neurons. Accumulation of proteins in large insoluble cytoplasmic aggregates has been proposed to result, partly, from a failure in the function of intracellular protein degradation pathways. Evidence in support for such a hypothesis emerged in the beginning of the years 2000 with studies demonstrating structural and functional deficits in the ubiquitin-proteasome pathway in post-mortem nigral tissue of patients with Parkinson’s disease. These fundamental findings have inspired the development of a new generation of animal models based on the use of proteasome inhibitors to disturb protein homeostasis and trigger nigral dopaminergic neurodegeneration. In this review, we provide an updated overview of the current approaches in employing proteasome inhibitors to model Parkinson’s disease, with particular emphasis on rodent studies. In addition, the mechanisms underlying proteasome inhibition-induced cell death and the validity criteria (construct, face and predictive validity) of the model will be critically discussed. Due to its distinct, but highly relevant mechanism of inducing neuronal death, the proteasome inhibition model represents a useful addition to the repertoire of toxin-based models of Parkinson’s disease that might provide novel clues to unravel the complex pathogenesis of this disorder.

75 citations


Journal ArticleDOI
TL;DR: Results suggest that safinamide may have a positive effect on pain, one of the most underestimated non-motor symptoms in Parkinson’s Disease.
Abstract: Background: Pain, a frequent non-motor symptom in Parkinson’s Disease (PD), significantly impacts on quality of life. Safinamide is a new drug with dopaminergic and non-dopaminergic properties, approved in Europe as adjunct therapy to levodopa for the treatment of fluctuating PD patients. Results from two 24-month, double-blind, placebo-controlled studies demonstrated that safinamide has positive effects on both motor functions and quality of life in PD patients. Objective: To investigate the effects of safinamide on pain management in PD patients with motor fluctuations using pooled data from studies 016 and SETTLE. Methods: This post-hoc analysis evaluated the reduction of concomitant pain treatments and the changes in the scores of the items related to pain of the Parkinson’s Disease Quality of Life Questionnaire (PDQ-39). A path analysis was performed in order to examine direct and indirect associations between safinamide and PDQ-39 pain-related items assessed after 6-months of treatment. Results: The percentage of patients with no pain treatments at the end of the trials was significantly lower in the safinamide group compared to the placebo group. Safinamide 100 mg/day significantly reduced on average the individual use of pain treatments by ≈24% and significantly improved two out of three PDQ-39 pain-related items of the “Bodily discomfort” domain. Path analysis showed that the direct effect of safinamide on pain accounted for about 80% of the total effect. Conclusions: These results suggest that safinamide may have a positive effect on pain, one of the most underestimated non-motor symptoms. Prospective studies are warranted to investigate this potential benefit.

Journal ArticleDOI
TL;DR: A global consensus standard set of outcome measures for Parkinson’s disease is proposed, which applies to all cases of idiopathic PD, and includes assessments of motor and non-motor symptoms, ability to work, PD-related health status, and hospital admissions.
Abstract: BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative condition that is expected to double in prevalence due to demographic shifts. Value-based healthcare is a proposed strategy t ...

Journal ArticleDOI
TL;DR: There is a paucity of data on the use of ultra-short pulse width settings which are now possible with technological advances, but much work has been done in exploring the effects of frequency modulation, which may help patients with gait freezing and other axial symptoms.
Abstract: Subthalamic Nucleus Deep Brain Stimulation (STN DBS) is a well-established and effective treatment modality for selected patients with Parkinson's disease (PD). Since its advent, systematic exploration of the effect of stimulation parameters including the stimulation intensity, frequency, and pulse width have been carried out to establish optimal therapeutic ranges. This review examines published data on these stimulation parameters in terms of efficacy of treatment and adverse effects. Altering stimulation intensity is the mainstay of titration in DBS programming via alterations in voltage or current settings, and is characterised by a lower efficacy threshold and a higher side effect threshold which define the therapeutic window. In addition, much work has been done in exploring the effects of frequency modulation, which may help patients with gait freezing and other axial symptoms. However, there is a paucity of data on the use of ultra-short pulse width settings which are now possible with technological advances. We also discuss current evidence for the use of novel programming techniques including directional and adaptive stimulation, and highlight areas for future research.

