scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Physical Chemistry B in 2006"


Journal ArticleDOI
TL;DR: While nanorods with a higher aspect ratio along with a smaller effective radius are the best photoabsorbing nanoparticles, the highest scattering contrast for imaging applications is obtained from nanorod of high aspect ratio with a larger effective radius.
Abstract: The selection of nanoparticles for achieving efficient contrast for biological and cell imaging applications, as well as for photothermal therapeutic applications, is based on the optical properties of the nanoparticles. We use Mie theory and discrete dipole approximation method to calculate absorption and scattering efficiencies and optical resonance wavelengths for three commonly used classes of nanoparticles: gold nanospheres, silica−gold nanoshells, and gold nanorods. The calculated spectra clearly reflect the well-known dependence of nanoparticle optical properties viz. the resonance wavelength, the extinction cross-section, and the ratio of scattering to absorption, on the nanoparticle dimensions. A systematic quantitative study of the various trends is presented. By increasing the size of gold nanospheres from 20 to 80 nm, the magnitude of extinction as well as the relative contribution of scattering to the extinction rapidly increases. Gold nanospheres in the size range commonly employed (∼40 nm)...

4,065 citations


Journal ArticleDOI
TL;DR: The process yields a wrinkled sheet structure resulting from reaction sites involved in oxidation and reduction processes, and functionalized graphene produced by this method is electrically conducting.
Abstract: A process is described to produce single sheets of functionalized graphene through thermal exfoliation of graphite oxide. The process yields a wrinkled sheet structure resulting from reaction sites involved in oxidation and reduction processes. The topological features of single sheets, as measured by atomic force microscopy, closely match predictions of first-principles atomistic modeling. Although graphite oxide is an insulator, functionalized graphene produced by this method is electrically conducting.

3,353 citations


Journal ArticleDOI
TL;DR: The reduction of [Ag(NH(3))(2)](+) by maltose produced silver particles with a narrow size distribution with an average size of 25 nm, which showed high antimicrobial and bactericidal activity against Gram-positive and Gram-negative bacteria, including highly multiresistant strains such as methicillin-resistant Staphylococcus aureus.
Abstract: A one-step simple synthesis of silver colloid nanoparticles with controllable sizes is presented. In this synthesis, reduction of [Ag(NH3)2]+ complex cation by four saccharides was performed. Four saccharides were used: two monosaccharides (glucose and galactose) and two disaccharides (maltose and lactose). The syntheses performed at various ammonia concentrations (0.005−0.20 mol L-1) and pH conditions (11.5−13.0) produced a wide range of particle sizes (25−450 nm) with narrow size distributions, especially at the lowest ammonia concentrations. The average size, size distribution, morphology, and structure of particles were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), and UV/Visible absorption spectrophotometry. The influence of the saccharide structure (monosacharides versus disaccharides) on the size of silver particles is briefly discussed. The reduction of [Ag(NH3)2]+ by maltose produced silver particles with a narrow size distribution with an average size of ...

2,184 citations


Journal ArticleDOI
TL;DR: It is found that gold particles can be produced in a wide range of sizes, from 9 to 120 nm, with defined size distribution, following the earlier work of Turkevich and Frens.
Abstract: The growth of gold nanoparticles by reduction by citrate and ascorbic acid has been examined in detail to explore the parameter space of reaction conditions. It is found that gold particles can be produced in a wide range of sizes, from 9 to 120 nm, with defined size distribution, following the earlier work of Turkevich and Frens. The reaction is initiated thermally or in comparison by UV irradiation, which results in similar final products. The kinetics of the extinction spectra show the multiple steps of primary and secondary clustering leading to polycrystallites.

