scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Physical Oceanography in 2006"


Journal ArticleDOI
TL;DR: The Modeling Eddies in the Southern Ocean (MESO) project uses numerical sensitivity studies to examine the role played by Southern Ocean winds and eddies in determining the density structure of the global ocean and the magnitude and structure of global overturning circulation as discussed by the authors.
Abstract: The Modeling Eddies in the Southern Ocean (MESO) project uses numerical sensitivity studies to examine the role played by Southern Ocean winds and eddies in determining the density structure of the global ocean and the magnitude and structure of the global overturning circulation. A hemispheric isopycnal-coordinate ocean model (which avoids numerical diapycnal diffusion) with realistic geometry is run with idealized forcing at a range of resolutions from coarse (2°) to eddy-permitting (1/6°). A comparison of coarse resolutions with fine resolutions indicates that explicit eddies affect both the structure of the overturning and the response of the overturning to wind stress changes. While the presence of resolved eddies does not greatly affect the prevailing qualitative picture of the ocean circulation, it alters the overturning cells involving the Southern Ocean transformation of dense deep waters and light waters of subtropical origin into intermediate waters. With resolved eddies, the surface-t...

459 citations


Journal ArticleDOI
TL;DR: In this paper, internal wave-wave interaction theories and observations support a parameterization for the turbulent dissipation rate e and eddy diffusivity K that depends on internal wave shear and strain variances.
Abstract: Internal wave–wave interaction theories and observations support a parameterization for the turbulent dissipation rate e and eddy diffusivity K that depends on internal wave shear 〈Vz2〉 and strain 〈ξz2〉 variances. Its latest incarnation is applied to about 3500 lowered ADCP/CTD profiles from the Indian, Pacific, North Atlantic, and Southern Oceans. Inferred diffusivities K are functions of latitude and depth, ranging from 0.03 × 10−4 m2 s−1 within 2° of the equator to (0.4–0.5) × 10−4 m2 s−1 at 50°–70°. Diffusivities K also increase with depth in tropical and subtropical waters. Diffusivities below 4500-m depth exhibit a peak of 0.7 × 10−4 m2 s−1 between 20° and 30°, latitudes where semidiurnal parametric subharmonic instability is expected to be active. Turbulence is highly heterogeneous. Though the bulk of the vertically integrated dissipation ∫e is contributed from the main pycnocline, hotspots in ∫e show some correlation with small-scale bottom roughness and near-bottom flow at sites where st...

406 citations


Journal ArticleDOI
TL;DR: In this article, the relation between the interior and the surface dynamics for nonlinear baroclinically unstable flows is examined using the concepts of potential vorticity, and the dynamics are decomposed in terms of a solution forced by the three-dimensional (3D) potential Vorticity and a solution forcing by the surface boundary condition in density.
Abstract: In this study, the relation between the interior and the surface dynamics for nonlinear baroclinically unstable flows is examined using the concepts of potential vorticity. First, it is demonstrated that baroclinic unstable flows present the property that the potential vorticity mesoscale and submesoscale anomalies in the ocean interior are strongly correlated to the surface density anomalies. Then, using the invertibility of potential vorticity, the dynamics are decomposed in terms of a solution forced by the three-dimensional (3D) potential vorticity and a solution forced by the surface boundary condition in density. It is found that, in the upper oceanic layers, the balanced flow induced only by potential vorticity is strongly anticorrelated with that induced only by the surface density with a dominance of the latter. The major consequence is that the 3D balanced motions can be determined from only the surface density and the characteristics of the basin-scale stratification by solving an elliptic equation. These properties allow for the possibility to reconstruct the 3D balanced velocity field of the upper layers from just the knowledge of the surface density by using a simpler model, that is, an “effective” surface quasigeostrophic model. All these results are validated through the examination of a primitive equation simulation reproducing the dynamics of the Antarctic Circumpolar Current.

318 citations


Journal ArticleDOI
TL;DR: Based on a weakly non-Gaussian theory, the occurrence probability of freak waves is formulated in terms of the number of waves in a time series and the surface elevation kurtosis.
Abstract: Based on a weakly non-Gaussian theory, the occurrence probability of freak waves is formulated in terms of the number of waves in a time series and the surface elevation kurtosis. Finite kurtosis gives rise to a significant enhancement of freak wave generation in comparison with the linear narrowbanded wave theory. For a fixed number of waves, the estimated amplification ratio of freak wave occurrence due to the deviation from the Gaussian theory is 50%–300%. The results of the theory are compared with laboratory and field data.

