scispace - formally typeset
Search or ask a question
JournalISSN: 0742-3098

Journal of Pineal Research 

Wiley
About: Journal of Pineal Research is an academic journal published by Wiley. The journal publishes majorly in the area(s): Melatonin & Pineal gland. It has an ISSN identifier of 0742-3098. Over the lifetime, 2876 publications have been published receiving 176405 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This report reviews the studies which document the influence of melatonin on the activity and expression of the antioxidative enzymes glutathione peroxidase, superoxide dismutases and catalase both under physiological and under conditions of elevated oxidative stress and analyses the possible mechanisms by which melatonin regulates these enzymes.
Abstract: Antioxidant enzymes form the first line of defense against free radicals in organisms. Their regulation depends mainly on the oxidant status of the cell, given that oxidants are their principal modulators. However, other factors have been reported to increase antioxidant enzyme activity and/or gene expression. During the last decade, the antioxidant melatonin has been shown to possess genomic actions, regulating the expression of several genes. Melatonin also influences both antioxidant enzyme activity and cellular mRNA levels for these enzymes. In the present report, we review the studies which document the influence of melatonin on the activity and expression of the antioxidative enzymes glutathione peroxidase, superoxide dismutases and catalase both under physiological and under conditions of elevated oxidative stress. We also analyze the possible mechanisms by which melatonin regulates these enzymes.

1,824 citations

Journal ArticleDOI
TL;DR: This review focuses on melatonin metabolism which includes the synthetic rate‐limiting enzymes, synthetic sites, potential regulatory mechanisms, bioavailability in humans, mechanisms of breakdown and functions of its metabolites.
Abstract: Melatonin is a highly conserved molecule. Its presence can be traced back to ancient photosynthetic prokaryotes. A primitive and primary function of melatonin is that it acts as a receptor-independent free radical scavenger and a broad-spectrum antioxidant. The receptor-dependent functions of melatonin were subsequently acquired during evolution. In the current review, we focus on melatonin metabolism which includes the synthetic rate-limiting enzymes, synthetic sites, potential regulatory mechanisms, bioavailability in humans, mechanisms of breakdown and functions of its metabolites. Recent evidence indicates that the original melatonin metabolite may be N 1 -acetyl-N 2 -formyl-5-methoxykynuramine (AFMK) rather than its commonly measured urinary excretory product 6-hydroxymelatonin sulfate. Numerous pathways for AFMK formation have been identified both in vitro and in vivo. These include enzymatic and pseudo-enzymatic pathways, interactions with reactive oxygen species (ROS)/reactive nitrogen species (RNS) and with ultraviolet irradiation. AFMK is present in mammals including humans, and is the only detectable melatonin metabolite in unicellular organisms and metazoans. 6-Hydroxymelatonin sulfate has not been observed in these low evolutionary-ranked organisms. This implies that AFMK evolved earlier in evolution than 6-hydroxymelatonin sulfate as a melatonin metabolite. Via the AFMK pathway, a single melatonin molecule is reported to scavenge up to 10 ROS/RNS. That the free radical scavenging capacity of melatonin extends to its secondary, tertiary and quaternary metabolites is now documented. It appears that melatonin's interaction with ROS/RNS is a prolonged process that involves many of its derivatives. The process by which melatonin and its metabolites successively scavenge ROS/RNS is referred as the free radical scavenging cascade. This cascade reaction is a novel property of melatonin and explains how it differs from other conventional antioxidants. This cascade reaction makes melatonin highly effective, even at low concentrations, in protecting organisms from oxidative stress. In accordance with its protective function, substantial amounts of melatonin are found in tissues and organs which are frequently exposed to the hostile environmental insults such as the gut and skin or organs which have high oxygen consumption such as the brain. In addition, melatonin production may be upregulated by low intensity stressors such as dietary restriction in rats and exercise in humans. Intensive oxidative stress results in a rapid drop of circulating melatonin levels. This melatonin decline is not related to its reduced synthesis but to its rapid consumption, i.e. circulating melatonin is rapidly metabolized by interaction with ROS/RNS induced by stress. Rapid melatonin consumption during elevated stress may serve as a protective mechanism of organisms in which melatonin is used as a first-line defensive molecule against oxidative damage. The oxidative status of organisms modifies melatonin metabolism. It has been reported that the higher the oxidative state, the more AFMK is produced. The ratio of AFMK and another melatonin metabolite, cyclic 3-hydroxymelatonin, may serve as an indicator of the level of oxidative stress in organisms.

