scispace - formally typeset
Search or ask a question
JournalISSN: 0971-7811

Journal of Plant Biochemistry and Biotechnology 

Springer Science+Business Media
About: Journal of Plant Biochemistry and Biotechnology is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Gene & Murashige and Skoog medium. It has an ISSN identifier of 0971-7811. Over the lifetime, 1396 publications have been published receiving 13622 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The extract of callus obtained by grinding showed ability of synthesis of silver nanoparticles when treated with silver nitrate (1 mM), and the formation of brown colour in the reaction mixture indicates the synthesis ofsilver nanoparticles.
Abstract: This is the first report of synthesis of silver nanoparticles by using callus extract of Carica papaya. MS medium supplemented with the growth hormones, 2.0 mg l−1 IBA and 0.5 mg l−1 BAP was found to be more suitable for the induction of callus and multiple shoots in papaya. The extract of callus obtained by grinding showed ability of synthesis of silver nanoparticles when treated with silver nitrate (1 mM). The formation of brown colour in the reaction mixture indicates the synthesis of silver nanoparticles. The further detection and characterization of these synthesized silver nanoparticles was carried by spectrophotometry. FTIR spectrum analysis showed peaks between 1000–2000 cm−1 which confirmed the presence of proteins and other ligands required for the synthesis and stabilization of silver nanoparticles. SEM micrograph confirmed the synthesis of spherical silver nanoparticles in the size range of 60–80 nm.

185 citations

Journal ArticleDOI
TL;DR: This is the first plant genome sequence completed entirely through a network of Indian institutions led by the Indian Council of Agricultural Research and provides a valuable resource for the pigeonpea variety improvement.
Abstract: Pigeonpea (Cajanus cajan) is an important grain legume of the Indian subcontinent, South-East Asia and East Africa. More than eighty five percent of the world pigeonpea is produced and consumed in India where it is a key crop for food and nutritional security of the people. Here we present the first draft of the genome sequence of a popular pigeonpea variety ‘Asha’. The genome was assembled using long sequence reads of 454 GS-FLX sequencing chemistry with mean read lengths of >550 bp and >10-fold genome coverage, resulting in 510,809,477 bp of high quality sequence. Total 47,004 protein coding genes and 12,511 transposable elements related genes were predicted. We identified 1,213 disease resistance/defense response genes and 152 abiotic stress tolerance genes in the pigeonpea genome that make it a hardy crop. In comparison to soybean, pigeonpea has relatively fewer number of genes for lipid biosynthesis and larger number of genes for cellulose synthesis. The sequence contigs were arranged in to 59,681 scaffolds, which were anchored to eleven chromosomes of pigeonpea with 347 genic-SNP markers of an intra-species reference genetic map. Eleven pigeonpea chromosomes showed low but significant synteny with the twenty chromosomes of soybean. The genome sequence was used to identify large number of hypervariable ‘Arhar’ simple sequence repeat (HASSR) markers, 437 of which were experimentally validated for PCR amplification and high rate of polymorphism among pigeonpea varieties. These markers will be useful for fingerprinting and diversity analysis of pigeonpea germplasm and molecular breeding applications. This is the first plant genome sequence completed entirely through a network of Indian institutions led by the Indian Council of Agricultural Research and provides a valuable resource for the pigeonpea variety improvement.

164 citations

Journal ArticleDOI
TL;DR: It is inferred that leaves of salt-tolerant cultivars tend to attain greater capacity to perform reactions of antioxidative pathway under saline conditions to combat salinity-induced oxidative stress.
Abstract: Indices of oxidative stress viz., superoxide radical and H2O2 content increased in leaves of all the cultivars with the rise in salinity level, the increase was more pronounced and significant in salt-sensitive varieties and non-significant in resistant cultivars. Except for glutathione reductase (GR), basal activities of all other antioxidative enzymes viz. superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR) were significantly higher in leaves of all the resistant cultivars as compared to the sensitive ones. A differential response of salinity was observed on various enzymatic and non-enzymatic components of antioxidant system in leaves of salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). Activities of superoxide dismutase and glutathione reductase enhanced in all the tolerant cultivar while declined in the sensitive cultivars with increasing salinity from 0 to 100 mM. Salt-stress induced the activities of catalase and peroxidase in all the cultivars but the magnitude of increase was more pronounced in the sensitive cultivars than in the tolerant cultivars. Contrarily, APX activity increased in the salt-sensitive cultivars but showed no significant change in the salt-tolerant cultivars. The amount of ascorbic acid content, reduced glutathione (GSH), reduced/oxidized glutathione (GSSG) ratio was higher in leaves of the tolerant cultivars than that of the sensitive cultivars under saline conditions. It is inferred that leaves of salt-tolerant cultivars tend to attain greater capacity to perform reactions of antioxidative pathway under saline conditions to combat salinity-induced oxidative stress.

158 citations

Journal ArticleDOI
TL;DR: Various aspects relating to sensors for ROS and signaling role of ROS in plants, improvement of antioxidant systems in transgenic plants and functional genomics approaches used to unravel the reactive oxygen gene network has been discussed.
Abstract: Plants exposed to biotic and abiotic stresses generate more reactive oxygen species (ROS) than their capacity to scavenge them. Biological molecules are susceptible to attack by ROS, including several proteins, polyunsaturated fatty acids and nucleic acids. The cellular arsenal for scavenging ROS and toxic organic radicals include ascorbate, glutathione, tocopherol, carotenoids, polyphenols, alkaloids and other compounds. Enzymatic antioxidants including superoxide dismutase, peroxidase, catalase and glutathione reductase detoxify either by quenching toxic compounds or regenerating antioxidants involving reducing power. Various aspects relating to sensors for ROS and signaling role of ROS in plants, improvement of antioxidant systems in transgenic plants and functional genomics approaches used to unravel the reactive oxygen gene network has been discussed.

95 citations

Journal ArticleDOI
TL;DR: A subgenomic library constructed from small Pstl restriction fragments yielded 83.18% low-copy clones and the RFLP analysis of chloroplast and mitochondrial genomes showed no polymorphism.
Abstract: A subgenomic library constructed from small Pstl restriction fragments (0.4 to 2.0 kb) yielded 83.18% low-copy clones. Using 17 random genomic and 5 heterologous probes in 65 probe-enzyme combinations, Restriction Fragment Length Polymorphism (RFLP) for nuclear DNA was studied in five desi and five kabuli type chickpea cultivars. Only two clones revealed polymorphism in the cultivars tested. No polymorphism in chickpea varieties was detected with four Random Amplified Polymorphic DNA (RAPD) markers studied. However, some degree of polymorphism between C. arietinum and its wild relative C. reticulatum was detected. The RFLP analysis of chloroplast and mitochondrial genomes showed no polymorphism.

93 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202332
202273
2021151
202081
201948
201835