1,906 citations


Journal ArticleDOI
TL;DR: This work investigated the dependence of the sensitivity of the surface plasmon resonance response to changes in their surrounding environment and the relative contribution of optical scattering to the total extinction, on the size and shape of nanorods and the type of metal, that is, Au vs Ag.
Abstract: Plasmonic metal nanoparticles have great potential for chemical and biological sensor applications, due to their sensitive spectral response to the local environment of the nanoparticle surface and ease of monitoring the light signal due to their strong scattering or absorption. In this work, we investigated the dependence of the sensitivity of the surface plasmon resonance (frequency and bandwidth) response to changes in their surrounding environment and the relative contribution of optical scattering to the total extinction, on the size and shape of nanorods and the type of metal, that is, Au vs Ag. Theoretical consideration on the surface plasmon resonance condition revealed that the spectral sensitivity, defined as the relative shift in resonance wavelength with respect to the refractive index change of surrounding materials, has two controlling factors: first the bulk plasma wavelength, a property dependent on the metal type, and second on the aspect ratio of the nanorods which is a geometrical parameter. It is found that the sensitivity is linearly proportional to both these factors. To quantitatively examine the dependence of the spectral sensitivity on the nanorod metal composition and the aspect ratio, the discrete dipole approximation method was used for the calculation of optical spectra of Ag-Au alloy metal nanorods as a function of Ag concentration. It is observed that the sensitivity does not depend on the type of the metal but depends largely on the aspect ratio of nanorods. The direct dependence of the sensitivity on the aspect ratio becomes more prominent as the size of nanorods becomes larger. However, the use of larger nanoparticles may induce an excessive broadening of the resonance spectrum due to an increase in the contribution of multipolar excitations. This restricts the sensing resolution. The insensitivity of the plasmon response to the metal composition is attributable to the fact that the bulk plasma frequency of the metal, which determines the spectral dispersion of the real dielectric function of metals and the surface plasmon resonance condition, has a similar value for the noble metals. On the other hand, nanorods with higher Ag concentration show a great enhancement in magnitude and sharpness of the plasmon resonance band, which gives better sensing resolution despite similar plasmon response. Furthermore, Ag nanorods have an additional advantage as better scatterers compared with Au nanorods of the same size.

1,886 citations


Journal ArticleDOI
TL;DR: As the length of the alkyl chain increases, the nonpolar domains become larger and more connected and cause swelling of the ionic network, in a manner analogous to systems exhibiting microphase separation.
Abstract: Nanometer-scale structuring in room-temperature ionic liquids is observed using molecular simulation. The ionic liquids studied belong to the 1-alkyl-3-methylimidazolium family with hexafluorophosphate or with bis(trifluoromethanesulfonyl)amide as the anions, [Cnmim][PF6] or [Cnmim][(CF3SO2)2N], respectively. They were represented, for the first time in a simulation study focusing on long-range structures, by an all-atom force field of the AMBER/OPLS_AA family containing parameters developed specifically for these compounds. For ionic liquids with alkyl side chains longer than or equal to C4, aggregation of the alkyl chains in nonpolar domains is observed. These domains permeate a tridimensional network of ionic channels formed by anions and by the imidazolium rings of the cations. The nanostructures can be visualized in a conspicuous way simply by color coding the two types of domains (in this work, we chose red = polar and green = nonpolar). As the length of the alkyl chain increases, the nonpolar domai...

1,668 citations


Journal ArticleDOI
TL;DR: This work summarizes commonly employed models and presents their mathematical development as nucleation, geometrical contraction, diffusion, and reaction order.
Abstract: Many solid-state kinetic models have been developed in the past century. Some models were based on mechanistic grounds while others lacked theoretical justification and some were theoretically incorrect. Models currently used in solid-state kinetic studies are classified according to their mechanistic basis as nucleation, geometrical contraction, diffusion, and reaction order. This work summarizes commonly employed models and presents their mathematical development.

1,437 citations


Journal ArticleDOI
TL;DR: It is shown here both experimentally and theoretically that the formation of "coffee-ring" deposits observed at the edge of drying water droplets requires not only a pinned contact line but also suppression of Marangoni flow.
Abstract: We show here both experimentally and theoretically that the formation of “coffee-ring” deposits observed at the edge of drying water droplets requires not only a pinned contact line (Deegan et al. Nature 1997, 389, 827) but also suppression of Marangoni flow. For simple organic fluids, deposition actually occurs preferentially at the center of the droplet, due to a recirculatory flow driven by surface-tension gradients produced by the latent heat of evaporation. The manipulation of this Marangoni flow in a drying droplet should allow one in principle to control and redirect evaporation-driven deposition and assembly of colloids and other materials.