1,454 citations

Journal ArticleDOI
TL;DR: It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet‐to‐be identified basic action(s) of this ancient molecule.
Abstract: Melatonin is uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances. It achieves this action via a variety of means: direct detoxification of reactive oxygen and reactive nitrogen species and indirectly by stimulating antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. In addition to these well-described actions, melatonin also reportedly chelates transition metals, which are involved in the Fenton/Haber-Weiss reactions; in doing so, melatonin reduces the formation of the devastatingly toxic hydroxyl radical resulting in the reduction of oxidative stress. Melatonin's ubiquitous but unequal intracellular distribution, including its high concentrations in mitochondria, likely aid in its capacity to resist oxidative stress and cellular apoptosis. There is credible evidence to suggest that melatonin should be classified as a mitochondria-targeted antioxidant. Melatonin's capacity to prevent oxidative damage and the associated physiological debilitation is well documented in numerous experimental ischemia/reperfusion (hypoxia/reoxygenation) studies especially in the brain (stroke) and in the heart (heart attack). Melatonin, via its antiradical mechanisms, also reduces the toxicity of noxious prescription drugs and of methamphetamine, a drug of abuse. Experimental findings also indicate that melatonin renders treatment-resistant cancers sensitive to various therapeutic agents and may be useful, due to its multiple antioxidant actions, in especially delaying and perhaps treating a variety of age-related diseases and dehumanizing conditions. Melatonin has been effectively used to combat oxidative stress, inflammation and cellular apoptosis and to restore tissue function in a number of human trials; its efficacy supports its more extensive use in a wider variety of human studies. The uncommonly high-safety profile of melatonin also bolsters this conclusion. It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet-to-be identified basic action(s) of this ancient molecule.

1,045 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes the current progress in understanding the physicochemical insights related to the free radical-scavenging activity of melatonin and concludes that melatonin efficiently protects against oxidative stress by a variety of mechanisms.
Abstract: Oxidative stress has been proven to be related to the onset of a large number of health disorders. This chemical stress is triggered by an excess of free radicals, which are generated in cells because of a wide variety of exogenous and endogenous processes. Therefore, finding strategies for efficiently detoxifying free radicals has become a subject of a great interest, from both an academic and practical points of view. Melatonin is a ubiquitous and versatile molecule that exhibits most of the desirable characteristics of a good antioxidant. The amount of data gathered so far regarding the protective action of melatonin against oxidative stress is overwhelming. However, rather little is known concerning the chemical mechanisms involved in this activity. This review summarizes the current progress in understanding the physicochemical insights related to the free radical-scavenging activity of melatonin. Thus far, there is a general agreement that electron transfer and hydrogen transfer are the main mechanisms involved in the reactions of melatonin with free radicals. However, the relative importance of other mechanisms is also analyzed. The chemical nature of the reacting free radical also has an influence on the relative importance of the different mechanisms of these reactions. Therefore, this point has also been discussed in detail in the current review. Based on the available data, it is concluded that melatonin efficiently protects against oxidative stress by a variety of mechanisms. Moreover, it is proposed that even though it has been referred to as the chemical expression of darkness, perhaps it could also be referred to as the chemical light of health.

992 citations

Journal ArticleDOI
TL;DR: Melatonin is remarkably potent in protecting against free radical damage induced by a variety of means, and DNA damage resulting from either the exposure of animals to the chemical carcinogen safrole or to ionizing radiation is markedly reduced when melatonin is co‐administered.
Abstract: This survey summarizes the findings, accumulated within the last 2 years, concerning melatonin's role in defending against toxic free radicals. Free radicals are chemical constituents that have an unpaired electron in their outer orbital and, because of this feature, are highly reactive. Inspired oxygen, which sustains life, also is harmful because up to 5% of the oxygen (O2) taken in is converted to oxygen-free radicals. The addition of a single electron to O2 produces the superoxide anion radical (O2-.); O2-. is catalytic-reduced by superoxide dismutase, to hydrogen peroxide (H2O2). Although H2O2 is not itself a free radical, it can be toxic at high concentrations and, more importantly, it can be reduced to the hydroxyl radical (.OH). The .OH is the most toxic of the oxygen-based radicals and it wreaks havoc within cells, particularly with macromolecules. In recent in vitro studies, melatonin was shown to be a very efficient neutralizer of the .OH; indeed, in the system used to test its free radical scavenging ability it was found to be significantly more effective than the well known antioxidant, glutathione (GSH), in doing so. Likewise, melatonin has been shown to stimulate glutathione peroxidase (GSH-Px) activity in neural tissue; GSH-PX metabolizes reduced glutathione to its oxidized form and in doing so it converts H2O2 to H2O, thereby reducing generation of the .OH by eliminating its precursor. More recent studies have shown that melatonin is also a more efficient scavenger of the peroxyl radical than is vitamin E. The peroxyl radical is generated during lipid peroxidation and propagates the chain reaction that leads to massive lipid destruction in cell membranes. In vivo studies have demonstrated that melatonin is remarkably potent in protecting against free radical damage induced by a variety of means. Thus, DNA damage resulting from either the exposure of animals to the chemical carcinogen safrole or to ionizing radiation is markedly reduced when melatonin is co-administered. Likewise, the induction of cataracts, generally accepted as being a consequence of free radical attack on lenticular macromolecules, in newborn rats injected with a GSH-depleting drug are prevented when the animals are given daily melatonin injections. Also, paraquat-induced lipid peroxidation in the lungs of rats is overcome when they also receive melatonin during the exposure period. Paraquat is a highly toxic herbicide that inflicts at least part of its damage by generating free radicals.(ABSTRACT TRUNCATED AT 400 WORDS)

830 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202336
202268
202168
202065
201976
201875