256 citations


Journal ArticleDOI
TL;DR: In this article, a 1/18° nested ocean model is used to determine locations, volume transports, and temporal variations of Kuroshio onshore fluxes across the shelf break of the East China Sea (ECS).
Abstract: A 1/18° nested ocean model is used to determine locations, volume transports, and temporal variations of Kuroshio onshore fluxes across the shelf break of the East China Sea (ECS). The Kuroshio onshore flux shows strong seasonality: maximum (∼3 Sv; 1 Sv ≡ 106 m3 s−1) in autumn and minimum (<0.5 Sv) in summer. Another short-term (∼17 days) variation due to Kuroshio meanders introduces large fluctuations in the onshore fluxes but its seasonal average almost vanishes. The Kuroshio onshore fluxes have two major sources, Kuroshio intrusion northeast of Taiwan and Kuroshio separation southwest of Kyushu; the former provides larger onshore flux than the latter. Therefore, in addition to the waters from the Taiwan Strait and the Kuroshio separation region southwest of Kyushu, the water due to the Kuroshio intrusion northeast of Taiwan is also a major source of the Tsushima Warm Current. A vorticity equation is used to separate the contribution of surface Ekman transport to the Kuroshio onshore fluxes in ...

232 citations


Journal ArticleDOI
TL;DR: In this paper, near-surface diffusivities associated with geostrophic eddies in the Southern Ocean are estimated by numerically monitoring the lengthening of idealized tracer contours as they are strained by surface geosprophic flow observed by satellite altimetry.
Abstract: Near-surface “effective diffusivities” associated with geostrophic eddies in the Southern Ocean are estimated by numerically monitoring the lengthening of idealized tracer contours as they are strained by surface geostrophic flow observed by satellite altimetry The resulting surface diffusivities show considerable spatial variability and are large (2000 m2 s−1) on the equatorward flank of the Antarctic Circumpolar Current and are small (500 m2 s−1) at the jet axis Regions of high and low effective diffusivity are shown to be collocated with regions of, respectively, weak and strong isentropic potential vorticity gradients The maps of diffusivity are used, along with climatological estimates of surface wind stress and air–sea buoyancy flux, to estimate surface meridional residual flows and the relative importance of Eulerian and eddy-induced circulation in the streamwise-averaged dynamics of the Antarctic Circumpolar Current

224 citations


Journal ArticleDOI
TL;DR: In this paper, the authors measured the wave-induced pressure in airflow over water waves and revealed new aspects of wave amplification by wind, the so-called wind input source function, in the energy balance equation for wind-driven water waves.
Abstract: Nearly all of the momentum transferred from wind to waves comes about through wave-induced pressure acting on the slopes of waves: known as form drag. Direct field measurements of the wave-induced pressure in airflow over water waves are difficult and consequently rare. Those that have been reported are for deep water conditions and conditions in which the level of forcing, measured by the ratio of wind speed to the speed of the dominant (spectral peak) waves, is quite weak, U10/cp < 3. The data reported here were obtained over a large shallow lake during the Australian Shallow Water Experiment (AUSWEX). The propagation speeds of the dominant waves were limited by depth and the waves were correspondingly steep. This wider range of forcing and concomitant wave steepness revealed some new aspects of the rate of wave amplification by wind, the so-called wind input source function, in the energy balance equation for wind-driven water waves. It was found that the exponential growth rate parameter (fra...

219 citations


Journal ArticleDOI
TL;DR: In this article, a ray model is developed that quantifies the effects of spatially variable topography, stratification, and planetary vorticity on the horizontal propagation of internal gravity modes.
Abstract: The baroclinic tides play a significant role in the energy budget of the abyssal ocean. Although the basic principles of generation and propagation are known, a clear understanding of these phenomena in the complex ocean environment is only now emerging. To advance this effort, a ray model is developed that quantifies the effects of spatially variable topography, stratification, and planetary vorticity on the horizontal propagation of internal gravity modes. The objective is to identify “baroclinic shoals” where wave energy is spatially concentrated and enhanced dissipation might be expected. The model is then extended to investigate the propagation of internal waves through a barotropic mesoscale current field. The refraction of tidally generated internal waves at the Hawaiian Ridge is examined using an ensemble of mesoscale background realizations derived from weekly Ocean Topography Experiment (TOPEX)/Poseidon altimetric measurements. The path of mode 1 is only slightly affected by typical cur...

