scispace - formally typeset
Search or ask a question
JournalISSN: 1075-2617

Journal of Peptide Science 

Wiley
About: Journal of Peptide Science is an academic journal published by Wiley. The journal publishes majorly in the area(s): Peptide & Amino acid. It has an ISSN identifier of 1075-2617. Over the lifetime, 2396 publications have been published receiving 43971 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The number of synthetic peptides entering clinical trials has grown continuously over the last decade, and recent advances in the Fmoc SPPS technology are a response to the growing demand from medicinal chemistry and pharmacology.
Abstract: Today, Fmoc SPPS is the method of choice for peptide synthesis. Very-high-quality Fmoc building blocks are available at low cost because of the economies of scale arising from current multiton production of therapeutic peptides by Fmoc SPPS. Many modified derivatives are commercially available as Fmoc building blocks, making synthetic access to a broad range of peptide derivatives straightforward. The number of synthetic peptides entering clinical trials has grown continuously over the last decade, and recent advances in the Fmoc SPPS technology are a response to the growing demand from medicinal chemistry and pharmacology. Improvements are being continually reported for peptide quality, synthesis time and novel synthetic targets. Topical peptide research has contributed to a continuous improvement and expansion of Fmoc SPPS applications.

435 citations

Journal ArticleDOI
TL;DR: Developments that have proved to be reasonably efficient in the macrocyclization of linear precursors into cyclic peptides and depsipeptides are highlighted.
Abstract: Constricting the peptide backbone into a more defined conformational form through cyclization is an activity evolved in nature and in synthetic work, the latter straddling only the most recent decades. The resulting conformational constraints increase the probability of an optimum response with bio-receptors. The purpose of this review is to highlight developments that have proved to be reasonably efficient in the macrocyclization of linear precursors into cyclic peptides and depsipeptides.

388 citations

Journal ArticleDOI
TL;DR: Peptide nucleic acids (PNA) were synthesized by a modified Merrifield method using several improvements and N1‐benzyloxycarbonyl‐N63‐methylimidazole triflate substantially outperformed acetic anhydride as a capping reagent.
Abstract: Peptide nucleic acids (PNA) were synthesized by a modified Merrifield method using several improvements. Activation by O-[benzotriazol-1-yl]-1,1,3,3-tetramethyluronium hexafluorophosphate in combination with in situ neutralization of the resin allowed efficient coupling of all four Boc-protected PNA monomers within 30 min. HPLC analysis of the crude product obtained from a fully automated synthesis of the model PNA oligomer H-CGGACTAAGTCCATTGC-Gly-NH2, indicated an average yield per synthetic cycle of 97.1%. N1-benzyloxycarbonyl-N6(3)-methylimidazole triflate substantially outperformed acetic anhydride as a capping reagent. The resin-bound PNAs were successfully cleaved by the 'low-high' trifluoromethanesulphonic acid procedure.

315 citations

Journal ArticleDOI
TL;DR: The results show that the hydrophobicity and α‐helical propensity of an amino acid sidechain are not correlated with each other, but each contributes to the stability of the amphipathicα‐helix.
Abstract: The aim of the present investigation is to determine the effect of alpha-helical propensity and sidechain hydrophobicity on the stability of amphipathic alpha-helices. Accordingly, a series of 18-residue amphipathic alpha-helical peptides has been synthesized as a model system where all 20 amino acid residues were substituted on the hydrophobic face of the amphipathic alpha-helix. In these experiments, all three parameters (sidechain hydrophobicity, alpha-helical propensity and helix stability) were measured on the same set of peptide analogues. For these peptide analogues that differ by only one amino acid residue, there was a 0.96 kcal/mole difference in alpha-helical propensity between the most (Ala) and the least (Gly) alpha-helical analogue, a 12.1-minute difference between the most (Phe) and the least (Asp) retentive analogue on the reversed-phase column, and a 32.3 degrees C difference in melting temperatures between the most (Leu) and the least (Asp) stable analogue. The results show that the hydrophobicity and alpha-helical propensity of an amino acid sidechain are not correlated with each other, but each contributes to the stability of the amphipathic alpha-helix. More importantly, the combined effects of alpha-helical propensity and sidechain hydrophobicity at a ratio of about 2:1 had optimal correlation with alpha-helix stability. These results suggest that both alpha-helical propensity and sidechain hydrophobicity should be taken into consideration in the design of alpha-helical proteins with the desired stability.

314 citations

Journal ArticleDOI
Jr Laszlo Otvos1
TL;DR: Careful selection of lead molecules based on the insect antibacterial peptides may extend their utility and produce viable alternatives to the conventional antimicrobial compounds for mammalian therapy.
Abstract: Insects are amazingly resistant to bacterial infections. To combat pathogens, insects rely on cellular and humoral mechanisms, innate immunity being dominant in the latter category. Upon detection of bacteria, a complex genetic cascade is activated, which ultimately results in the synthesis of a battery of antibacterial peptides and their release into the haemolymph. The peptides are usually basic in character and are composed of 20-40 amino acid residues, although some smaller proteins are also included in the antimicrobial repertoire. While the proline-rich peptides and the glycine-rich peptides are predominantly active against Gram-negative strains, the defensins selectively kill Gram-positive bacteria and the cecropins are active against both types. The insect antibacterial peptides are very potent: their IC50 (50% of the bacterial growth inhibition) hovers in the submicromolar or low micromolar range. The majority of the peptides act through disintegrating the bacterial membrane or interfering with membrane assembly, with the exception of drosocin, apidaecin and pyrrhocoricin which appear to deactivate a bacterial protein in a stereospecific manner. In accordance with their biological function, the membrane-active peptides form ordered structures, e.g. alpha-helices or beta-pleated sheets and often cast permeable ion-pores. Their cytotoxic properties were exploited in in vivo studies targeting tumour progression. Although the native peptides degrade quickly in biological fluids other than insect haemolymph, structural modifications render the peptides resistant against proteases without sacrificing biological activity. Indeed, a pyrrhocoricin analogue shows lack of toxicity in vitro and in vivo and protects mice against experimental Escherichia coli infection. Careful selection of lead molecules based on the insect antibacterial peptides may extend their utility and produce viable alternatives to the conventional antimicrobial compounds for mammalian therapy.

291 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202354
202280
202174
202043
201979
201866