scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Physics D in 2016"



Journal ArticleDOI
TL;DR: In this article, the history and development of plasma-assisted catalysis focussing mainly on the use of atmospheric pressure, non-thermal plasma is described. And the effect of temperature on plasma-catalysis can assist in determining differences between thermal catalysis and plasma-activated catalysis.
Abstract: This review describes the history and development of plasma-assisted catalysis focussing mainly on the use of atmospheric pressure, non-thermal plasma. It identifies the various interactions between the plasma and the catalyst that can modify and activate the catalytic surface and also describes how the catalyst affects the properties of the discharge. Techniques for in situ diagnostics of species adsorbed onto the surface and present in the gas-phase over a range of timescales are described. The effect of temperature on plasma–catalysis can assist in determining differences between thermal catalysis and plasma-activated catalysis and focuses on the meaning of temperature in a system involving non-equilibrium plasma. It can also help to develop an understanding of the gas-phase and surface mechanism of the plasma–catalysis at a molecular level. Our current state of knowledge and ignorance is highlighted and future directions suggested.

306 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a roadmap for oxide-based electronics with a focus on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide based devices.
Abstract: Oxide electronic materials provide a plethora of possible applications and offer ample opportunity for scientists to probe into some of the exciting and intriguing phenomena exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum of properties, the nanoscale form of oxides provides a new dimension of hitherto unknown phenomena due to the increased surface-to-volume ratio. Oxide electronic materials are becoming increasingly important in a wide range of applications including transparent electronics, optoelectronics, magnetoelectronics, photonics, spintronics, thermoelectrics, piezoelectrics, power harvesting, hydrogen storage and environmental waste management. Synthesis and fabrication of these materials, as well as processing into particular device structures to suit a specific application is still a challenge. Further, characterization of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap on 'oxide electronic materials and oxide interfaces'. This roadmap envisages the potential applications of oxide materials in cutting edge technologies and focuses on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide-based devices. The contents of this roadmap will highlight the functional and correlated properties of oxides in bulk, nano, thin film, multilayer and heterostructure forms, as well as the theoretical considerations behind both present and future applications in many technologically important areas as pointed out by Venkatesan. The contributions in this roadmap span several thematic groups which are represented by the following authors: novel field effect transistors and bipolar devices by Fortunato, Grundmann, Boschker, Rao, and Rogers; energy conversion and saving by Zaban, Weidenkaff, and Murakami; new opportunities of photonics by Fompeyrine, and Zuniga-Perez; multiferroic materials including novel phenomena by Ramesh, Spaldin, Mertig, Lorenz, Srinivasan, and Prellier; and concepts for topological oxide electronics by Kawasaki, Pentcheva, and Gegenwart. Finally, Miletto Granozio presents the European action 'towards oxide-based electronics' which develops an oxide electronics roadmap with emphasis on future nonvolatile memories and the required technologies. In summary, we do hope that this oxide roadmap appears as an interesting up-to-date snapshot on one of the most exciting and active areas of solid state physics, materials science, and chemistry, which even after many years of very successful development shows in short intervals novel insights and achievements.

289 citations


Journal ArticleDOI
TL;DR: Streubel et al. as mentioned in this paper presented a review of the application potential of three-dimensional-shaped objects as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices.
Abstract: Author(s): Streubel, R; Fischer, P; Kronast, F; Kravchuk, VP; Sheka, DD; Gaididei, Y; Schmidt, OG; Makarov, D | Abstract: Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii-Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.

280 citations


Journal ArticleDOI
TL;DR: In this paper, the basic properties of Graphene nanoribbons and recent progress in fabrication processes are reviewed, focusing on the question of the electronic gap and their properties at the nanoscale.
Abstract: Graphene nanoribbons are fundamental components to the development of graphene nanoelectronics. At the nanoscale, electronic confinement effects and electronic edge states become essential to the properties of graphene. These effects depend critically on the ribbon width and the nature of the ribbon edge, the control of which at the atomic scale is a major challenge. Graphene nanoribbons have been largely studied theoretically, experimentally and with the perspective of electronic applications. We review the basic properties of graphene nanoribbons and recent progress in fabrication processes, focusing on the question of the electronic gap. We examine top–down and bottom–up approaches to fabricate graphene nanoribbons by lithographic, catalytic cutting, chemical assembly and epitaxial growth methods and compare their electronic characteristics.