216 citations


Journal ArticleDOI
TL;DR: In this paper, a common definition of a coherent structure has been used to study the statistical properties of Mediterranean Sea vortices observed by satellite altimeters over a 7-yr period.
Abstract: The presence of coherent vortices makes observed mesoscale fields of the ocean resemble twodimensional turbulence. Using this analogy, a common definition of a coherent structure has been used to study the statistical properties of Mediterranean Sea vortices observed by satellite altimeters over a 7-yr period. A vortex has been defined as the simply connected region with values of the Okubo–Weiss parameter W 0.2W, where W is the spatial standard deviation of W, and the same sign of vorticity. This definition is shown to be appropriate to detect and characterize, statistically, properties such as size, mean kinetic energy, and amplitude of vortices in the Mediterranean basin from sea level anomaly maps corresponding to the period from October 1992 to October 1999. The distribution of such properties for the Mediterranean vortices suggests a heuristic criterion to extract and select very coherent and long-lived vortices from the whole set of structures identified in altimetric maps. Such coherent vortices appear to be selected for amplitudes greater than 2W, where the amplitude has been defined in terms of the Okubo– Weiss parameter rather than vorticity, and strongly correspond to those reported from observations with independent data. Systematic locating and tracking of such vortices provide, for the first time, a general picture of their preferential paths in the Mediterranean basin, which are characterized by complex but rather well defined patterns.

202 citations


Journal ArticleDOI
TL;DR: In this paper, an integrated analysis of turbulence observations from four unique instrument platforms obtained over the Hawaiian Ridge leads to an assessment of the vertical, cross-ridge, and along-ridge structure of turbulence dissipation rate and diffusivity.
Abstract: An integrated analysis of turbulence observations from four unique instrument platforms obtained over the Hawaiian Ridge leads to an assessment of the vertical, cross-ridge, and along-ridge structure of turbulence dissipation rate and diffusivity. The diffusivity near the seafloor was, on average, 15 times that in the midwater column. At 1000-m depth, the diffusivity atop the ridge was 30 times that 10 km off the ridge, decreasing to background oceanic values by 60 km. A weak (factor of 2) spring–neap variation in dissipation was observed. The observations also suggest a kinematic relationship between the energy in the semidiurnal internal tide (E) and the depth-integrated dissipation (D), such that D ∼ E1±0.5 at sites along the ridge. This kinematic relationship is supported by combining a simple knife-edge model to estimate internal tide generation, with wave–wave interaction time scales to estimate dissipation. The along-ridge kinematic relationship and the observed vertical and cross-ridge st...

190 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the subtidal salt balance and the mechanisms driving the downgradient salt flux in the Hudson River estuary using measurements from a crosschannel mooring array of current meters, temperature and conductivity sensors, and cross-channel and along-estuary shipboard surveys obtained during the spring of 2002.
Abstract: The subtidal salt balance and the mechanisms driving the downgradient salt flux in the Hudson River estuary are investigated using measurements from a cross-channel mooring array of current meters, temperature and conductivity sensors, and cross-channel and along-estuary shipboard surveys obtained during the spring of 2002. Steady (subtidal) vertical shear dispersion, resulting from the estuarine exchange flow, was the dominant mechanism driving the downgradient salt flux, and varied by over an order of magnitude over the spring–neap cycle, with maximum values during neap tides and minimum values during spring tides. Corresponding longitudinal dispersion rates were as big as 2500 m 2 s 1 during neap tides. The salinity intrusion was not in a steady balance during the study period. During spring tides, the oceanward advective salt flux resulting from the net outflow balanced the time rate of change of salt content landward of the study site, and salt was flushed out of the estuary. During neap tides, the landward steady shear dispersion salt flux exceeded the oceanward advective salt flux, and salt entered the estuary. Factor-of-4 variations in the salt content occurred at the spring–neap time scale and at the time scale of variations in the net outflow. On average, the salt flux resulting from tidal correlations between currents and salinity (tidal oscillatory salt flux) was an order of magnitude smaller than that resulting from steady shear dispersion. During neap tides, this flux was minimal (or slightly countergradient) and was due to correlations between tidal currents and vertical excursions of the halocline. During spring tides, the tidal oscillatory salt flux was driven primarily by oscillatory shear dispersion, with an associated longitudinal dispersion rate of about 130 m 2 s 1 .