1,374 citations


Journal ArticleDOI
TL;DR: The Lambda(imp)/Lambda(NMR) well illustrates the degree of cation-anion aggregation in the RTILs at equilibrium, which can be explained by the effects of anionic donor and cationic acceptor abilities for the RTils having different anionic andcationic backbone structures with fixed counterparts, and by the inductive and dispersive forces for the various alkyl chain lengths in the cations.
Abstract: Room-temperature ionic liquids (RTILs) are liquids consisting entirely of ions, and their important properties, e.g., negligible vapor pressure, are considered to result from the ionic nature. However, we do not know how ionic the RTILs are. The ionic nature of the RTILs is defined in this study as the molar conductivity ratio (Λimp/ΛNMR), calculated from the molar conductivity measured by the electrochemical impedance method (Λimp) and that estimated by use of pulse-field-gradient spin−echo NMR ionic self-diffusion coefficients and the Nernst−Einstein relation (ΛNMR). This ratio is compared with solvatochromic polarity scales: anionic donor ability (Lewis basicity), ET(30), hydrogen bond donor acidity (α), and dipolarity/polarizability (π*), as well as NMR chemical shifts. The Λimp/ΛNMR well illustrates the degree of cation−anion aggregation in the RTILs at equilibrium, which can be explained by the effects of anionic donor and cationic acceptor abilities for the RTILs having different anionic and catio...

1,074 citations


Journal ArticleDOI
TL;DR: Impedance spectroscopy was applied to investigate the characteristics of dye-sensitized nanostructured TiO2 solar cells with high efficiencies of light to electricity conversion of 11.1% and 10.2%, allowing a separate analysis of the contribution of different resistive processes to the overall conversion efficiency.
Abstract: Impedance spectroscopy was applied to investigate the characteristics of dye-sensitized nanostructured TiO 2 solar cells (DSC) with high efficiencies of light to electricity conversion of 11.1% and 10.2%. The different parameters, that is, chemical capacitance, steady-state transport resistance, transient diffusion coefficient, and charge-transfer (recombination) resistance, have been interpreted in a unified and consistent framework, in which an exponential distribution of the localized states in the TiO 2 band gap plays a central role. The temperature variation of the chemical diffusion coefficient dependence on the Fermi-level position has been observed consistently with the standard multiple trapping model of electron transport in disordered semiconductors. A Tafel dependence of the recombination resistance dependence on bias potential has been rationalized in terms of the charge transfer from a distribution of surface states using the Marcus model of electron transfer. The current-potential curve of the solar cells has been independently constructed from the impedance parameters, allowing a separate analysis of the contribution of different resistive processes to the overall conversion efficiency.

1,049 citations


Journal ArticleDOI
Nick Serpone1
TL;DR: It is argued that the red-shift of the absorption edge is in fact due to formation of the color centers, and that while band gap narrowing is not an unknown occurrence in semiconductor physics it does necessitate heavy doping of the metal oxide semiconductor, thereby producing materials that may have completely different chemical compositions from that of TiO(2) with totally different band gap electronic structures.
Abstract: Second-generation TiO2-xDx photocatalysts doped with either anions (N, C, and S mostly) or cations have recently been shown to have their absorption edge red-shifted to lower energies (longer wavelengths), thus enhancing photonic efficiencies of photoassisted surface redox reactions. Some of the studies have proposed that this red-shift is caused by a narrowing of the band gap of pristine TiO2 (e.g., anatase, Ebg = 3.2 eV; absorption edge ca. 387 nm), while others have suggested the appearance of intragap localized states of the dopants. By contrast, a recent study by Kuznetsov and Serpone (J. Phys. Chem. B, in press) has proposed that the commonality in all these doped titanias rests with formation of oxygen vacancies and the advent of color centers (e.g., F, F+, F++, and Ti3+) that absorb the visible light radiation. This article reexamines the various claims and argues that the red-shift of the absorption edge is in fact due to formation of the color centers, and that while band gap narrowing is not an...