Journal ArticleDOI
TL;DR: Preliminary evidence is provided that like PD, MSA subjects display evidence of disrupted intestinal barrier integrity, increased marker of endotoxin-related intestinal inflammation, and pro-inflammatory colonic microbiota.
Abstract: Background Recent evidence suggests that Parkinson's disease (PD) is associated with intestinal microbiota dysbiosis, abnormal intestinal permeability, and intestinal inflammation. Objective Our study aimed to determine if these gut abnormalities are present in another synucleinopathy, multiple system atrophy (MSA). Methods In six MSA and 11 healthy control subjects, we performed immunohistochemistry studies of colonic sigmoid mucosa to evaluate the intestinal barrier marker Zonula Occludens-1 and the endotoxin-related inflammation marker Toll-like-receptor-4 expression. We also assessed colonic sigmoid mucosal and fecal microbiota compositions using high-throughput 16S ribosomal RNA gene amplicon sequencing. Results MSA subjects showed disrupted tight junction protein Zonula Occludens-1 structure in sigmoid mucosa tissue suggesting intestinal barrier dysfunction. The lipopolysaccharide specific inflammatory receptor Toll-like-receptor-4 was significantly higher in the colonic sigmoid mucosa in MSA relative to healthy controls. Microbiota analysis suggested high relative abundance of gram-negative, putative "pro-inflammatory" bacteria in various family and genus level taxa, from the phylum Bacteroidetes and Proteobacteria, in MSA feces and mucosa. At the taxonomic level of genus, putative "anti-inflammatory" butyrate-producing bacteria were less abundant in MSA feces. Predictive functional analysis indicated that the relative abundance of a number of genes involved in metabolism were lower in MSA feces, whereas the relative abundance of genes involved in lipopolysaccharide biosynthesis were higher in both MSA feces and mucosa compared to healthy controls. Conclusions This proof-of-concept study provides preliminary evidence that like PD, MSA subjects display evidence of disrupted intestinal barrier integrity, increased marker of endotoxin-related intestinal inflammation, and pro-inflammatory colonic microbiota.

Journal ArticleDOI
TL;DR: The role of c-Abl in PD is identified and validated as an important pathogenic mediator of the disease, where activated c- abl emerges as a common link to various PD-related inducers of oxidative stress relevant to both sporadic and familial forms of PD and α-synucleinopathies.
Abstract: Although the etiology of Parkinson's disease (PD) is poorly understood, oxidative stress has long been implicated in the pathogenesis of the disease. However, multifaceted and divergent signaling cascades downstream of oxidative stress have posed challenges for researchers to identify a central component of the oxidative stress-induced pathways causing neurodegeneration in PD. Since 2010, c-Abl-a non-receptor tyrosine kinase and an indicator of oxidative stress-has shown remarkable potential as a future promising drug target in PD therapeutics. Although, the constitutively active form of c-Abl, Bcr-Abl, has a long history in chronic myeloid leukemia and acute lymphocytic leukemia, the role of c-Abl in PD and relevant neurodegenerative diseases was completely unknown. Recently, others and we have identified and validated c-Abl as an important pathogenic mediator of the disease, where activated c-Abl emerges as a common link to various PD-related inducers of oxidative stress relevant to both sporadic and familial forms of PD and α-synucleinopathies. This review discusses the role of c-Abl in PD and the latest advancement on c-Abl as a drug target and as a prospective biomarker.