Journal ArticleDOI
TL;DR: In this paper, it is pointed out that accounting for an ocean surface velocity dependence in the wind stress τ can lead to a significant reduction in the rate at which winds input mechanical energy to the geostrophic circulation.
Abstract: It is pointed out that accounting for an ocean surface velocity dependence in the wind stress τ can lead to a significant reduction in the rate at which winds input mechanical energy to the geostrophic circulation Specifically, the wind stress is taken to be a quadratic function of Ua − uo, where Ua and uo are the 10-m wind and ocean surface velocity, respectively Because |Ua| is typically large relative to |uo|, accounting for a uo dependence leads only to relatively small changes in τ The change to the basin-averaged wind power source, however, is considerably larger Scaling arguments and quasigeostrophic simulations in a basin setting are presented They suggest that the power source (or rate of energy input) is reduced by roughly 20%–35%

Journal ArticleDOI
TL;DR: In this paper, the authors show that in the absence of sources and sinks of potential vorticity (PV) conservation implies a strong constraint on the time evolution of the mean density at a given depth.
Abstract: Potential vorticity (PV) conservation implies a strong constraint on the time evolution of the mean density at a given depth. The authors show that, on an f plane and in the absence of sources and sinks of PV, it only depends on two terms, namely, the time evolution of the product between density anomaly and relative vorticity and the vertical PV flux. This primitive equation result, which applies at any depth, suggests that the ageostrophic dynamics induced by baroclinic eddies strongly affect the mean oceanic stratification profile. This result is illustrated for two simple initial-value simulations of a baroclinic, balanced jet. For initial situations propitious to surface frontogenesis, the simulations show a restratification over the whole water column characterized by the amplification in time of the Brunt–Vaisala frequency in the upper oceanic layers. In the absence of surface frontogenesis, such as when the jet is initialized at the middepth of the water column, the restratification is much weaker and slower. Because both simulations have similar kinetic energy and growth rate of baroclinic instability, the results clearly reveal that the restratification is driven by surface frontogenesis in the first case and by vertical PV flux in the interior in the second case. The authors also point out that the dynamics of the interior PV is tightly related to the surface dynamics because of total mass conservation.

Journal ArticleDOI
TL;DR: In this article, the energy, momentum, and mass-flux exchanges between surface waves and underlying Eulerian mean flows are considered, and terms in addition to the classical wave "radiation stress" are identified.
Abstract: The energy, momentum, and mass-flux exchanges between surface waves and underlying Eulerian mean flows are considered, and terms in addition to the classical wave “radiation stress” are identified. The formulation is made in terms of the vertically integrated flow. The various terms are identified with other analyses and interpreted in terms of physical mechanisms, permitting reasonable estimates of the associated depth dependencies. One term is identified with the integrated “CL vortex force” implemented, for example, in simulations of Langmuir circulation. However, as illustrated with a simple example of steady refraction across a shear zone, other terms of the same order can significantly alter the results. The classic example of long waves forced by short-wave groups is also revisited. In this case, an apparent singularity arising in shallow water is countered by finite-amplitude dispersion corrections, these being formally of the same order as the forced long-wave response, and becoming significant or dominant as shallow water is approached.

Journal ArticleDOI
TL;DR: The phase-averaged energy evolution for random surface waves interacting with oceanic turbulence is investigated in this paper, where it is assumed that the wave motion and the turbulent fluxes are not correlated on the scale of the wave period.
Abstract: The phase-averaged energy evolution for random surface waves interacting with oceanic turbulence is investigated. The change in wave energy balances the change in the production of turbulent kinetic energy (TKE). Outside the surface viscous layer and the bottom boundary layer the turbulent flux is not related to the wave-induced shear so that eddy viscosity parameterizations cannot be applied. Instead, it is assumed that the wave motion and the turbulent fluxes are not correlated on the scale of the wave period. Using a generalized Lagrangian average it is found that the mean wave-induced shears, despite zero vorticity, yield a production of TKE as if the Stokes drift shear were a mean flow shear. This result provides a new interpretation of a previous derivation from phase-averaged equations by McWilliams et al. It is found that the present source or sink of wave energy is smaller but is still on the order of the empirically adjusted functions used for the dissipation of swell energy in operational wave models, as well as observations of that phenomenon by Snodgrass et al.