185 citations


Journal ArticleDOI
TL;DR: In this paper, the authors describe critical issues and problems including leakage current, current collapse and threshold voltage instability in high-electron-mobility transistors (HEMTs) using oxides, nitrides and high-κ dielectrics.
Abstract: Recent years have witnessed GaN-based devices delivering their promise of unprecedented power and frequency levels and demonstrating their capability as an able replacement for Si-based devices. High-electron-mobility transistors (HEMTs), a key representative architecture of GaN-based devices, are well-suited for high-power and high frequency device applications, owing to highly desirable III-nitride physical properties. However, these devices are still hounded by issues not previously encountered in their more established Siand GaAs-based devices counterparts. Metal–insulator–semiconductor (MIS) structures are usually employed with varying degrees of success in sidestepping the major problematic issues such as excessive leakage current and current instability. While different insulator materials have been applied to GaN-based transistors, the properties of insulator/III-N interfaces are still not fully understood. This is mainly due to the difficulty of characterizing insulator/AlGaN interfaces in a MIS HEMT because of the two resulting interfaces: insulator/AlGaN and AlGaN/GaN, making the potential modulation rather complicated. Although there have been many reports of low interface-trap densities in HEMT MIS capacitors, several papers have incorrectly evaluated their capacitance–voltage (C–V) characteristics. A HEMT MIS structure typically shows a 2-step C–V behavior. However, several groups reported C–V curves without the characteristic step at the forward bias regime, which is likely to the high-density states at the insulator/ AlGaN interface impeding the potential control of the AlGaN surface by the gate bias. In this review paper, first we describe critical issues and problems including leakage current, current collapse and threshold voltage instability in AlGaN/GaN HEMTs. Then we present interface properties, focusing on interface states, of GaN MIS systems using oxides, nitrides and high-κ dielectrics. Next, the properties of a variety of AlGaN/GaN MIS structures as well as different characterization methods, including our own photo-assisted C–V technique, essential for understanding and developing successful surface passivation and interface control schemes, are given in the subsequent section. Finally we highlight the important progress in GaN MIS interfaces that have recently pushed the frontier of nitride-based device technology.

163 citations



Journal ArticleDOI
TL;DR: In this paper, a novel and simple design of a triple-band terahertz absorber formed by only an asymmetric cross is presented, and the theoretical results show that the proposed structure has three distinct absorption bands whose peaks are all over 99%.
Abstract: For a general metamaterial absorber, single patterned structure has only one resonance absorption peak. Therefore, a multi-band perfect absorber can be obtained by employing multiple different-sized metallic patterns. However, this kind of design strategy removes the novelty of their resonance mechanism and is also quite troublesome in regard to fabrication. Here, a novel and simple design of a triple-band terahertz absorber formed by only an asymmetric cross is presented. Theoretical results show that the proposed structure has three distinct absorption bands whose peaks are all over 99%. The first two absorption peaks are due to the magnetic resonances of the different sections of the asymmetric cross, and the third peak is based on the surface response of the structure. Moreover, sensing performance of the absorber is investigated in terms of the surrounding index. It is found that the figure of merit and quality factor of the third peak is much larger than those of the first two peaks, which reveals the proposed absorber's, in particular the third resonance mode of the metamaterial, potential applications in sensing and detection.

148 citations


Journal ArticleDOI
TL;DR: This paper describes a reference source, developed from the simple and robust micro-scaled atmospheric pressure plasma jet (μ-APPJ) concept, and the design specification and operating protocol for the reference source are being made freely available.
Abstract: Biomedical applications of non-equilibrium atmospheric pressure plasmas have attracted intense interest in the past few years. Many plasma sources of diverse design have been proposed for these applications, but the relationship between source characteristics and application performance is not well-understood, and indeed many sources are poorly characterized. This circumstance is an impediment to progress in application development. A reference source with well-understood and highly reproducible characteristics may be an important tool in this context. Researchers around the world should be able to compare the characteristics of their own sources and also their results with this device. In this paper, we describe such a reference source, developed from the simple and robust micro-scaled atmospheric pressure plasma jet (μ-APPJ) concept. This development occurred under the auspices of COST Action MP1101 'Biomedical Applications of Atmospheric Pressure Plasmas'. Gas contamination and power measurement are shown to be major causes of irreproducible results in earlier source designs. These problems are resolved in the reference source by refinement of the mechanical and electrical design and by specifying an operating protocol. These measures are shown to be absolutely necessary for reproducible operation. They include the integration of current and voltage probes into the jet. The usual combination of matching unit and power supply is replaced by an integrated LC power coupling circuit and a 5 W single frequency generator. The design specification and operating protocol for the reference source are being made freely available.