Journal ArticleDOI
TL;DR: Although predicted improvements in PD total and motor scores were observed, these data do not suggest (in)GSH is superior to placebo after a three month intervention, and the symptomatic effects are sufficient to warrant a delayed-start or wash-out design study for disease-modification trials.
Abstract: Background Reduced glutathione (GSH) is an endogenously synthesized tripeptide depleted early in the course of Parkinson's disease (PD) and GSH augmentation has been proposed as a therapeutic strategy in PD. Objective This Phase IIb study was designed to evaluate whether a Phase III study of intranasal GSH, (in)GSH, for symptomatic relief is warranted and to determine the most appropriate trial design for a disease-modification study. Methods This was a double-blind, placebo-controlled trial of 45 individuals with Hoehn & Yahr Stage 1-3 PD. Participants were randomized to receive intranasal placebo (saline), 100 mg GSH, or 200 mg GSH thrice daily for three months, and were observed over a one-month washout period. Results All cohorts improved over the intervention period, including placebo. The high-dose group demonstrated improvement in total Unified PD Rating Scale (UPDRS) (-4.6 (4.7), P = 0.0025) and UPDRS motor subscore (-2.2 (3.8), P = 0.0485) over baseline, although neither treatment group was superior to placebo. One participant in the high-dose GSH cohort developed cardiomyopathy. Conclusions Although predicted improvements in PD total and motor scores were observed, these data do not suggest (in)GSH is superior to placebo after a three month intervention. The symptomatic effects are sufficient to warrant a delayed-start or wash-out design study for disease-modification trials. Whether long-term use of (in)GSH leads to clinical improvements that are sustained and significantly different than placebo will require appropriately-powered longer-duration studies in larger cohorts. The improvement in the placebo arm was more robust than has been observed in previous PD studies and warrants further investigation.

Journal ArticleDOI
TL;DR: There are significant differences between people with PD who exercise regularly and those who do not in terms of motivators and barriers, and these findings should be considered when tailoring recommendations for PD patients to encourage exercise, and in designing future interventions.
Abstract: BACKGROUND Despite evidence for the benefits of exercise in Parkinson's disease (PD), many patients remain sedentary for undefined reasons. OBJECTIVE To compare exercise habits, perceptions about exercise, and barriers to exercise in 'low' (<3 h/week) and 'high' (≥3 h/week) exercisers with PD. METHODS A 48-item survey was administered to PD patients at an outpatient academic center. Chi-squared tests were used to compare the percentage differences between low- and high-exercisers with two-sided tests and a significant level of 0.05. RESULTS 243 surveys were collected over three months; 28 were excluded due to incomplete data, leaving 215 to be analyzed. 49.3% reported 'low'-exercise and 50.7% reported 'high'-exercise. High-exercisers participated in higher intensity exercise regimens (83.4% versus 32.1%, p≤0.001). High-exercisers were more likely to start exercising after being diagnosed (54.2% versus 27.8%, p < 0.001), whereas low-exercisers were more likely to reduce their amount of exercise (40.2% versus 15.9%, p < 0.001). Low-exercisers required more motivating factors. Both groups benefited from having a significant other or a personal trainer motivate them, and both were more likely to exercise if their neurologist encouraged them. Low-exercisers reported twice as many barriers as high-exercisers (p = 0.001). Barriers that were significantly more common in low-exercisers were: lacking someone to motivate them (33.3% versus 10.5%, p < 0.001), fatigue (20.8% versus 15.2%, p = 0.005), and depression (16.7% versus 7.6%, p = 0.045). CONCLUSIONS There are significant differences between people with PD who exercise regularly and those who do not in terms of motivators and barriers. These findings should be considered when tailoring recommendations for PD patients to encourage exercise, and in designing future interventions.

