scispace - formally typeset
JournalISSN: 1089-5639

Journal of Physical Chemistry A 

About: Journal of Physical Chemistry A is an academic journal. The journal publishes majorly in the area(s): Ab initio & Excited state. It has an ISSN identifier of 1089-5639. Over the lifetime, 35191 publication(s) have been published receiving 1067132 citation(s).
Papers
More filters

Journal ArticleDOI
Abstract: A new implementation of the conductor-like screening solvation model (COSMO) in the GAUSSIAN94 package is presented. It allows Hartree−Fock (HF), density functional (DF) and post-HF energy, and HF and DF gradient calculations: the cavities are modeled on the molecular shape, using recently optimized parameters, and both electrostatic and nonelectrostatic contributions to energies and gradients are considered. The calculated solvation energies for 19 neutral molecules in water are found in very good agreement with experimental data; the solvent-induced geometry relaxation is studied for some closed and open shell molecules, at HF and DF levels. The computational times are very satisfying: the self-consistent energy evaluation needs a time 15−30% longer than the corresponding procedure in vacuo, whereas the calculation of energy gradients is only 25% longer than in vacuo for medium size molecules.

6,673 citations


Journal ArticleDOI
Abstract: To make practical the molecular dynamics simulation of large scale reactive chemical systems (1000s of atoms), we developed ReaxFF, a force field for reactive systems. ReaxFF uses a general relationship between bond distance and bond order on one hand and between bond order and bond energy on the other hand that leads to proper dissociation of bonds to separated atoms. Other valence terms present in the force field (angle and torsion) are defined in terms of the same bond orders so that all these terms go to zero smoothly as bonds break. In addition, ReaxFF has Coulomb and Morse (van der Waals) potentials to describe nonbond interactions between all atoms (no exclusions). These nonbond interactions are shielded at short range so that the Coulomb and van der Waals interactions become constant as Rij → 0. We report here the ReaxFF for hydrocarbons. The parameters were derived from quantum chemical calculations on bond dissociation and reactions of small molecules plus heat of formation and geometry data for...

3,541 citations


Journal ArticleDOI
Abstract: We describe a global optimization technique using “basin-hopping” in which the potential energy surface is transformed into a collection of interpenetrating staircases. This method has been designed to exploit the features that recent work suggests must be present in an energy landscape for efficient relaxation to the global minimum. The transformation associates any point in configuration space with the local minimum obtained by a geometry optimization started from that point, effectively removing transition state regions from the problem. However, unlike other methods based upon hypersurface deformation, this transformation does not change the global minimum. The lowest known structures are located for all Lennard-Jones clusters up to 110 atoms, including a number that have never been found before in unbiased searches.

2,437 citations


Journal ArticleDOI
TL;DR: A near-linear relationship between the magnitude of the scale factor and the proportion of exact exchange is revealed and hybrid DFT calculations using a modified B3-LYP functional are probed.
Abstract: Scale factors for obtaining fundamental vibrational frequencies, low-frequency vibrational frequencies, zeropoint vibrational energies (ZPVEs), and thermal contributions to enthalpy and entropy have been derived through a least-squares approach from harmonic frequencies determined at more than 100 levels of theory. Wave function procedures (HF, MP2, QCISD, QCISD(T), CCSD, and CCSD(T)) and a large and representative range of density functional theory (DFT) approaches (B3-LYP, BMK, EDF2, M05-2X, MPWB1K, O3-LYP, PBE, TPSS, etc.) have been examined in conjunction with basis sets such as 6-31G(d), 6-31+G(d,p), 6-31G(2df,p), 6-311+G(d,p), and 6-311+G(2df,p). The vibrational frequency scale factors were determined by a comparison of theoretical harmonic frequencies with the corresponding experimental fundamentals utilizing a standard set of 1066 individual vibrations. ZPVE scale factors were generally obtained from a comparison of the computed ZPVEs with experimental ZPVEs for a smaller standard set of 39 molecules, though the effect of expansion to a 48 molecule data set was also examined. In addition to evaluating the scale factors for a wide range of levels of theory, we have also probed the effect on scale factors of varying the percentage of incorporated exact exchange in hybrid DFT calculations using a modified B3-LYP functional. This has revealed a near-linear relationship between the magnitude of the scale factor and the proportion of exact exchange. Finally, we have investigated the effect of basis set size on HF, MP2, B3-LYP, and BMK scale factors by deriving values with basis sets ranging from 6-31G(d) up to 6-311++G(3df,3pd) as well as with basis sets in the cc-pVnZ and aug-cc-pVnZ series and with the TZV2P basis.

2,017 citations


Journal ArticleDOI
TL;DR: The Next Reaction Method is presented, an exact algorithm to simulate coupled chemical reactions that uses only a single random number per simulation event, and is also efficient.
Abstract: There are two fundamental ways to view coupled systems of chemical equations: as continuous, represented by differential equations whose variables are concentrations, or as discrete, represented by stochastic processes whose variables are numbers of molecules. Although the former is by far more common, systems with very small numbers of molecules are important in some applications (e.g., in small biological cells or in surface processes). In both views, most complicated systems with multiple reaction channels and multiple chemical species cannot be solved analytically. There are exact numerical simulation methods to simulate trajectories of discrete, stochastic systems, (methods that are rigorously equivalent to the Master Equation approach) but these do not scale well to systems with many reaction pathways. This paper presents the Next Reaction Method, an exact algorithm to simulate coupled chemical reactions that is also efficient: it (a) uses only a single random number per simulation event, and (b) ...

1,737 citations


Network Information
Related Journals (5)
Physical Chemistry Chemical Physics

40.9K papers, 1.1M citations

94% related
Chemical Physics Letters

61K papers, 1.6M citations

93% related
International Reviews in Physical Chemistry

573 papers, 35.5K citations

92% related
Chemical Physics

10.4K papers, 235.6K citations

92% related
Journal of Chemical Physics

138.2K papers, 6.2M citations

91% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2021962
20201,092
20191,114
20181,014
20171,010
20161,079

Top Attributes

Show by:

Journal's top 5 most impactful authors

Lester Andrews

185 papers, 5.1K citations

David A. Dixon

120 papers, 6.4K citations

Henry F. Schaefer

108 papers, 2.5K citations

Mingfei Zhou

101 papers, 2.2K citations

Mark S. Gordon

92 papers, 3.5K citations