144 citations


Journal ArticleDOI
TL;DR: It is suggested that the reactive molecule in PTW with bactericidal effects is not a free reactive oxygen species but nitrogen atom(s)-containing molecules that release , such as peroxynitrous acid (ONOOH) or peroxyric acid (O2NOOH).
Abstract: Plasma-treated water (PTW), i.e. distilled water (DW) exposed to low-temperature atmospheric pressure helium plasma, exhibited strong bactericidal activity against Escherichia coli in suspension even within a few minutes of preparation. This effect was enhanced under acidic conditions. The bactericidal activity of PTW was attenuated according to first-order kinetics and the half-life was highly temperature dependent. The electron spin resonance (ESR) signal of an adduct of the superoxide anion radical () was detected in an aqueous solution using a spin-trapping reagent mixed with PTW, and adding superoxide dismutase to the PTW resulted in a loss of the bactericidal activity and weakening of the ESR adduct signal of in the spin-trapping. These results suggest that plays an important role in imparting bactericidal activity to PTW. Moreover, molecular nitrogen was required both in the ambient gas and in the DW used to prepare the PTW. We, therefore, suggest that the reactive molecule in PTW with bactericidal effects is not a free reactive oxygen species but nitrogen atom(s)-containing molecules that release , such as peroxynitrous acid (ONOOH) or peroxynitric acid (O2NOOH). Considering the activation energy for degradation of these species, we conclude that peroxynitric acid stored in PTW induces the bactericidal effect.

141 citations



Journal ArticleDOI
TL;DR: In this article, the authors discuss results from a computational investigation of plasma-liquid interactions and liquid phase chemistry using a global model with the goal of addressing this large dynamic range in timescales.
Abstract: Atmospheric pressure plasmas have shown great promise for the treatment of wounds and cancerous tumors. In these applications, the sample is usually covered by a thin layer of a biological liquid. The reactive oxygen and nitrogen species (RONS) generated by the plasma activate and are processed by the liquid before the plasma produced activation reaches the tissue. The synergy between the plasma and the liquid, including evaporation and the solvation of ions and neutrals, is critical to understanding the outcome of plasma treatment. The atmospheric pressure plasma sources used in these procedures are typically repetitively pulsed. The processes activated by the plasma sources have multiple timescales—from a few ns during the discharge pulse to many minutes for reactions in the liquid. In this paper we discuss results from a computational investigation of plasma–liquid interactions and liquid phase chemistry using a global model with the goal of addressing this large dynamic range in timescales. In modeling air plasmas produced by a dielectric barrier discharge over liquid covered tissue, 5000 voltage pulses were simulated, followed by 5 min of afterglow. Due to the accumulation of long-lived species such as ozone and N x O y , the gas phase dynamics of the 5000th discharge pulse are different from those of the first pulse, particularly with regards to the negative ions. The consequences of applied voltage, gas flow, pulse repetition frequency, and the presence of organic molecules in the liquid on the gas and liquid reactive species are discussed.

Journal ArticleDOI
TL;DR: In this paper, financial support by several projects is acknowledged: MAT2014-51982-C2-1-R, MAT2014/51982/C2/2/1/R and MAT2015/69725/REDT from MINECO (including FEDER funding), CELINA COST Action CM1301, Aragon Regional Government through project E26, FP7 Marie Curie Fellowship 3DMAGNANOW, EPSRC Early Career Fellowship (ECF), EPSRC EAR/M008517/1 and Winton Fellowship.
Abstract: Financial support by several projects is acknowledged: MAT2014-51982-C2-1-R, MAT2014-51982-C2-2-R and MAT2015-69725-REDT from MINECO (including FEDER funding), CELINA COST Action CM1301, Aragon Regional Government through project E26, FP7 Marie Curie Fellowship 3DMAGNANOW, EPSRC Early Career Fellowship EP/M008517/1 and Winton Fellowship.