Journal ArticleDOI
TL;DR: The biochemical, physiological and pharmaceutical credentials that continue to underpin the rationale for taking Simvastatin into a disease-modifying trial in PD patients are described and the rationale of the trial structure is discussed.
Abstract: Many now believe the holy grail for the next stage of therapeutic advance surrounds the development of disease-modifying approaches aimed at intercepting the year-on-year neurodegenerative decline experienced by most patients with Parkinson's disease (PD). Based on recommendations of an international committee of experts who are currently bringing multiple, potentially disease-modifying, PD therapeutics into long-term neuroprotective PD trials, a clinical trial involving 198 patients is underway to determine whether Simvastatin provides protection against chronic neurodegeneration. Statins are widely used to reduce cardiovascular risk, and act as competitive inhibitors of HMG-CoA reductase. It is also known that statins serve as ligands for PPARα, a known arbiter for mitochondrial size and number. Statins possess multiple cholesterol-independent biochemical mechanisms of action, many of which offer neuroprotective potential (suppression of proinflammatory molecules & microglial activation, stimulation of endothelial nitric oxide synthase, inhibition of oxidative stress, attenuation of α-synuclein aggregation, modulation of adaptive immunity, and increased expression of neurotrophic factors). We describe the biochemical, physiological and pharmaceutical credentials that continue to underpin the rationale for taking Simvastatin into a disease-modifying trial in PD patients. While unrelated to the Simvastatin trial (because this conducted in patients who already have PD), we discuss conflicting epidemiological studies which variously suggest that statin use for cardiovascular prophylaxis may increase or decrease risk of developing PD. Finally, since so few disease-modifying PD trials have ever been launched (compared to those of symptomatic therapies), we discuss the rationale of the trial structure we have adopted, decisions made, and lessons learnt so far.

Journal ArticleDOI
TL;DR: This review summarizes recent advances in the study of exosomes in Parkinson’s disease pathophysiology and their potential as disease biomarkers.
Abstract: Extracellular vesicles including exosomes are released by a variety of cell types including neurons and exhibit molecular profiles that reflect normal and disease states. As their content represents a snapshot of the intracellular milieu, they could be exploited as biomarkers of the otherwise inaccessible brain microenvironment. In addition they may contribute to the progression of neurodegenerative disorders by facilitating the spread of misfolded proteins at distant sites or activating immune cells. This review summarizes recent advances in the study of exosomes in Parkinson’s disease pathophysiology and their potential as disease biomarkers.

Journal ArticleDOI
TL;DR: There was a small but significant association between vitamin D status at baseline and disease motor severity at 36 months and patients with incident PD had significantly lower serum 25(OH)D concentrations than age-matched controls.
Abstract: Background: Previous cross-sectional studies have shown that Parkinson’s disease (PD) patients have lower serum 25-hydroxy vitamin D (25(OH)D) concentrations than controls. Vitamin D deficiency was associated with increased disease severity and cognitive impairment in prevalent PD patients. Objective: The aim of the study was to determine 25(OH)D in newly diagnosed PD and age-matched controls and to assess if there was an association with clinical outcomes (disease severity, cognition and falls) over the 36-month follow up period. Methods: A prospective observational study of newly diagnosed PD patients in the North East of England with age-matched controls (PD, n = 145; control, n = 94). Serum 25(OH)D was assessed at baseline and 18 months. Participants underwent clinical assessment at baseline, 18 and 36 months. One hundred and ten participants with PD also took part in a prospective falls study. Results: Mean serum 25(OH)D concentrations were lower in PD than control participants at baseline (44.1±21.7 vs. 52.2±22.1 nmol/L, p < 0.05) and 18 months (44.2±23.6 vs. 55.7±28.8 nmol/L, p < 0.05). Baseline serum 25(OH)D concentration, age, motor score and dosage of dopaminergic medication were significant predictors of variance of motor severity at 36 months ((ΔR2 = 0.039, F = 6.6, p < 0.01). Serum 25(OH)D was not associated with cognition or falls during the follow up period. Conclusions: Patients with incident PD had significantly lower serum 25(OH)D concentrations than age-matched controls, which may have implications in terms of bone health and fracture risk. There was a small but significant association between vitamin D status at baseline and disease motor severity at 36 months.