Journal ArticleDOI
TL;DR: In this paper, seasonal and interannual variations in the export of Labrador Sea Water (LSW) and in the heat and freshwater transport through the central Labrador Sea, are examined for two different periods: from 1964 to 1974, using Ocean Weather Station Bravo data, and from 1996 to 2000, using data collected from profiling floats.
Abstract: The seasonal and interannual variations in the export of Labrador Sea Water (LSW), and in the heat and freshwater transport through the central Labrador Sea, are examined for two different periods: from 1964 to 1974, using Ocean Weather Station Bravo data, and from 1996 to 2000, using data collected from profiling floats. A typical seasonal cycle involves a 300-m thickening of LSW (convection) followed by an equivalent thinning (restratification). Restratification is characterized by a drift of properties toward boundary current values that is indicative of a vigorous lateral exchange. The net result is a convergence of heat and salt, between 200 and 700 m, that balances the net surface heat loss to the atmosphere and partially offsets the surface freshwater accumulation due to surface, lateral exchange. Interannual variations in the export of LSW can be explained by taking into account changes in the central Labrador Sea–boundary current density gradient, which governs the lateral exchange. Inte...

Journal ArticleDOI
TL;DR: In this paper, a global 1° model constrained by least squares to a multiplicity of datasets over the interval 1992-2004 is used to describe apparent changes in the North Atlantic Ocean meridional overturning circulation and associated heat fluxes at 26°N.
Abstract: Results from a global 1° model constrained by least squares to a multiplicity of datasets over the interval 1992–2004 are used to describe apparent changes in the North Atlantic Ocean meridional overturning circulation and associated heat fluxes at 26°N. The least squares fit is both stable and adequately close to the data to make the analysis worthwhile. Changes over the 12 yr are spatially and temporally complex. A weak statistically significant trend is found in net North Atlantic volume flux above about 1200 m, which drops slightly (0.19 0.05 Sv yr 1 ;1S v 10 6 m 3 s 1 ) but with a corresponding strengthening of the outflow of North Atlantic Deep Water and inflow of abyssal waters. The slight associated trend in meridional heat flux is very small and not statistically significant. The month-to-month variability implies that single-section determinations of heat and volume flux are subject to serious aliasing errors.

Journal ArticleDOI
TL;DR: In this paper, in situ temperature and altimetrically derived sea surface height data are used to investigate the low-frequency variations in the formation of the North Pacific Ocean Subtropical Mode Water (STMW) over the past 12 yr.
Abstract: In situ temperature and altimetrically derived sea surface height data are used to investigate the low-frequency variations in the formation of the North Pacific Ocean Subtropical Mode Water (STMW) over the past 12 yr. Inside the Kuroshio Extension (KE) recirculation gyre where STMW forms, the dominant signal is characterized by a gradual thinning in the late winter mixed layer depth and in the 16°–18°C thermostad layer from 1993 to 1999 and a subsequent steady thickening of these features after 2000. This same decadal signal is also seen in the low-potential-vorticity (PV) STMW layer in the interior subtropical gyre south of the recirculation gyre. By analyzing the air–sea flux data from the NCEP–NCAR reanalysis project, little correlation is found between the decadal STMW signal and the year-to-year changes in the cumulative wintertime surface cooling. In contrast, the decadal signal is found to be closely related to variability in the dynamic state of the KE system. Specifically, STMW formatio...

Journal ArticleDOI
TL;DR: In this paper, the location of the Southern Ocean polar front (PF) is mapped from the first 3 yr of remotely sensed Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature (SST) measurements.
Abstract: The location of the Southern Ocean polar front (PF) is mapped from the first 3 yr of remotely sensed Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature (SST) measurements. In agreement with previous studies, the mean path of the Antarctic PF and its standard deviation are strongly influenced by bottom topography. However, the mean PF path diverges slightly from previous studies in several regions where there is high mesoscale variability. Although the SST and SST gradient at the PF show spatially coherent seasonal variations, with the highest temperature and the lowest temperature gradient during summer, the seasonal variations in the location of the PF are not spatially coherent. The temporal mean SST at the PF corresponds well to the mean PF path: the temperature is high in the Atlantic and Indian Ocean sections and is low in the Pacific Ocean section where the PF has a more southerly position. The relationship of the wind field with the Antar...

Journal ArticleDOI
TL;DR: In this paper, an experimental attempt to estimate the spectral distribution of the dissipation due to breaking of dominant waves was made, and it was shown that the dominant breaking causes energy dissipation throughout the entire spectrum at scales smaller than the spectral peak waves.
Abstract: This paper considers an experimental attempt to estimate the spectral distribution of the dissipation due to breaking of dominant waves. A field wave record with an approximately 50% dominant-breaking rate was analyzed. Segments of the record, comprising sequences of breaking waves, were used to obtain the “breaking spectrum,” and segments of nonbreaking waves were used to obtain the “nonbreaking spectrum.” The clear visible difference between the two spectra was attributed to the dissipation due to breaking. This assumption was supported by independent measurements of total dissipation of kinetic energy in the water column at the measurement location. It is shown that the dominant breaking causes energy dissipation throughout the entire spectrum at scales smaller than the spectral peak waves. The dissipation rate at each frequency is linear in terms of the wave spectral density at that frequency, with a correction for the directional spectral width. A formulation for the spectral dissipation fun...