Journal ArticleDOI
TL;DR: In this paper, surface traps with different trap levels are introduced by different surface modification methods which include dielectric barrier discharges plasma, direct fluorination, and Cr2O3 coating.
Abstract: To investigate the role surface traps play in the charge injection and transfer behavior of alumina-filled epoxy composites, surface traps with different trap levels are introduced by different surface modification methods which include dielectric barrier discharges plasma, direct fluorination, and Cr2O3 coating. The resulting surface physicochemical characteristics of experimental samples were observed using atomic force microscopy, scanning electron microscopy and fourier transform infrared spectroscopy. The surface potential under dc voltage was detected and the trap level distribution was measured. The results suggest that the surface morphology of the experimental samples differs dramatically after treatment with different surface modification methods. Different surface trap distributions directly determine the charge injection and transfer property along the surface. Shallow traps with trap level of 1.03–1.11 eV and 1.06–1.13 eV introduced by plasma and fluorination modifications are conducive for charge transport along the insulating surface, and the surface potential can be modified, producing a smoother potential curve. The Cr2O3 coating can introduce a large number of deep traps with energy levels ranging from 1.09 to 1.15 eV. These can prevent charge injection through the reversed electric field formed by intensive trapped charges in the Cr2O3 coatings.


Journal ArticleDOI
TL;DR: The B2-ordered intermetallic magnetic compound FeRh exhibits a thermodynamically first-order phase transition in the vicinity of room temperature that makes it a highly intriguing subject for both fundamental and applied study as mentioned in this paper.
Abstract: The B2-ordered intermetallic magnetic compound FeRh exhibits a thermodynamically first-order phase transition in the vicinity of room temperature that makes it a highly intriguing subject for both fundamental and applied study. On heating through the transition the magnetic character changes from antiferromagnetic to ferromagnetic order with an accompanying large increase in the electrical conductivity and an abrupt expansion in the lattice structure. Accompanying these effects is a very large entropy change comprising both magnetic and lattice contributions. As well as being driven by temperature, these coupled phase transitions may be driven by the application or removal of a magnetic field, or, because of the extremely strong lattice-spin interactions present in this compound, by an applied strain (pressure), and combinations thereof. In addition to these driving factors, the transition temperature can also be tuned by both compositional and finite size effects. Building from historical work on bulk forms of FeRh, the effects of extrinsic and intrinsic parameter variation on the coupled magnetic, structural, and electronic phase transitions are reviewed here, with special attention directed to phenomena that manifest themselves in thin films. Overall, the rich manner in which the physical properties of FeRh change at the phase transition has potential for a wide range of technological applications in areas such as thermally-assisted magnetic recording media, CFC-free magnetic cooling, sensors for energy management, and novel spintronic devices.


Journal ArticleDOI
TL;DR: The basic principles of the major experimental techniques used to measure bending or shape fluctuations of biomembranes are reviewed and seminal results obtained with each technique are highlighted to highlight how these studies furthered understanding of physical properties of membranes and their interactions.
Abstract: Shape fluctuations of lipid membranes have intrigued cell biologists and physicists alike. In the cellular context, their origin-thermal or active-and their physiological significance are open questions. These small incessant displacements, also called membrane undulations, have mostly been studied in model membranes and membranes of simple cells like erythrocytes. Thermal fluctuations of such membranes have been very well described both theoretically and experimentally; active fluctuations are a topic of current interest. Experimentally, membrane fluctuations are not easy to measure, the main challenge being to develop techniques which are capable of measuring very small displacements at very high speed, and preferably over a large area and long time. Scattering techniques have given access to fluctuations in membrane stacks and a variety of optical microscopy based techniques have been devised to study membrane fluctuations of unilamellar vesicles, erythrocytes and other cells. Among them are flicker spectroscopy, dynamic light scattering, diffraction phase microscopy and reflection interference contrast microscopy. Each of these techniques has its advantages and limitations. Here we review the basic principles of the major experimental techniques used to measure bending or shape fluctuations of biomembranes. We report seminal results obtained with each technique and highlight how these studies furthered our understanding of physical properties of membranes and their interactions. We also discuss suggested role of membrane fluctuations in different biological processes.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the use of He and Ar plasma jets to deliver three reactive oxygen and nitrogen species (RONS) and molecular oxygen (O2) directly into deionised (DI) water, or indirectly into DI water through an agarose target.
Abstract: The efficacy of helium (He) and argon (Ar) plasma jets are being investigated for different healthcare applications including wound and cancer therapy, sterilisation and surface disinfections. Current research points to a potential link between the generation of reactive oxygen and nitrogen species (RONS) and outcomes in a range of biological and medical applications. As new data accrue, further strengthening this link, it becomes important to understand the controlled delivery of RONS into solutions, tissue fluids and tissues. This paper investigates the use of He and Ar plasma jets to deliver three RONS (hydrogen peroxide—H2O2, nitrite—$\text{NO}_{2}^{-}$ and nitrate—$\text{NO}_{3}^{-}$ ) and molecular oxygen (O2) directly into deionised (DI) water, or indirectly into DI water through an agarose target. The DI water is used in place of tissue fluid and the agarose target serves as a surrogate of tissue. Direct plasma jet treatments deliver more RONS and O2 than the through-agarose treatments for equivalent treatments times. The former only deliver RONS whilst the plasma jets are ignited; the latter continues to deliver RONS into the DI water long after the plasmas are extinguished. The He plasma jet is more effective at delivering H2O2 and $\text{NO}_{2}^{-}$ directly into DI water, but the Ar plasma jet is more effective at nitrating the DI water in both direct and through-agarose treatments. DI water directly treated with the plasma jets is deoxygenated, with the He plasma jet purging more O2 than the Ar plasma jet. This effect is known as 'sparging'. In contrast, for through-agarose treatments both jets oxygenated the DI water. These results indicate that in the context of direct and indirect plasma jet treatments of real tissue fluids and tissue, the choice of process gas (He or Ar) could have a profound effect on the concentrations of RONS and O2. Irrespective of operating gas, sparging of tissue fluid (in an open wound) for long prolonged periods during direct plasma jet treatment, could have implications for healthy tissue function; whilst through-tissue plasma jet treatment may provide a method to reperfuse oxygen-starved tissue. The assays described in this paper can be readily adopted (by others) and may support the future development of plasma sources to deliver specific (metered) doses of RONS.