Journal ArticleDOI
TL;DR: With a series of discrete dipole approximation (DDA) calculations, each of a distinctive morphology, it is illustrated how shape control can tune the optical properties of silver nanostructures.
Abstract: Silver nanostructures are containers for surface plasmons - the collective oscillation of conduction electrons in phase with incident light. By controlling the shape of the container, one can control the ways in which electrons oscillate, and in turn how the nanostructure scatters light, absorbs light, and enhances local electric fields. With a series of discrete dipole approximation (DDA) calculations, each of a distinctive morphology, we illustrate how shape control can tune the optical properties of silver nanostructures. Calculated predictions are validated by experimental measurements performed on nanocubes with controllable corner truncation, right bipyramids, and pentagonal nanowires. Control of nanostructure shape allows optimization of plasmon resonance for molecular detection and spectroscopy.

Journal ArticleDOI
Motonari Adachi1, Masaru Sakamoto1, Jinting Jiu1, Yukio H. Ogata1, Seiji Isoda1 
TL;DR: Reliable values of the parameters relating to electron transport in dye-sensitized solar cells can be determined from measured spectra by electrochemical impedance spectroscopy when careful analysis of the measuredSpectra is done based on the classification and clarification of the same impedance equation consequent from the two models.
Abstract: The same equation was derived from two different impedance models based on the quite different physical descriptions proposed by Kern et al.(1) and by Bisquert.(2,3) Reliable values of the parameters relating to electron transport in dye-sensitized solar cells can be determined from measured spectra by electrochemical impedance spectroscopy when careful analysis of the measured spectra is done based on the classification and clarification of the same impedance equation consequent from the two models. The requisites for making highly efficient dye-sensitized solar cells were proposed.

Journal ArticleDOI
Jing Zhang1, Meijun Li1, Zhaochi Feng1, Jun Chen1, Can Li1 
TL;DR: It is suggested that the rutile phase starts to form at the interfaces between the anatase particles in the agglomerated TiO2 particles, which turns out to change into the r Rutile phase more easily than that in the outer surface region of theAgglomeration of the TiO1 particles.
Abstract: Phase transformation of TiO2 from anatase to rutile is studied by UV Raman spectroscopy excited by 325 and 244 nm lasers, visible Raman spectroscopy excited by 532 nm laser, X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV Raman spectroscopy is found to be more sensitive to the surface region of TiO2 than visible Raman spectroscopy and XRD because TiO2 strongly absorbs UV light. The anatase phase is detected by UV Raman spectroscopy for the sample calcined at higher temperatures than when it is detected by visible Raman spectroscopy and XRD. The inconsistency in the results from the above three techniques suggests that the anatase phase of TiO2 at the surface region can remain at relatively higher calcination temperatures than that in the bulk during the phase transformation. The TEM results show that small particles agglomerate into big particles when the TiO2 sample is calcined at elevated temperatures and the agglomeration of the TiO2 particles is along with the phase transformat...

Journal ArticleDOI
TL;DR: Using the same set of ions that was recently used to develop the SM6 continuum solvation model, SM6 retains its previously determined high accuracy; indeed, in most cases the mean unsigned error improves when it is tested against the more accurate reference data.
Abstract: Thermochemical cycles that involve pKa, gas-phase acidities, aqueous solvation free energies of neutral species, and gas-phase clustering free energies have been used with the cluster pair approximation to determine the absolute aqueous solvation free energy of the proton. The best value obtained in this work is in good agreement with the value reported by Tissandier et al. (Tissandier, M. D.; Cowen, K. A.; Feng, W. Y.; Gundlach, E.; Cohen, M. J.; Earhart, A. D.; Coe, J. V. J. Phys. Chem. A 1998, 102, 7787), who applied the cluster pair approximation to a less diverse and smaller data set of ions. We agree with previous workers who advocated the value of −265.9 kcal/mol for the absolute aqueous solvation free energy of the proton. Considering the uncertainties associated with the experimental gas-phase free energies of ions that are required to use the cluster pair approximation as well as analyses of various subsets of data, we estimate an uncertainty for the absolute aqueous solvation free energy of the...

Journal ArticleDOI
TL;DR: In this article, the fabrication of self-aligned highly ordered TiO2 nanotube arrays by potentiostatic anodization of Ti foil having lengths up to 134 μm is described.
Abstract: Described is the fabrication of self-aligned highly ordered TiO2 nanotube arrays by potentiostatic anodization of Ti foil having lengths up to 134 μm, representing well over an order of magnitude i...