Journal ArticleDOI
TL;DR: Significantly increased small intestinal- and caecum-ascending 3D-Transit times were detected in PD patients and controls, highlighting widespread intestinal involvement in PD increasing throughout the gastrointestinal tract.
Abstract: BACKGROUND Symptoms from the gastrointestinal tract are highly prevalent in Parkinson's disease (PD), but knowledge of the underlying pathology is incomplete and valid objective markers on regional gastrointestinal function are limited. OBJECTIVE The aims were to evaluate gastrointestinal transit time and motility in PD patients and controls. METHODS Twenty-two PD patients and 15 controls were included. Gastric-, small intestinal-, and caecum-ascending colonic transit times as well as colonic motility, defined as mass- and fast movements, were performed using the ambulatory 3D-Transit system. Gastrointestinal transit time with radio opaque markers, gastric emptying scintigraphy, and subjective non-motor symptoms were also evaluated. RESULTS Using the 3D-Transit system, the patient group displayed significantly longer small intestinal- and caecum-ascending transit times (p = 0.030 and p = 0.0063). No between-group difference was seen in gastric transit time (p = 0.91). Time to first mass- and fast colonic movement were significantly increased in PD (p = 0.023 and p = 0.006). Radio opaque marker gastrointestinal transit time was significantly increased in the patient group (p < 0.0001), whereas no difference was seen in scintigraphic gastric emptying time (p = 0.68). Prevalence of constipation symptoms on the NMSQuest was 41% in PD and 7% in controls. CONCLUSIONS Significantly increased small intestinal- and caecum-ascending 3D-Transit times were detected in PD patients. Also, time to first propagating colonic movement was increased. Radio opaque marker gastrointestinal transit time was significantly delayed, but no difference was seen in gastric transit time and gastric emptying time. The present findings highlight widespread intestinal involvement in PD increasing throughout the gastrointestinal tract.

Journal ArticleDOI
TL;DR: Patients with PD treated with DA, but not other dopaminergic medications, have increased odds of having ICBs compared with age- and gender-matched controls, and this has implications for individualized patient management and follow-up.
Abstract: Background Impulsive and compulsive behaviors (ICBs) are frequent in Parkinson's disease (PD), but data from population-based cohorts is lacking. Objectives To determine the frequency and associated demographic, clinical, neuropsychiatric and cognitive features of ICBs in a population-based PD cohort. Methods This cross-sectional study included 125 patients with PD and 159 age- and gender-matched normal controls recruited from the Norwegian ParkWest study. Participants underwent comprehensive neurological, neuropsychiatric and neuropsychological assessments. ICBs were assessed using the Questionnaire for Impulsive-Compulsive Disorders in PD short form. Multiple logistic regression analyses were performed to compare the odds of ICBs between groups and to identify independent correlates of ICBs in PD. Results 30.4% of patients reported at least one ICB, with an odds ratio (OR) of 3.2 (95% confidence interval [CI] 1.8-5.9) compared with controls. Multiple ICBs were experienced by 8.8% of patients vs 1.3% of controls (OR 7.6, 95% CI 1.7-34.8). Compared to controls, the ORs of having an ICB were 7.4 (95% CI 2.6-20.9) in patients taking DA without levodopa, 4.6 (95% CI 2.3-9.3) in those treated with both DA and levodopa, and 1.2 (95% CI 0.5-3.2) in patients using levodopa but not DA. In multivariate models, ICB status in patients was independently associated with DA treatment and depressive symptoms, but not with other dopaminergic medications, motor function, or cognitive performance. Conclusions Patients with PD treated with DA, but not other dopaminergic medications, have increased odds of having ICBs compared with age- and gender-matched controls. This has implications for individualized patient management and follow-up.

Journal ArticleDOI
TL;DR: The favorable effect of safinamide on mood may be explained by the improvement in wearing off and by its modulation of glutamatergic hyperactivity and reversible MAO-B inhibition.
Abstract: Background Mood disorders are very frequent in Parkinson's Disease (PD), and their effective treatment is still a major unresolved issue: growing evidence suggests that glutamatergic system dysfunction is directly involved. Safinamide is a drug with an innovative mechanism of action, dopaminergic and non-dopaminergic, that includes the reversible inhibition of the monoamine oxidase-B (MAO-B) enzyme and the modulation of excessive glutamate release through the use- and state-dependent blockade of the sodium channels. Objective To investigate the effects of safinamide on mood over two-year treatment in PD patients with motor fluctuations. Methods This was a post-hoc analysis of the data from studies 016 and 018. The analysis focused on outcomes related to mood, namely: scores of the "Emotional well-being" domain of the Parkinson's Disease Questionnaire (PDQ-39), scores of the GRID Hamilton Rating Scale for Depression (GRID-HAMD) and the proportion of patients reporting depression as an adverse event over the entire treatment period. Results Safinamide, compared to placebo, significantly improved the PDQ-39 "Emotional well-being" domain after6-months (p = 0.0067) and 2 years (p = 0.0006), as well as the GRID-HAMD (p = 0.0408 after 6 months and p = 0.0027 after 2 years). Significantly fewer patients in the safinamide group, compared to placebo, experienced depression as adverse event (p = 0.0444 after 6 months and p = 0.0057 after 2 years). Conclusion The favorable effect of safinamide on mood may be explained by the improvement in wearing off and by its modulation of glutamatergic hyperactivity and reversible MAO-B inhibition. Prospective studies are warranted to investigate this potential benefit.