Journal ArticleDOI
TL;DR: In this paper, a comprehensive summary of the recent demonstrations of five different types of quantitative analysis of the TM states in battery electrodes based on soft x-ray absorption spectroscopy and multiplet calculations is presented.
Abstract: Most battery positive electrodes operate with a 3d transition-metal (TM) reaction centre. A direct and quantitative probe of the TM states upon electrochemical cycling is valuable for understanding the detailed cycling mechanism and charge diffusion in the electrodes, which is related with many practical parameters of a battery. This review includes a comprehensive summary of our recent demonstrations of five different types of quantitative analysis of the TM states in battery electrodes based on soft x-ray absorption spectroscopy and multiplet calculations. In LiFePO4, a system of a well-known two-phase transformation type, the TM redox could be strictly determined through a simple linear combination of the two end-members. In Mn-based compounds, the Mn states could also be quantitatively evaluated, but a set of reference spectra with all the three possible Mn valences needs to be deliberately selected and considered in the fitting. Although the fluorescence signals suffer the self-absorption distortion, the multiplet calculations could consider the distortion effect, which allows a quantitative determination of the overall Ni oxidation state in the bulk. With the aid of multiplet calculations, one could also achieve a quasi-quantitative analysis of the Co redox evolution in LiCoO2 based on the energy position of the spectroscopic peak. The benefit of multiplet calculations is more important for studying electrode materials with TMs of mixed spin states, as exemplified by the quantitative analysis of the mixed spin Na2−x Fe2(CN)6 system. At the end, we showcase that such quantitative analysis could provide valuable information for optimizing the electrochemical performance of Na0.44MnO2 electrodes for Na-ion batteries. The methodology summarized in this review could be extended to other energy application systems with TM redox centre for detailed analysis, for example, fuel cell and catalytic materials.