Journal ArticleDOI
TL;DR: Co3O4/BiVO4 composite photocatalyst with a p-n heterojunction semiconductor structure has been synthesized by the impregnation method and exhibits enhanced photocatalytic activity for phenol degradation under visible light irradiation.
Abstract: Co3O4/BiVO4 composite photocatalyst with a p−n heterojunction semiconductor structure has been synthesized by the impregnation method. The physical and photophysical properties of the composite photocatalyst have been characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transimission electron microscopy (TEM), BET surface area, and UV−visible diffuse reflectance spectra. Co is present as p-type Co3O4 and disperses on the surface of n-type BiVO4 to constitute a heterojunction composite. The photocatalyst exhibits enhanced photocatalytic activity for phenol degradation under visible light irradiation. The highest efficiency is observed when calcined at 300 °C with 0.8 wt % cobalt content. On the basis of the calculated energy band positions and PL spectra, the mechanism of enhanced photocatalytic activity has been discussed.

Journal ArticleDOI
TL;DR: The internanorod plasmon coupling scheme concluded from the experimental results and simulations is found to be qualitatively consistent with the molecular exciton coupling theory, which has been used to describe the optical spectra of H and J aggregates of organic molecules.
Abstract: The shape anisotropy of nanorods gives rise to two distinct orientational modes by which nanorods can be assembled, i.e., end-to-end and side-by-side, analogous to the well-known H and J aggregation in organic chromophores. Optical absorption spectra of gold nanorods have earlier been observed to show a red-shift of the longitudinal plasmon band for the end-to-end linkage of nanorods, resulting from the plasmon coupling between neighboring nanoparticles, similar to the assembly of gold nanospheres. We observe, however, that side-by-side linkage of nanorods in solution shows a blue-shift of the longitudinal plasmon band and a red-shift of the transverse plasmon band. Optical spectra calculated using the discrete dipole approximation method were used to simulate plasmon coupling in assembled nanorod dimers. The longitudinal plasmon band is found to shift to lower energies for end-to-end assembly, but a shift to higher energies is found for the side-by-side orientation, in agreement with the optical absorpti...

Journal ArticleDOI
TL;DR: ZnO nanorod arrays were fabricated using a hydrothermal method and found that, while the defect emission can be significantly reduced by annealing at 200 degrees C, the rods still have large defect concentrations as confirmed by their low positron diffusion length and short PL decay time constants.
Abstract: ZnO nanorod arrays were fabricated using a hydrothermal method. The nanorods were studied by scanning electron microscopy, photoluminescence (PL), time-resolved PL, X-ray photoelectron spectroscopy, and positron annihilation spectroscopy before and after annealing in different environments and at different temperatures. Annealing atmosphere and temperature had significant effects on the PL spectrum, while in all cases the positron diffusion length and PL decay times were increased. We found that, while the defect emission can be significantly reduced by annealing at 200 °C, the rods still have large defect concentrations as confirmed by their low positron diffusion length and short PL decay time constants.

Journal ArticleDOI
TL;DR: The construction and performance of dye-sensitized solar cells (DSCs) based on arrays of ZnO nanowires coated with thin shells of amorphous Al(2)O(3) or anatase TiO( 2) by atomic layer deposition is described and it is found that alumina shells of all thicknesses act as insulating barriers that improve cell open-circuit voltage (V(OC) and fill factor with little current falloff.
Abstract: We describe the construction and performance of dye-sensitized solar cells (DSCs) based on arrays of ZnO nanowires coated with thin shells of amorphous Al2O3 or anatase TiO2 by atomic layer deposition. We find that alumina shells of all thicknesses act as insulating barriers that improve cell open-circuit voltage (VOC) only at the expense of a larger decrease in short-circuit current density (JSC). However, titania shells 10−25 nm in thickness cause a dramatic increase in VOC and fill factor with little current falloff, resulting in a substantial improvement in overall conversion efficiency, up to 2.25% under 100 mW cm-2 AM 1.5 simulated sunlight. The superior performance of the ZnO−TiO2 core−shell nanowire cells is a result of a radial surface field within each nanowire that decreases the rate of recombination in these devices. In a related set of experiments, we have found that TiO2 blocking layers deposited underneath the nanowire films yield cells with reduced efficiency, in contrast to the beneficial...