Journal ArticleDOI
TL;DR: The events that led from an NINDS-sponsored Workshop on Parkinson Disease Research in 1995, to the identification a mere two years later of a mutation in alpha-synuclein as the cause of autosomal dominant Parkinson disease in the Contursi kindred are described.
Abstract: In this Commentary, I describe the events that led from an NINDS-sponsored Workshop on Parkinson Disease Research in 1995, where I was asked to speak about the genetics of Parkinson disease, to the identification a mere two years later of a mutation in alpha-synuclein as the cause of autosomal dominant Parkinson disease in the Contursi kindred. I review the steps we took to first map and then find the mutation in the alpha-synuclein locus and describe the obstacles and the role of serendipity in facilitating the work. Although alpha-synuclein mutations are a rare cause of hereditary PD, the importance of this finding goes far beyond the rare families with hereditary disease because it pinpointed alpha-synuclein as a key contributor to the far more common sporadic form of Parkinson disease. This work confirms William Harvey's observation from 350 years ago that studying rarer forms of a disease is an excellent way to understand the more common forms of that disease. The identification of synuclein's role in hereditary Parkinson disease has opened new avenues of research into the pathogenesis and potential treatments of the common form of Parkinson disease that affects many millions of Americans and tens of millions of human beings worldwide.

Journal ArticleDOI
TL;DR: This review provides an up-to-date repository and synthesis of the current literature regarding technology used for assessing limb bradykinesia in PD and discusses the current trends with regards to technology.
Abstract: Background: The MDS-UPDRS (Movement Disorders Society – Unified Parkinson’s Disease Rating Scale) is the most widely used scale for rating impairment in PD. Subscores measuring bradykinesia have low reliability that can be subject to rater variability. Novel technological tools can be used to overcome such issues. Objective: To systematically explore and describe the available technologies for measuring limb bradykinesia in PD that were published between 2006 and 2016. Methods: A systematic literature search using PubMed (MEDLINE), IEEE Xplore, Web of Science, Scopus and Engineering Village (Compendex and Inspec) databases was performed to identify relevant technologies published until 18 October 2016. Results: 47 technologies assessing bradykinesia in PD were identified, 17 of which offered home and clinic-based assessment whilst 30 provided clinic-based assessment only. Of the eligible studies, 7 were validated in a PD patient population only, whilst 40 were tested in both PD and healthy control groups. 19 of the 47 technologies assessed bradykinesia only, whereas 28 assessed other parkinsonian features as well. 33 technologies have been described in additional PD-related studies, whereas 14 are not known to have been tested beyond the pilot phase. Conclusion: Technology based tools offer advantages including objective motor assessment and home monitoring of symptoms, and can be used to assess response to intervention in clinical trials or routine care. This review provides an up-to-date repository and synthesis of the current literature regarding technology used for assessing limb bradykinesia in PD. The review also discusses the current trends with regards to technology and discusses future directions in development.