Journal ArticleDOI
TL;DR: In this article, a remote microscale atmospheric pressure plasma jet (µAPPJ) with He, He/H2O, H2O 2, He/O2 2, and H 2 O 2 2 gas mixtures was used to study the transport of reactive species from the gas phase into the liquid and the following aqueous phase chemistry.
Abstract: A remote microscale atmospheric pressure plasma jet (µAPPJ) with He, He/H2O, He/O2, and He/O2/H2O gas mixtures was used to study the transport of reactive species from the gas phase into the liquid and the following aqueous phase chemistry. The effects induced by the µAPPJ in water were quantitatively studied using phenol as a chemical probe and by measuring H2O2 concentration and pH values. These results were combined with the analysis of the absolute densities of the reactive species and the modeling of convective/diffusion transport and recombination reactions in the effluent of the plasma jet. Additionally, modified plasma jets were used to show that the role of emitted photons in aqueous chemistry is negligible for these plasma sources. The fastest phenol degradation was measured for the He/O2 plasma, followed by He/H2O, He/O2/H2O, and He plasmas. The modeled quantitative flux of O atoms into the liquid in the He/O2 plasma case was highly comparable with the phenol degradation rate and showed a very high transfer efficiency of reactive species from the plasma into the liquid, where more than half of the O atoms leaving the jet nozzle entered the liquid. The results indicate that the high oxidative effect of He/O2 plasma was primarily due to solvated O atoms, whereas OH radicals dominated the oxidative effects induced in water by plasmas with other gas mixtures. These findings help to understand, in a quantitative way, the complex interaction of cold atmospheric plasmas with aqueous solutions and will allow a better understanding of the interaction of these plasmas with water or buffered solutions containing biological macromolecules, microorganisms, or even eukaryotic cells. Additionally, the µAPPJ He/O2 plasma source seems to be an ideal tool for the generation of O atoms in aqueous solutions for any future studies of their reactivity.

Journal ArticleDOI
TL;DR: In this article, a complete and consistent set of cross sections for electron collisions with carbon dioxide (CO2) molecules was published in the IST-Lisbon database with LXCat, validated from the comparison between swarm parameters calculated using a two-term Boltzmann solver and the available experimental data.
Abstract: This work proposes a complete and consistent set of cross sections for electron collisions with carbon dioxide (CO2) molecules to be published in the IST-Lisbon database with LXCat. The set is validated from the comparison between swarm parameters calculated using a two-term Boltzmann solver and the available experimental data. The importance of superelastic collisions with CO2(0 1 0) molecules at low values of the reduced electric field is discussed. Due to significant uncertainties, there are ongoing debates regarding the deconvolution of cross sections that describe generic energy losses at specific energy thresholds into cross sections that describe individual processes. An important example of these uncertainties is with the dissociation of CO2, for which the total electron impact dissociation cross section has not yet been unambiguously identified. The available dissociation cross sections are evaluated and discussed, and a strategy to obtain electron-impact dissociation rate coefficients is suggested.

Journal ArticleDOI
TL;DR: In this paper, the authors used a nanosecond pulsed discharge to dissociate CO2 and CH4 in a 1:1 mixture at atmospheric pressure, and compared their results with literature data obtained by other discharges.
Abstract: A possible way to store both renewable energy and CO2 in chemical energy is to produce value-added chemicals and fuels starting from CO2 and green electricity. This can be done by exploiting the non-equilibrium properties of gaseous electrical discharges. Discharges, in addition, can be switched on and off quickly, thus being suitable to be coupled with an intermittent energy source. In this study, we have used a nanosecond pulsed discharge to dissociate CO2 and CH4 in a 1:1 mixture at atmospheric pressure, and compared our results with literature data obtained by other discharges. The main products are CO, H2, C2H2, water and solid carbon. We estimate an energy efficiency of 40% for syngas (CO and H2) production, higher if other products are also considered. Such values are among the highest compared to other discharges, and, although not very high on an absolute scale, are likely improvable via possible routes discussed in the paper and by coupling to the discharge a heterogeneous catalysis stage.

Journal ArticleDOI
TL;DR: In this paper, a 2D photocatalytic TiO2/MoS2 hybrid nanosheets (HNs) have been prepared via a facile hydrothermal process X-ray diffraction patterns and Raman spectra are carried out and confirm a well crystalized anatase and 2H-MoS 2 hybridization.
Abstract: 2D photocatalytic TiO2/MoS2 hybrid nanosheets (HNs) have been prepared via a facile hydrothermal process X-ray diffraction patterns and Raman spectra are carried out and confirm a well crystalized anatase and 2H-MoS2 hybridization Additional morphological and microstructural tests verify a distinct MoS2 framework, indicating the relatively stability of the MoS2 nanosheet platform with a high specific surface area UV–vis spectra and electrochemical impedance spectra exhibit an enhanced light absorption ability and conductivity of TiO2/MoS2 compared to that of just TiO2 Photoelectrochemical (PEC) tests also demonstrate the photocurrent of 20 : 1 TiO2/MoS2 HNs is greatly improved compared to that of as-prepared TiO2 The saturation current density is about 33 µA cm−2 when the applied potential is 02 V, which is nearly twice that of pure TiO2 and four times as high as 5 : 1 TiO2/MoS2 HNs and 1 : 1 TiO2/MoS2 HNs Besides that, the duration test exhibits no detectable distinction after processing 25 cycles The improved photocatalytic activities are perhaps derived from the high conductivity and the increased active sites for the introduction of co-catalytic MoS2 nanosheets as well as the positive synergetic effect between the TiO2 and MoS2 This work demonstrates that the as-prepared TiO2/MoS2 HNs may have a great potential application in PEC hydrogen production

