scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Proteome Research in 2011"


Journal ArticleDOI
TL;DR: A novel peptide search engine using a probabilistic scoring model that can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, and accommodates extremely large databases.
Abstract: A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data, Andromeda performs as well as Mascot, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly phosphorylated peptides, and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination enables analysis of large data sets in a simple analysis workflow on a desktop computer. For searching individual spect...

4,689 citations


Journal ArticleDOI
TL;DR: An algorithm for the assignment of phosphorylation sites in peptides that includes a novel approach to peak extraction, required for matching experimental data to the theoretical values of all isoforms, by defining individual peak depths for the different regions of the tandem mass spectrum is described.
Abstract: An algorithm for the assignment of phosphorylation sites in peptides is described. The program uses tandem mass spectrometry data in conjunction with the respective peptide sequences to calculate site probabilities for all potential phosphorylation sites. Tandem mass spectra from synthetic phosphopeptides were used for optimization of the scoring parameters employing all commonly used fragmentation techniques. Calculation of probabilities was adapted to the different fragmentation methods and to the maximum mass deviation of the analysis. The software includes a novel approach to peak extraction, required for matching experimental data to the theoretical values of all isoforms, by defining individual peak depths for the different regions of the tandem mass spectrum. Mixtures of synthetic phosphopeptides were used to validate the program by calculation of its false localization rate versus site probability cutoff characteristic. Notably, the empirical obtained precision was higher than indicated by the applied probability cutoff. In addition, the performance of the algorithm was compared to existing approaches to site localization such as Ascore. In order to assess the practical applicability of the algorithm to large data sets, phosphopeptides from a biological sample were analyzed, localizing more than 3000 nonredundant phosphorylation sites. Finally, the results obtained for the different fragmentation methods and localization tools were compared and discussed.

717 citations


Journal ArticleDOI
TL;DR: This work investigates how many peptides are detectable by high resolution MS in standard LC runs of cell lysate and how many of them are accessible to data-dependent MS/MS.
Abstract: Shotgun proteomics entails the identification of as many peptides as possible from complex mixtures. Here we investigate how many peptides are detectable by high resolution MS in standard LC runs of cell lysate and how many of them are accessible to data-dependent MS/MS. Isotope clusters were determined by MaxQuant and stringently filtered for charge states and retention times typical of peptides. This resulted in more than 100 000 likely peptide features, of which only about 16% had been targeted for MS/MS. Three instrumental attributes determine the proportion of additional peptides that can be identified: sequencing speed, sensitivity, and precursor ion isolation. In our data, an MS/MS scan rate of 25/s would be necessary to target all peptide features, but this drops to less than 17/s for reasonably abundant peptides. Sensitivity is a greater challenge, with many peptide features requiring long MS/MS injection times (>250 ms). The greatest limitation, however, is the generally low proportion of the ta...

610 citations


Journal ArticleDOI
TL;DR: This work describes a much faster and simpler protein staining method, which is compatible with ordinary blocking conditions, and can be used after immunodetection with superior linearity compared to ordinary staining methods.
Abstract: In Western blotting, immunodetection of housekeeping proteins is routinely performed to detect differences in electrophoresis loading. The present work describes a much faster and simpler protein staining method, which is compatible with ordinary blocking conditions. In addition, the method can be used after immunodetection with superior linearity compared to ordinary staining methods. After immunoblotting and staining, protein bands can be further identified using peptide mass fingerprinting.

418 citations


Journal ArticleDOI
TL;DR: A high-fat diet increased lipid metabolites but decreased lipid metabolism intermediates and the NAD/NADH ratio, indicating that abnormal lipid and energy metabolism induced by a high- fat diet resulted in fat accumulation via decreased β-oxidation.
Abstract: Liver and serum metabolites of obese and lean mice fed on high fat or normal diets were analyzed using ultraperformance liquid chromatography−quadrupole-time-of-flight mass spectrometry, gas chroma...

339 citations


Journal ArticleDOI
TL;DR: It is concluded that a decision-tree regulated combination of higher-energy collisional dissociation (HCD) andETD can improve the average Mascot score and ETD FT outperforms the other techniques for peptides with charge states higher than 2.
Abstract: Over the past decade peptide sequencing by collision induced dissociation (CID) has become the method of choice in mass spectrometry-based proteomics. The development of alternative fragmentation techniques such as electron transfer dissociation (ETD) has extended the possibilities within tandem mass spectrometry. Recent advances in instrumentation allow peptide fragment ions to be detected with high speed and sensitivity (e.g., in a 2D or 3D ion trap) or at high resolution and high mass accuracy (e.g., an Orbitrap or a ToF). Here, we describe a comprehensive experimental comparison of using ETD, ion-trap CID, and beam type CID (HCD) in combination with either linear ion trap or Orbitrap readout for the large-scale analysis of tryptic peptides. We investigate which combination of fragmentation technique and mass analyzer provides the best performance for the analysis of distinct peptide populations such as N-acetylated, phosphorylated, and tryptic peptides with up to two missed cleavages. We found that HC...