Journal ArticleDOI
TL;DR: The seed-mediated approach to making gold nanorods in aqueous surfactant solutions has become tremendously popular in recent years, but unlike the use of strong chemical reductants to make spherical gold nanoparticles, the growth of gold Nanorods requires weak reducing conditions, leading to an unknown degree of gold reduction.
Abstract: The seed-mediated approach to making gold nanorods in aqueous surfactant solutions has become tremendously popular in recent years Unlike the use of strong chemical reductants to make spherical gold nanoparticles, the growth of gold nanorods requires weak reducing conditions, leading to an unknown degree of gold reduction The metal content of gold nanorods, made in high yield in the presence of silver ion, is determined by inductively coupled plasma atomic emission spectroscopy Through the use of the known gold concentration in nanorods, molar extinction coefficients are calculated for nanorods of varying aspect ratios from 20 to 45 The extinction coefficients at the longitudinal plasmon band peak maxima for these nanorods vary from 25 × 109 to 55 × 109 M-1 cm-1, respectively, on a per-particle basis Many of the gold ions present in the growth solution remain unreacted; insights into the growth mechanism of gold nanorods are discussed

Journal ArticleDOI
TL;DR: The shape-controlled synthesis of hematite nanostructures with a gradient in the diameters and surface areas through an improved synthetic strategy gives a guideline for the study of the size-dependent properties for functional materials as well as further applications for magnetic materials, lithium-ion batteries, and gas sensors.
Abstract: We demonstrated in this paper the shape-controlled synthesis of hematite (alpha-Fe(2)O(3)) nanostructures with a gradient in the diameters (from less than 20 nm to larger than 300 nm) and surface areas (from 5.9 to 52.3 m(2)/g) through an improved synthetic strategy by adopting a high concentration of inorganic salts and high temperature in the synthesis systems to influence the final products of hematite nanostructures. The benefits of the present work also stem from the first report on the <20-nm-diameter and porous hematite nanorods, as well as a new facile strategy to the less-than-20-nm nanorods, because the less-than-20-nm diameter size meets the vital size domain for magnetization properties in hematite. Note that the porous and nonporous hematite one-dimensional nanostructures with diameter gradients give us the first opportunity to investigate the Morin temperature evolution of nanorod diameter and porosity. Evidently, the magnetic properties for nanorods exhibit differences compared with those for the spherical particle counterparts. Hematite nanorods are strongly dependent on their diameter size and porosity, where the magnetization is not sensitive to the size evolution from submicron particles to the 60-90 nm nanorods, while the magnetic properties change significantly in the case of <20 nm. In other words, for the magnetic properties of nanorods, in a comparable size range, the porous existence could also influence the magnetic behavior. Moreover, applications in formaldehyde (HCHO) gas sensors and lithium batteries for the hematite nanostructures with the diameter/surface area gradient reveal that the performance of electrochemical and gas-sensor properties strongly depends on the diameter size and Brunauer-Emmett-Teller (BET) surface areas, which is consistent with the crystalline point of view. Thus, this work not only provides the first example of the fabrication of hematite nanostructure sensors for detecting HCHO gas, but also reveals that the surface area or diameter size of hematite nanorods can also influence the lithium intercalation performances. These results give us a guideline for the study of the size-dependent properties for functional materials as well as further applications for magnetic materials, lithium-ion batteries, and gas sensors.

Journal ArticleDOI
TL;DR: Quantum calculations on cluster models of nitrided and un-nitrided graphite sheets show that carbon radical sites formed adjacent to substitutional N in graphite are active for O2 electroreduction to H2O2 via and adsorbed OOH intermediate.
Abstract: An experimental and theoretical study of electroreduction of oxygen to hydrogen peroxide is presented. The experimental measurements of nitrided Ketjenblack indicated an onset potential for reduction of approximately 0.5 V (SHE) compared to the onset potential of 0.2 V observed for untreated carbon. Quantum calculations on cluster models of nitrided and un-nitrided graphite sheets show that carbon radical sites formed adjacent to substitutional N in graphite are active for O2 electroreduction to H2O2 via and adsorbed OOH intermediate. The weak catalytic effect of untreated carbon is attributed to weaker bonding of OOH to the H atom-terminated graphite edges. Substitutional N atoms that are far from graphite sheet edges will be active, and those that are close to the edges will be less active. Interference from electrochemical reduction of H atoms on the reactive sites is considered, and it is shown that in the potential range of H2O2 formation the reactive sites are not blocked by adsorbed H atoms.