Journal ArticleDOI
TL;DR: In this paper, structural, electrical and magnetoelectric properties of SmFeO3 ceramic samples, synthesized using a soft-chemical method, were studied by the Rietveld refinement of room temperature x-ray diffraction data.
Abstract: The structural, electrical and magnetoelectric properties of SmFeO3 ceramic samples, synthesized using a soft-chemical method, were studied. A structural analysis of the material was carried out by the Rietveld refinement of room temperature x-ray diffraction data. The temperature dependence of the dielectric peaks was analyzed by fitting them with two Gaussian peaks corresponding to two phase transitions—one being electric, and the other being magnetic in nature. The depression angle of the semicircles in a Nyquist plot representing the grain and grain boundary contributions in the sample was estimated. The grain boundary effect, appearing at temperatures above 75 °C, is explained using the Maxwell–Wagner mechanism. The impedance study reveals a semi-conducting grain with an insulating grain boundary, leading to the formation of surface and internal barrier layer capacitors and resulting in a very high dielectric constant. The effect of dc conductivity on the loss tangent at low frequencies and high temperature has been analyzed. The frequency dependence of ac conductivity in the two different regions can be explained on the basis of correlated barrier hopping and quantum mechanical tunneling models. The material is found to exhibit canted antiferromagnetism and improper ferroelectric characteristics. The value of the magnetoelectric voltage-coupling coefficient (α) of a SmFeO3 ceramic is found to be 2.2 mV cm−1 Oe−1.

Journal ArticleDOI
TL;DR: Laser-based materials processing techniques are gaining widespread use in micro-manufacturing applications as discussed by the authors, which enables the processing of micro-and nanostructures from a wide range of materials and geometries.
Abstract: Laser-based materials processing techniques are gaining widespread use in micro-manufacturing applications. The use of laser microfabrication techniques enables the processing of micro- and nanostructures from a wide range of materials and geometries without the need for masking and etching steps commonly associated with photolithography. This review aims to describe the broad applications space covered by laser-based micro- and nanoprocessing techniques and the benefits offered by the use of lasers in micro-manufacturing processes. Given their non-lithographic nature, these processes are also referred to as laser direct-write and constitute some of the earliest demonstrations of 3D printing or additive manufacturing at the microscale. As this review will show, the use of lasers enables precise control of the various types of processing steps—from subtractive to additive—over a wide range of scales with an extensive materials palette. Overall, laser-based direct-write techniques offer multiple modes of operation including the removal (via ablative processes) and addition (via photopolymerization or printing) of most classes of materials using the same equipment in many cases. The versatility provided by these multi-function, multi-material and multi-scale laser micro-manufacturing processes cannot be matched by photolithography nor with other direct-write microfabrication techniques and offer unique opportunities for current and future 3D micro-manufacturing applications.

Journal ArticleDOI
TL;DR: In this article, the chemical structure of polypropylene grafted with maleic anhydride (PP-g-MAH) was analyzed and its effect on space charge accumulation, electrical breakdown strength and DC conductivity was studied.
Abstract: This paper reports excellent electrical properties in polypropylene grafted with maleic anhydride (PP-g-MAH) and a related mechanism of the enhanced electrical properties. The chemical structure of PP-g-MAH was analyzed and its effect on space charge accumulation, electrical breakdown strength and DC conductivity was studied. Compared with pure PP, the PP-g-MAH exhibits remarkably suppressed space charge accumulation, enhanced electrical breakdown strength and reduced conduction current. The mechanism enhancing the electrical properties was studied by measuring the trap level distribution. It can be explained that abundant deep traps are introduced in PP-g-MAH with the introduction of polar groups in MAH, which reduces the charge mobility and raises the charge injection barrier so as to suppress space charge accumulation. This investigation would contribute to propose a new material modification strategy for designing high-voltage direct current insulation material in addition to the inclusion of nanoparticles.