Journal ArticleDOI
TL;DR: In this article, the radiative flux of internal wave energy (the "tidal conversion") powered by the oscillating flow of a uniformly stratified fluid over a two-dimensional submarine ridge is computed using an integral-equation method.
Abstract: The radiative flux of internal wave energy (the “tidal conversion”) powered by the oscillating flow of a uniformly stratified fluid over a two-dimensional submarine ridge is computed using an integral-equation method. The problem is characterized by two nondimensional parameters, A and B. The first parameter, A, is the ridge half-width scaled by h, where h is the uniform depth of the ocean far from the ridge and is the inverse slope of internal tidal rays (horizontal run over vertical rise). The second parameter, B ,i s the ridge height scaled by h. Two topographic profiles are considered: a triangular or tent-shaped ridge and a “polynomial” ridge with continuous topographic slope. For both profiles, complete coverage of the (A, B) parameter space is obtained by reducing the problem to an integral equation, which is then discretized and solved numerically. It is shown that in the supercritical regime (ray slopes steeper than topographic slopes) the radiated power increases monotonically with B and decreases monotonically with A. In the subcritical regime the radiated power has a complicated and nonmonotonic dependence on these parameters. As A → 0 recent results are recovered for the tidal conversion produced by a knife-edge barrier. It is shown analytically that the A → 0 limit is regular: if A 1 the reduction in tidal conversion below that at A 0 is proportional to A 2 . Further, the knife-edge model is shown to be indicative of both conversion rates and the structure of the radiated wave field over a broad region of the supercritical parameter space. As A increases the topographic slopes become gentler, and at a certain value of A the ridge becomes “critical”; that is, there is a single point on the flanks at which the topographic slope is equal to the slope of an internal tidal beam. The conversion decreases continuously as A increases through this transition. Visualization of the disturbed buoyancy field shows prominent singular lines (tidal beams). In the case of a triangular ridge these beams originate at the crest of the triangle. In the case of a supercritical polynomial ridge, the beams originate at the shallowest point on the flank at which the topographic slope equals the ray slope.

Journal ArticleDOI
TL;DR: In this paper, an isopycnal, two-layer idealized model for a convective basin is proposed, consisting of a convecting, interior region and a surrounding boundary current (buoyancy and wind-driven). Parameterized eddy fluxes govern the exchange between the two.
Abstract: An isopycnal, two-layer, idealized model for a convective basin is proposed, consisting of a convecting, interior region and a surrounding boundary current (buoyancy and wind-driven). Parameterized eddy fluxes govern the exchange between the two. To balance the interior buoyancy loss, the boundary current becomes denser as it flows around the basin. Geostrophy imposes that this densification be accompanied by sinking in the boundary current and hence by an overturning circulation. The poleward heat transport, associated with convection in the basin, can thus be viewed as a result of both an overturning and a horizontal circulation. When adapted to the Labrador Sea, the model is able to reproduce the bulk features of the mean state, the seasonal cycle, and even the shutdown of convection from 1969 to 1972. According to the model, only 40% of the poleward heat (buoyancy) transport of the Labrador Sea is associated with the overturning circulation. An exact solution is presented for the linearized equations when changes in the boundary current are small. Numerical solutions are calculated for variations in the amount of convection and for changes in the remotely forced circulation around the basin. These results highlight how the overturning circulation is not simply related to the amount of dense water formed. A speeding up of the circulation around the basin due to wind forcing, for example, will decrease the intensity of the overturning circulation while the dense water formation remains unvaried. In general, it is shown that the fraction of poleward buoyancy (or heat) transport carried by the overturning circulation is not an intrinsic property of the basin but can vary as a result of a number of factors.