Journal ArticleDOI
TL;DR: Results show that employing nanoparticle/nanowire composites represents a promising approach for further improving the efficiencies of sensitized solar cells.
Abstract: Dye-sensitized solar cells were fabricated based on the composites of anatase TiO2 nanoparticles and single crystalline anatase TiO2 nanowires. Nanoparticle/nanowire composites can possess the advantages of both building blocks, i.e., the high surface area of nanoparticle aggregates and the rapid electron transport rate and the light scattering effect of single-crystalline nanowires. Three different composites were prepared with 5 wt %, 20 wt %, and 77 wt % nanowires, respectively. The performances of composite solar cells were compared with pure nanoparticle cells at a series of film thickness. With low nanowire concentrations (5 wt % and 20 wt %), the composite films maintain similar specific surface area as the pure nanoparticle films, while the composite cells show higher short-circuit current density and open-circuit voltage. An enhancement of power efficiency from 6.7% for pure nanoparticle cells to 8.6% for the composite cell with 20 wt % nanowires has been achieved under 1 Sun AM1.5 illumination (...

Journal ArticleDOI
TL;DR: UV-visible diffuse reflection spectra indicated that the BiVO(4) nanosheets had outstanding spectral selectivity and improved color properties compared with the corresponding bulk materials.
Abstract: Bismuth vanadate (BiVO(4)) nanosheets have been hydrothermally synthesized in the presence of sodium dodecyl benzene sulfonate (SDBS) as a morphology-directing template. The nanosheets were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) equipped with an X-ray energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), IR spectroscopy, transmission electron microscopy (TEM), and high-resolution TEM (HR-TEM). The BiVO(4) nanosheets had a monoclinic structure, were ca. 10-40 nm thick, and showed a preferred (010) surface orientation. The formation mechanism and the effects of reaction temperature and time on the products were investigated. UV-visible diffuse reflection spectra indicated that the BiVO(4) nanosheets had outstanding spectral selectivity and improved color properties compared with the corresponding bulk materials. Furthermore, the nanosheets showed good visible photocatalytic activities as determined by degradation of N,N,N',N'-tetraethylated rhodamine (RB) under solar irradiation.

Journal ArticleDOI
TL;DR: Grand canonical Monte Carlo simulations performed to predict adsorption isotherms for hydrogen in a series of 10 isoreticular metal-organic frameworks (IRMOFs) show acceptable agreement with the limited experimental results from the literature.
Abstract: Grand canonical Monte Carlo simulations were performed to predict adsorption isotherms for hydrogen in a series of 10 isoreticular metal−organic frameworks (IRMOFs). The results show acceptable agreement with the limited experimental results from the literature. The effects of surface area, free volume, and heat of adsorption on hydrogen uptake were investigated by performing simulations over a wide range of pressures on this set of materials, which all have the same framework topology and surface chemistry but varying pore sizes. The results reveal the existence of three adsorption regimes: at low pressure (loading), hydrogen uptake correlates with the heat of adsorption; at intermediate pressure, uptake correlates with the surface area; and at the highest pressures, uptake correlates with the free volume. The accessible surface area and free volume, calculated from the crystal structures, were also used to estimate the potential of these materials to meet gravimetric and volumetric targets for hydrogen...