Journal ArticleDOI
TL;DR: The story is told of how the preclinical and clinical transplantation program in Lund evolved and the first patients receiving grafts of fetal-derived dopamine neuroblasts were operated in 1987, obtaining the first evidence for survival and function of transplanted neurons in the diseased human brain.
Abstract: The efforts to develop a dopamine cell replacement therapy for Parkinson's disease have spanned over more than three decades. Based on almost 10 years of transplantation studies in animal models, the first patients receiving grafts of fetal-derived dopamine neuroblasts were operated in Lund in 1987. Over the following two decades, a total of 18 patients were transplanted and followed closely by our team with mixed but also very encouraging results. In this article we tell the story of how the preclinical and clinical transplantation program in Lund evolved. We recall the excitement when we obtained the first evidence for survival and function of transplanted neurons in the diseased human brain. We also remember the setbacks that we have experienced during these 30 years and discuss the very interesting developments that are now taking place in this exciting field.

Journal ArticleDOI
TL;DR: SN area evaluated by NM-sensitive MRI may be a promising biomarker of nigral degeneration and disease progression in PD patients.
Abstract: BACKGROUND A specific T1-weighted magnetic resonance imaging (MRI) sequence has been shown to detect substantia nigra (SN) neuromelanin (NM) signal changes that accurately discriminate Parkinson's disease (PD) patients from controls, even in early disease stages. However, it is unclear what happens to these SN changes in later disease stages and if they can be a marker of disease progression. OBJECTIVE to investigate the pattern of SN-NM area loss and contrast ratio (CR) intensity changes in late-stage PD (LSPD) compared to earlier disease stages. METHODS A comparative cross-sectional study was performed, analyzing SN-NM MRI signal in LSPD (Schwab and England Activities of Daily Living Scale score 3), comparing this group with de novo, 2-5 year PD and controls. SN-NM signal area and CR values for the internal and lateral SN regions were obtained with semi-automated methods. RESULTS 13 LSPD, 12 de novo patients with PD, 10 PD patients with a 2-5 year disease duration, and 10 controls were included. NM signal area was significantly decreased in LSPD compared to de novo PD (P-value = 0.005; sensitivity: 75%; specificity 92% and AUC: 0.86). In the lateral SN region, a decrease in the CR was detected in all PD groups compared to controls; despite not reaching statistical significance, a slight increment was observed comparing LSPD to 2-5 year PD. NM signal area significantly correlated with HY (R = -0.37; P < 0.05) and Movement disorder Society Unified Parkinson's Disease Rating Scale part II (MDS-UPDRS) (R = -0.4; P < 0.05) while a weak correlation was found with MDS-UPDRS part III (R = -0.26; P: 0.1). CONCLUSION SN area evaluated by NM-sensitive MRI may be a promising biomarker of nigral degeneration and disease progression in PD patients.

Journal ArticleDOI
TL;DR: GBA status appears to be an important predictor for non-motor symptom disease progression, after deep brain stimulation surgery, after Parkinson's disease patients who have undergone DBS.
Abstract: BACKGROUND: Recent evidence suggests that glucosidase beta acid (GBA) mutations predispose Parkinson's disease (PD) patients to a greater burden of cognitive impairment and non-motor symptoms. This emerging knowledge has not yet been considered in patients who have undergone deep brain stimulation (DBS); a surgery that is generally contraindicated in those with cognitive deficits. OBJECTIVE: To explore the long-term phenotypic progression of GBA-associated PD, in a DBS cohort. METHODS: Thirty-four PD patients who had undergone DBS surgery between 2002 and 2011 were included in this study; 17 patients with GBA mutations were matched to 17 non-carriers. Clinical evaluation involved the administration of four assessments: The Mattis Dementia Rating Scale was used to assess cognitive function; non-motor symptoms were assessed using the Non-Motor Symptom Assessment Scale for PD; quality of life was measured using the Parkinson's Disease Questionnaire; and motor symptoms were evaluated using part III of the Movement Disorders Society Unified Parkinson's Disease Rating Scale, in on-medication/on-stimulation conditions. Levodopa equivalent doses (LED) and DBS settings were compared with clinical outcomes. RESULTS: At a mean follow-up of 7.5 years after DBS, cognitive impairment was more prevalent (70% vs 19%) and more severe in GBA mutation carriers compared to non-carriers (60% vs 6% were severely impaired). Non-motor symptoms were also more severe and quality of life more impaired in GBA-associated PD. Motor symptoms, LED, and stimulation settings were not significantly different between groups at follow-up. CONCLUSIONS: GBA status appears to be an important predictor for non-motor symptom disease progression, after deep brain stimulation surgery.