Journal ArticleDOI
TL;DR: In this article, a 20 km-long transect was sampled every 3 h using expendable current profilers and the absolute velocity profiler, and phase and amplitude of the baroclinic velocity, pressure, and vertical displacement were computed, as was the energy flux.
Abstract: Repeat transects of full-depth density and velocity are used to quantify generation and radiation of the semidiurnal internal tide from Kaena Ridge, Hawaii. A 20-km-long transect was sampled every 3 h using expendable current profilers and the absolute velocity profiler. Phase and amplitude of the baroclinic velocity, pressure, and vertical displacement were computed, as was the energy flux. Large barotropically induced isopycnal heaving and strong baroclinic energy-flux divergence are observed on the steep flanks of the ridge where upward and downward beams radiate off ridge. Directly above Kaena Ridge, strong kinetic energy density and weak net energy flux are argued to be a horizontally standing wave. The phasing of velocity and vertical displacements is consistent with this interpretation. Results compare favorably with the Merrifield and Holloway model.

Journal ArticleDOI
TL;DR: In this paper, a numerical simulation is used to investigate the mixed layer heat balance of the tropical Pacific Ocean including the equatorial cold tongue and the region of vortices associated with tropical instability waves (TIWs).
Abstract: A numerical simulation is used to investigate the mixed layer heat balance of the tropical Pacific Ocean including the equatorial cold tongue and the region of vortices associated with tropical instability waves (TIWs). The study is motivated by a need to quantify the effects that TIWs have on the climatological heat budget of the cold tongue mixed layer; there has been some discrepancy between observations indicating very large equatorward heat transport by TIWs and models that disagree on the full three-dimensional budget. Validation of the model reveals that the TIW-induced circulation patterns are realistic but may have amplitudes about 15% weaker than those in the observations. The SST budget within tropical instabilities is first examined in a frame of reference moving with the associated tropical instability vortices (TIVs). Zonal advection of temperature anomalies and meridional advection of temperature by current anomalies dominate horizontal advection. These effects strongly heat the cold cusps and slightly cool the downwelling areas located at the leading edge of the vortices. Cooling by vertical mixing is structured at the vortex scale and almost compensates for horizontal advective heating in the cold cusps. In contrast to some previous studies, TIW-induced vertical advection is found to be negligible in the SST budget. Cooling by this term is only significant below the mixed layer. The effect of TIWs on the climatological heat budget is then investigated for the region bounded by 2°S–6°N, 160°–90°W, where instabilities are most active. TIWinduced horizontal advection leads to a warming of 0.84°C month 1 , which is of the same order as the 0.77°C month 1 warming effect of atmospheric fluxes, while the mean currents and vertical mixing cool the upper ocean by 0.59°C month 1 and 1.06°C month 1 , respectively. The cooling effect of TIW-induced vertical advection is also negligible in the long-term surface layer heat budget and only becomes significant below the mixed layer. The results above, and in particular the absence of cancellation between horizontal and vertical TIW-induced eddy advection, are robust in three other sensitivity experiments involving different mixing parameterizations and increased vertical resolution.

Journal ArticleDOI
TL;DR: In this article, a numerical model of the tropical Pacific Ocean is used to investigate the processes that cause the horizontal temperature advection of tropical instability waves (TIWs), and it is found that their temperature advction cannot be explained by the processes on which the mixing length paradigm is based.
Abstract: A numerical model of the tropical Pacific Ocean is used to investigate the processes that cause the horizontal temperature advection of tropical instability waves (TIWs). It is found that their temperature advection cannot be explained by the processes on which the mixing length paradigm is based. Horizontal mixing of temperature across the equatorial SST front does happen, but it is small relative to the “oscillatory” temperature advection of TIWs. The basic mechanism is that TIWs move water back and forth across a patch of large vertical entrainment. Outside this patch, the atmosphere heats the water and this heat is then transferred into the thermocline inside the patch. These patches of strong localized entrainment are due to equatorial Ekman divergence and due to thinning of the mixed layer in the TIW cyclones. The latter process is responsible for the zonal temperature advection, which is as large as the meridional temperature advection but has not yet been observed. Thus, in the previous o...

Journal ArticleDOI
TL;DR: In this article, the authors investigated large-scale sea surface height (SSH) changes in the extraequatorial South Pacific Ocean using satellite altimetry data of the past 12 yr.
Abstract: Large-scale sea surface height (SSH) changes in the extraequatorial South Pacific Ocean are investigated using satellite altimetry data of the past 12 yr. The decadal SSH signals in the 1990s were dominated by an increasing trend in the 30°–50°S band and a decreasing trend in the central South Pacific Ocean poleward of 50°S. In recent years since 2002 there has been a reversal in both of these trends. Spatially varying low-frequency SSH signals are also found in the tropical region of 10°–25°S where the decadal SSH trend is negative in the eastern basin, but positive in the western basin. To clarify the causes for these observed spatially varying SSH signals, a 11U2-layer reduced-gravity model that includes the wind-driven baroclinic Rossby wave dynamics and the responses forced by SSH changes along the South American coast was adopted. The model hindcasts the spatially varying decadal trends in the midlatitude and the eastern tropical regions well. Accumulation of the wind-forced SSH anomalies along Rossby wave characteristics is found to be important for both previously reported long-term trends and their reversals in recent years. The boundary forcing associated with the time-varying SSH signals along the South American coast is crucial for understanding the observed SSH signals of all time scales in the eastern tropical South Pacific basin, but it has little impact upon the midlatitude interior SSH signals.