304 citations


Journal ArticleDOI
TL;DR: H NMR spectroscopy of aqueous fecal extracts has been used to investigate differences in metabolic activity of gut microbiota in patients with ulcerative colitis, irritable bowel syndrome, and healthy controls.
Abstract: (1)H NMR spectroscopy of aqueous fecal extracts has been used to investigate differences in metabolic activity of gut microbiota in patients with ulcerative colitis (UC) (n = 13), irritable bowel syndrome (IBS) (n = 10), and healthy controls (C) (n = 22). Up to four samples per individual were collected over 2 years giving a total of 124 samples. Multivariate discriminant analysis, based on NMR data from all three groups, was able to predict UC and C group membership with good sensitivity and specificity; classification of IBS samples was less successful and could not be used for diagnosis. Trends were detected toward increased taurine and cadaverine levels in UC with increased bile acid and decreased branched chain fatty acids in IBS relative to controls; changes in short chain fatty acids and amino acids were not significant. Previous PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analysis of the same fecal material had shown alterations of the gut microbiota when comparing UC and IBS groups with controls. Hierarchical cluster analysis showed that DGGE profiles from the same individual were stable over time, but NMR spectra were more variable; canonical correlation analysis of NMR and DGGE data partly separated the three groups and revealed a correlation between the gut microbiota profile and metabolite composition.

302 citations


Journal ArticleDOI
TL;DR: Targeted proteomic workflows based on SRM mass spectrometry show the potential of fast verification of biomarker candidates in plasma and thereby closing the gap between discovery and validation in the biomarker development pipeline.
Abstract: The development of plasma biomarkers has proven to be more challenging than initially anticipated Many studies have reported lists of candidate proteins rather than validated candidate markers with an assigned performance to a specific clinical objective Biomarker research necessitates a clear rational framework with requirements on a multitude of levels On the technological front, the platform needs to be effective to detect low abundant plasma proteins and be able to measure them in a high throughput manner over a large amount of samples reproducibly At a conceptual level, the choice of the technological platform and available samples should be part of an overall clinical study design that depends on a joint effort between basic and clinical research Solutions to these needs are likely to facilitate more feasible studies Targeted proteomic workflows based on SRM mass spectrometry show the potential of fast verification of biomarker candidates in plasma and thereby closing the gap between discovery and validation in the biomarker development pipeline Biological samples need to be carefully chosen based on well-established guidelines either for candidate discovery in the form of disease models with optimal fidelity to human disease or for candidate evaluation as well-designed and annotated clinical cohort groups Most importantly, they should be representative of the target population and directly address the investigated clinical question A conceptual structure of a biomarker study can be provided in the form of several sequential phases, each having clear objectives and predefined goals Furthermore, guidelines for reporting the outcome of biomarker studies are critical to adequately assess the quality of the research, interpretation and generalization of the results By being attentive to and applying these considerations, biomarker research should become more efficient and lead to directly translatable biomarker candidates into clinical evaluation

293 citations


Journal ArticleDOI
TL;DR: A streamlined filter-aided sample preparation (FASP) workflow that allows efficient analysis of lysates from low numbers of cells is described and shows that FASP is suitable for the low level analysis of microdissected tissue and that it has the potential for exploration of clinical samples for biomarker and drug target discovery.
Abstract: Proteomic analysis of samples isolated by laser capture microdissection from clinical specimens requires sample preparation and fractionation methods suitable for small amounts of protein. Here we describe a streamlined filter-aided sample preparation (FASP) workflow that allows efficient analysis of lysates from low numbers of cells. Addition of carrier substances such as polyethylene glycol or dextran to the processed samples improves the peptide yields in the low to submicrogram range. In a single LC-MS/MS run, analyses of 500, 1000, and 3000 cells allowed identification of 905, 1536, and 2055 proteins, respectively. Incorporation of an additional SAX fractionation step at somewhat higher amounts enabled the analysis of formalin fixed and paraffin embedded human tissues prepared by LCM to a depth of 3600-4400 proteins per single experiment. We applied this workflow to compare archival neoplastic and matched normal colonic mucosa cancer specimens for three patients. Label-free quantification of more than 6000 proteins verified this technology through the differential expression of 30 known colon cancer markers. These included Carcino-Embryonic Antigen (CEA), the most widely used colon cancer marker, complement decay accelerating factor (DAF, CD55) and Metastasis-associated in colon cancer protein 1 (MACC1). Concordant with literature knowledge, mucin 1 was overexpressed and mucin 2 underexpressed in all three patients. These results show that FASP is suitable for the low level analysis of microdissected tissue and that it has the potential for exploration of clinical samples for biomarker and drug target discovery.