Journal ArticleDOI
TL;DR: The history of bipolar oxide thin film devices can be found in this article, where a wide range of n-type and p-type oxides has been explored for the formation of such bipolar diodes.
Abstract: We present the history of, and the latest progress in, the field of bipolar oxide thin film devices. As such we consider primarily pn-junctions in which at least one of the materials is a metal oxide semiconductor. A wide range of n-type and p-type oxides has been explored for the formation of such bipolar diodes. Since most oxide semiconductors are unipolar, challenges and opportunities exist with regard to the formation of heterojunction diodes and band lineups. Recently, various approaches have led to devices with high rectification, namely p-type ZnCo2O4 and NiO on n-type ZnO and amorphous zinc-tin-oxide. Subsequent bipolar devices and applications such as photodetectors, solar cells, junction field-effect transistors and integrated circuits like inverters and ring oscillators are discussed. The tremendous progress shows that bipolar oxide electronics has evolved from the exploration of various materials and heterostructures to the demonstration of functioning integrated circuits. Therefore a viable, facile and high performance technology is ready for further exploitation and performance optimization.

Journal ArticleDOI
TL;DR: In this article, the rate constants of the chemical reactions relating to the main byproducts of SF6 decomposition in gas-insulated power equipment were derived for a large temperature range, from 300 to 12 000 K, and finally fitted by a three-parameter Arrhenius equation.
Abstract: SF6 is widely used in electrical equipment as an insulating gas. In the presence of an electric arc, partial discharge (PD) or spark, SF6 dissociation products (such as SF2, SF3 and SF4) react with the unavoidable gas impurities (such as water vapor and oxygen), electrodes and surrounding solid insulation materials, forming several toxic and corrosive byproducts. The main stable decomposition products are SO2F, SO2F2 and SOF2, which have been confirmed experimentally to have a direct relationship with discharge faults, and are thus expected to be useful in the fault diagnosis of power equipment. Various studies have been performed of the main SF6 decomposition species and their concentrations under different types of faults. However, most of the experiments focused on the qualitative analysis of the relationship between the stable products and discharge faults. Although some theoretical research on the formation of main SF6 derivatives have been carried out using chemical kinetics models, the basic data (chemical reactions and their rate constants) adopted in the model are inaccurate and incomplete. The complex chemical reactions of SF6 with the impurities are ignored in most cases. The rate constants of some reactions obtained at ambient temperature or in a narrow temperature range are adopted in the models over a far greater range, for example up to 12 000 K, due to the difficulty in the experimental measurement and theoretical estimation of rate coefficients, particularly at high temperatures. Therefore, improved theoretical models require not only the consideration of additional SF6 decomposition reactions in the presence of impurities but also on improved values of rate constants. This paper is devoted to determining the rate constants of the chemical reactions relating to the main byproducts of SF6 decomposition in SF6 gas-insulated power equipment: SO2F, SOF2 and SO2F2. Quantum chemistry calculations with density functional theory, conventional transition state theory and Wigner’s tunneling effect correction are employed to estimate the rate constants of four important chemical reactions: F + SO2F → SO2F2, F2 + SO2 → SO2F2, SO2F + SF5 → SF6 + SO2 and SOF3 + SF3 → SF4 + SOF2. The results are derived for a large temperature range, from 300 to 12 000 K, and finally fitted by a three-parameter Arrhenius equation. This work lays a basis for the further study of the SF6 decomposition mechanism by means of chemical kinetics modelling. Journal of Physics D: Applied Physics Calculated rate constants of the chemical reactions involving the main byproducts SO2F, SOF2, SO2F2 of SF6 decomposition in power equipment

Journal ArticleDOI
TL;DR: In this article, the perfect absorption properties of metal-insulator-metal (MIM) structures in the visible spectrum were investigated and a derivation and analysis of the conditions for which perfect absorption occurs was provided.
Abstract: We present a rigorous study of the perfect absorption properties of metal–insulator–metal (MIM) structures in the visible spectrum. We provide a derivation (based on the transfer matrix method) and analysis of the conditions for which the perfect absorption occurs. We show that these conditions are fulfilled when the incident wave excites the eigenmodes of the structure. The quantitative analysis allows us to design specific perfect absorbers for our needs. The analytical model is verified by rigorous simulations based on rigorous coupled wave analysis, which demonstrate also the angle and polarization insensitivity of the absorption properties of such a structure. Employing the MIM approach and results, we also investigate and demonstrate multiple perfect absorption bands and broad-band absorption in properly designed multilayer metal-insulator systems.