Journal ArticleDOI
TL;DR: DBS of the subthalamic nucleus is the main surgical procedure used today for patients with PD, but all patients are not suitable for STN DBS; as a functional neurosurgeon performing since more than 25 years various surgical procedures, he considers that the surgery should be tailored to the patient’s individual symptoms and needs, and that its safety is paramount.
Abstract: The year 2017 marks the 30th anniversary of the birth of modern deep brain stimulation (DBS), which was introduced by Benabid, Pollak et al. in 1987, initially targeting the motor thalamus to treat tremor, and subsequently targeting the subthalamic nucleus (STN) for treatment of symptoms of advanced Parkinson's disease (PD). STN DBS is undoubtedly "the most important discovery since levodopa", as stated by David Marsden in 1994. In 2014, The Lasker- DeBakey Clinical Medical Research Award to "honor two scientists who developed deep brain stimulation of the subthalamic nucleus", was bestowed upon Benabid and DeLong. STN DBS remains today the main surgical procedure for PD, due to its effectiveness in ameliorating PD symptoms and because it is the only surgical procedure for PD that allows a radical decrease in medication. Future improvements of DBS include the possibility to deliver a "closed-loop", "on demand" stimulation, as highly preliminary studies suggest that it may improve both axial and appendicular symptoms and reduce side effects such as dysarthria. Even though DBS of the subthalamic nucleus is the main surgical procedure used today for patients with PD, all patients are not suitable for STN DBS; as a functional neurosurgeon performing since more than 25 years various surgical procedures the aim of which is not to save life but to improve the patient's quality of life, I consider that the surgery should be tailored to the patient's individual symptoms and needs, and that its safety is paramount.

Journal ArticleDOI
TL;DR: ADS-5102 was generally well tolerated in all groups, including DBS patients, and the safety profile was consistent with previous controlled studies.
Abstract: Author(s): Hauser, Robert A; Pahwa, Rajesh; Tanner, Caroline M; Oertel, Wolfgang; Isaacson, Stuart H; Johnson, Reed; Felt, Larissa; Stempien, Mary Jean | Abstract: BackgroundMedical treatment of levodopa-induced dyskinesia (LID) in Parkinson's disease (PD) is an unmet need. ADS-5102 (amantadine) extended-release capsules is being developed for the treatment of LID in patients with PD.ObjectiveEvaluate the long-term safety and tolerability of 274 mg ADS-5102 for LID in PD.MethodsIn an ongoing, open-label safety study (NCT02202551), PD patients with LID received 274 mg of ADS-5102 once daily at bedtime. Patients were recruited from previous ADS-5102 trials. In addition, patients were enrolled who were ineligible for previous ADS-5102 trials due to previous implantation of deep-brain stimulation (DBS) devices. The primary outcome measure was safety assessed through adverse events (AEs). Efficacy was assessed using the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Part IV and its subparts.ResultsFor this interim analysis, 223 patients received ADS-5102 for a mean duration of 348 (SD 182) days. The most common AEs included falls (25.1%), visual hallucinations (19.3%), peripheral edema (13.0%), and constipation (12.6%). Overall, 32 patients (14.3%) discontinued due to an AE. In patients receiving placebo in previous studies, the mean MDS-UPDRS, Part IV scores decreased by 3.4 points from baseline (n = 78) to week 8 and remained stable through week 64 (n = 21). In patients receiving ADS-5102 in previous studies, the mean baseline (n = 61) MDS-UPDRS, Part IV score was low due to the response to ADS-5102 in previous studies and remained stable through week 64 (total of 88 weeks; n = 21). The effect was primarily due to reduction in item 4.2 (functional impact of dyskinesia) and item 4.4 (functional impact of motor fluctuations).ConclusionsADS-5102 was generally well tolerated in all groups, including DBS patients, and the safety profile was consistent with previous controlled studies. Long-term durability and tolerability were shown from the double-blind studies through participation in the open-label study up to 88 weeks.