269 citations


Journal ArticleDOI
TL;DR: This study shows extensive gut microbiota modulation of host systemic metabolism involving short-chain fatty acids, tryptophan, tyrosine metabolism, and possibly a compensatory mechanism of indole-melatonin production.
Abstract: Gut microbiota are associated with essential various biological functions in humans through a "network" of microbial-host co-metabolism to process nutrients and drugs and modulate the activities of multiple pathways in organ systems that are linked to different diseases. The microbiome impacts strongly on the metabolic phenotypes of the host, and hence, metabolic readouts can give insights into functional metagenomic activity. We applied an untargeted mass spectrometry (MS) based metabonomics approach to profile normal Wistar rats exposed to a broad spectrum β-lactam antibiotic imipenem/cilastatin sodium, at 50 mg/kg/daily for 4 days followed by a 14-day recovery period. In-depth metabolic phenotyping allowed identification of a panel of 202 urinary and 223 fecal metabolites significantly related to end points of a functional metagenome (p < 0.05 in at least one day), many of which have not been previously reported such as oligopeptides and carbohydrates. This study shows extensive gut microbiota modulation of host systemic metabolism involving short-chain fatty acids, tryptophan, tyrosine metabolism, and possibly a compensatory mechanism of indole-melatonin production. Given the integral nature of the mammalian genome and metagenome, this panel of metabolites will provide a new platform for potential therapeutic markers and mechanistic solutions to complex problems commonly encountered in pathology, toxicology, or drug metabolism studies.

261 citations


Journal ArticleDOI
TL;DR: High-resolution mass spectrometry was employed to quantify protein dynamics in nondividing mammalian cells and observed statistically significant trends for the turnover of phosphoproteins and gene ontology categories that showed extensive covariation between mouse and human.
Abstract: The turnover of each protein in the mammalian proteome is a functionally important characteristic. Here, we employed high-resolution mass spectrometry to quantify protein dynamics in nondividing mammalian cells. The ratio of externally supplied versus endogenous amino acids to de novo protein synthesis was about 17:1. Using subsaturating SILAC labeling, we obtained accurate turnover rates of 4106 proteins in HeLa and 3528 proteins in C2C12 cells. Comparison of these human and mouse cell lines revealed a highly significant turnover correlation of protein orthologs and thus high species conservation. Functionally, we observed statistically significant trends for the turnover of phosphoproteins and gene ontology categories that showed extensive covariation between mouse and human. Likewise, the members of some protein complexes, such as the proteasome, have highly similar turnover rates. The high species conservation and the low complex variances thus imply great regulatory fine-tuning of protein turnover.

Journal ArticleDOI
TL;DR: A library with over 70 structures is obtained allowing high-throughput oligosaccharide structure identification, and a set of 30 SHMO structures with retention times, accurate masses, and MS/MS spectra was deduced and incorporated into an HMO library.
Abstract: Sialylated human milk oligosaccharides (SHMOs) are important components of human milk oligosaccharides Sialic acids are typically found on the nonreducing end and are known binding sites for pathogens and aid in neonates’ brain development Due to their negative charge and hydrophilic nature, they also help modulate cell−cell interactions It has also been shown that sialic acids are involved in regulating the immune response and aid in brain development In this study, the enriched SHMOs from pooled milk sample were analyzed by HPLC-Chip/QTOF MS The instrument employs a microchip-based nano-LC column packed with porous graphitized carbon (PGC) to provide excellent isomer separation for SHMOs with highly reproducible retention time The precursor ions were further examined with collision-induced dissociation (CID) By applying the proper collision energy, isomers can be readily differentiated by diagnostic peaks and characteristic fragmentation patterns A set of 30 SHMO structures with retention times,

Journal ArticleDOI
TL;DR: Novel high-density custom protein microarrays expressing 4988 candidate tumor antigens with sera from patients with early stage breast cancer, and bound IgG was measured, finding potential biomarkers for the early detection of breast cancer.
Abstract: Cancer patients spontaneously generate autoantibodies (AAb) to tumor-derived proteins. To detect AAb, we have probed novel high-density custom protein microarrays (NAPPA) expressing 4988 candidate tumor antigens with sera from patients with early stage breast cancer (IBC), and bound IgG was measured. We used a three-phase serial screening approach. First, a prescreen was performed to eliminate uninformative antigens. Sera from stage I−III IBC (n = 53) and healthy women (n = 53) were screened for AAb to all 4988 protein antigens. Antigens were selected if the 95th percentile of signal of cases and controls were significantly different (p 9...