Journal ArticleDOI
TL;DR: In this article, the American Meteorological Society (AMS) published a paper on the Journal of Physical Oceanography 36 (2006): 1241-1264, doi:101175/JPO29071
Abstract: Author Posting © American Meteorological Society, 2006 This article is posted here by permission of American Meteorological Society for personal use, not for redistribution The definitive version was published in Journal of Physical Oceanography 36 (2006): 1241-1264, doi:101175/JPO29071

Journal ArticleDOI
TL;DR: In this article, the authors used observations of the buoyant coastal current that flows southward from Chesapeake Bay to describe how the thickness, width, and propagation speed vary in response to changes in the along-shelf wind stress.
Abstract: Observations of the buoyant coastal current that flows southward from Chesapeake Bay are used to describe how the thickness, width, and propagation speed vary in response to changes in the along-shelf wind stress. Three basic regimes were observed depending on the strength of the wind. For weak wind stresses (from 0.02 to 0.02 Pa), the buoyant coastal current was relatively thin, the front slope was not steep, and the width was variable (1–20 km). For moderate downwelling (southward) wind stresses (0.02– 0.07 Pa), wind-driven cross-shelf advection steepened the front, causing the plume to narrow and thicken. For stronger downwelling wind stresses (greater than 0.07 Pa), vertical mixing dominated, bulk Richardson numbers were approximately 0.25, isopycnals were nearly vertical, and the plume front widened but the plume width did not change. Plume thickness and width were normalized by the theoretical plume scales in the absence of wind forcing. Normalized plume thickness increased linearly from 1 to 2 as downwelling wind stresses increased from 0 to 0.2 Pa. Normalized plume widths were approximately 1 for downwelling wind stresses from 0.02 to 0.2 Pa. The observed along-shelf propagation speed of the plume was roughly equal to the sum of the theoretical propagation speed and the wind-driven along-shelf flow.

Journal ArticleDOI
TL;DR: In this paper, the internal component is strongly modulated by the time-variable density structure, and the resulting perturbation of the recorded tide gives a welcome look at twentieth-century interannual and secular variability.
Abstract: Surface expressions of internal tides constitute a significant component of the total recorded tide. The internal component is strongly modulated by the time-variable density structure, and the resulting perturbation of the recorded tide gives a welcome look at twentieth-century interannual and secular variability. Time series of mean sea level hSL(t) and total recorded M2 vector aTT(t) are extracted from the Honolulu 1905–2000 and Hilo 1947–2000 (Hawaii) tide records. Internal tide parameters are derived from the intertidal continuum surrounding the M2 frequency line and from a Cartesian display of aTT(t), yielding aST = 16.6 and 22.1 cm, aIT = 1.8 and 1.0 cm for surface and internal tides at Honolulu and Hilo, respectively. The proposed model aTT(t) = aST + aIT cosθIT(t) is of a phase-modulated internal tide generated by the surface tide at some remote point and traveling to the tide gauge with velocity modulated by the underlying variable density structure. Mean sea level hSL(t) [a surrogate f...

Journal ArticleDOI
TL;DR: In this paper, the intrinsic variability of the Antarctic Circumpolar current was investigated using an idealized wind-driven model using three quasigeostrophic layers, with steady wind stress forcing, and no diabatic effects.
Abstract: The intrinsic variability of the Antarctic Circumpolar Current is investigated using an idealized wind-driven model. The model uses three quasigeostrophic layers, with steady wind stress forcing, and no diabatic effects. Despite the idealized nature of the model, the simulations display a robust mode of low-frequency variability in the flow. It is demonstrated that this variability is dependent upon the explicit simulation of the dynamics of mesoscale eddies. As such, the variability is sensitive to stratification, horizontal viscosity, bottom stress, and topography. The energetic balance of the variability is diagnosed, and a driving mechanism is proposed that involves positive feedback between the generation of eddies through baroclinic instability and the dynamics of the mean circulation.