Journal ArticleDOI
Chun Hu1, Yongqing Lan1, Jiuhui Qu1, Xuexiang Hu1, Aimin Wang1 
TL;DR: The results indicate that AgBr is the main photoactive species for the destruction of azodyes and bacteria under visible light.
Abstract: Ag/AgBr/TiO2 was prepared by the deposition-precipitation method and was found to be a novel visible light driven photocatalyst. The catalyst showed high efficiency for the degradation of nonbiodegradable azodyes and the killing of Escherichia coli under visible light irradiation (lambda>420 nm). The catalyst activity was maintained effectively after successive cyclic experiments under UV or visible light irradiation without the destruction of AgBr. On the basis of the characterization of X-ray diffraction, X-ray photoelectron spectroscopy, and Auger electron spectroscopy, the surface Ag species mainly exist as Ag0 in the structure of all samples before and after reaction, and Ag0 species scavenged hVB+ and then trapped eCB- in the process of photocatalytic reaction, inhibiting the decomposition of AgBr. The studies of ESR and H2O2 formation revealed that *OH and O2*- were formed in visible light irradiated aqueous Ag/AgBr/TiO2 suspension, while there was no reactive oxygen species in the visible light irradiated Ag0/TiO2 system. The results indicate that AgBr is the main photoactive species for the destruction of azodyes and bacteria under visible light. In addition, the bactericidal efficiency and killing mechanism of Ag/AgBr/TiO2 under visible light irradiation are illustrated and discussed.

Journal ArticleDOI
TL;DR: Addition of 4-tert-butylpyridine to redox electrolytes used in dye-sensitized TiO2 solar cells has a large effect on their performance, and the working mechanism can be summarized.
Abstract: Addition of 4-tert-butylpyridine (4TBP) to redox electrolytes used in dye-sensitized TiO2 solar cells has a large effect on their performance. In an electrolyte containing 0.7 M LiI and 0.05 M I2 in 3-methoxypropionitrile, addition of 0.5 M 4TBP gave an increase of the open-circuit potential of 260 mV. Using charge extraction and electron lifetime measurements, this increases could be attributed to a shift of the TiO2 band edge toward negative potentials (responsible for 60% of the voltage increase) and to an increase of the electron lifetime (40%). At a lower 4TBP concentration the shift of the band edge was similar, but the effect on the electron lifetime was less pronounced. The working mechanism of 4TBP can be summarized as follows: (1) 4TBP affects the surface charge of TiO2 by decreasing the amount of adsorbed protons and/or Li+ ions. (2) It decreases the recombination of electrons in TiO2 with triiodide in the electrolyte by preventing triiodide access to the TiO2 surface and/or by complexation wi...

Journal ArticleDOI
TL;DR: Applications of these small-size, low-power, electronic sensor arrays are in the detection and identification of toxic/combustible gases for personal safety and air pollution monitoring.
Abstract: Here we demonstrate design, fabrication, and testing of electronic sensor array based on single-walled carbon nanotubes (SWNTs). Multiple sensor elements consisting of isolated networks of SWNTs were integrated into Si chips by chemical vapor deposition (CVD) and photolithography processes. For chemical selectivity, SWNTs were decorated with metal nanoparticles. The differences in catalytic activity of 18 catalytic metals for detection of H2, CH4, CO, and H2S gases were observed. Furthermore, a sensor array was fabricated by site-selective electroplating of Pd, Pt, Rh, and Au metals on isolated SWNT networks located on a single chip. The resulting electronic sensor array, which was comprised of several functional SWNT network sensors, was exposed to a randomized series of toxic/combustible gases. Electronic responses of all sensor elements were recorded and the sensor array data was analyzed using pattern-recognition analysis tools. Applications of these small-size, low-power, electronic sensor arrays are...

Journal ArticleDOI
TL;DR: It is reported that the activation process of carbon black and iron acetate heat-treated in NH(3) comprises three consecutive steps: incorporation of nitrogen atoms in the carbon, micropore formation through reaction between carbon and ammonia, and completion of active sites in the micropores by reaction of iron with ammonia.
Abstract: Limited availability of platinum is a potential threat to fuel cell commercialization. Since the 1970s, alternative catalysts to the electrochemical reduction of oxygen have been obtained from heat treatment at T > 600 degrees C of carbon with a non-noble metal and a source of nitrogen atoms. However, the process by which the heat treatment activates these materials remains an open question. Here, we report that the activation process of carbon black and iron acetate heat-treated in NH(3) comprises three consecutive steps: (i) incorporation of nitrogen atoms in the carbon, (ii) micropore formation through reaction between carbon and ammonia, and (iii) completion of active sites in the micropores by reaction of iron with ammonia. Step (ii) is the slowest. Moreover, the microporous surface per mass of catalyst controls the macroscopic activity when enough nitrogen atoms are incorporated in the structure of the carbon support. These facts should help in determining the structure of the active sites and in identifying methods to increase the site density of such catalysts.