Journal ArticleDOI
TL;DR: Comparison of the glycosylation patterns of microvesicles derived from a variety of biological sources using lectin microarray technology revealed both enrichment and depletion of specific glycan epitopes in these particles, implying a role in microvesicle protein sorting.
Abstract: Microvesicles (exosomes) are important mediators of intercellular communication, playing a role in immune regulation, cancer progression, and the spread of infectious agents. The biological functions of these small vesicles are dependent on their composition, which is regulated by mechanisms that are not well understood. Although numerous proteomic studies of these particles exist, little is known about their glycosylation. Carbohydrates are involved in protein trafficking and cellular recognition. Glycomic analysis may thus provide valuable insights into microvesicle biology. In this study, we analyzed glycosylation patterns of microvesicles derived from a variety of biological sources using lectin microarray technology. Comparison of the microvesicle glycomes with their parent cell membranes revealed both enrichment and depletion of specific glycan epitopes in these particles. These include enrichment in high mannose, polylactosamine, α-2,6 sialic acid, and complex N-linked glycans and exclusion of terminal blood group A and B antigens. The polylactosamine signature derives from distinct glycoprotein cohorts in microvesicles of different origins. Taken together, our data point to the emergence of microvesicles from a specific membrane microdomain, implying a role for glycosylation in microvesicle protein sorting.

Journal ArticleDOI
TL;DR: The results highlight remarkable similarities in the saliva from plant-feeding nematodes and aphids that may indicate the evolution of common solutions to the plant-parasitic lifestyle.
Abstract: The relationship between aphids and their host plants is thought to be functionally analogous to plant-pathogen interactions. Although virulence effector proteins that mediate plant defenses are well-characterized for pathogens such as bacteria, oomycetes, and nematodes, equivalent molecules in aphids and other phloem-feeders are poorly understood. A dual transcriptomic-proteomic approach was adopted to generate a catalog of candidate effector proteins from the salivary glands of the pea aphid, Acyrthosiphon pisum. Of the 1557 transcript supported and 925 mass spectrometry identified proteins, over 300 proteins were identified with secretion signals, including proteins that had previously been identified directly from the secreted saliva. Almost half of the identified proteins have no homologue outside aphids and are of unknown function. Many of the genes encoding the putative effector proteins appear to be evolving at a faster rate than homologues in other insects, and there is strong evidence that genes with multiple copies in the genome are under positive selection. Many of the candidate aphid effector proteins were previously characterized in typical phytopathogenic organisms (e.g., nematodes and fungi) and our results highlight remarkable similarities in the saliva from plant-feeding nematodes and aphids that may indicate the evolution of common solutions to the plant-parasitic lifestyle.

Journal ArticleDOI
TL;DR: The results show the valuable potential of NMR-based metabonomics for finding putative biomarkers of lung cancer in urine, collected in a minimally invasive way, which may have important diagnostic impact, provided that these metabolites are found to be specifically disease-related.
Abstract: In this study, ¹H NMR-based metabonomics has been applied, for the first time to our knowledge, to investigate lung cancer metabolic signatures in urine, aiming at assessing the diagnostic potential of this approach and gaining novel insights into lung cancer metabolism and systemic effects. Urine samples from lung cancer patients (n = 71) and a control healthy group (n = 54) were analyzed by high resolution ¹H NMR (500 MHz), and their spectral profiles subjected to multivariate statistics, namely, Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Orthogonal Projections to Latent Structures (OPLS)-DA. Very good discrimination between cancer and control groups was achieved by multivariate modeling of urinary profiles. By Monte Carlo Cross Validation, the classification model showed 93% sensitivity, 94% specificity and an overall classification rate of 93.5%. The possible confounding influence of other factors, namely, gender and age, have also been modeled and found to have much lower predictive power than the presence of the disease. Moreover, smoking habits were found not to have a dominating influence over class discrimination. The main metabolites contributing to this discrimination, as highlighted by multivariate analysis and confirmed by spectral integration, were hippurate and trigonelline (reduced in patients), and β-hydroxyisovalerate, α-hydroxyisobutyrate, N-acetylglutamine, and creatinine (elevated in patients relatively to controls). These results show the valuable potential of NMR-based metabonomics for finding putative biomarkers of lung cancer in urine, collected in a minimally invasive way, which may have important diagnostic impact, provided that these metabolites are found to be specifically disease-related.

Journal ArticleDOI
TL;DR: The combined serum proteomic and metabolomic profiling reveals a link between the complement system and obesity and identifies both novel (C3b, CLU, VDBP, and all metabolites) and confirms previously discovered markers of body fat mass changes.
Abstract: Obesity is associated with multiple adverse health effects and a high risk of developing metabolic and cardiovascular diseases. Therefore, there is a great need to identify circulating parameters that link changes in body fat mass with obesity. This study combines proteomic and metabolomic approaches to identify circulating molecules that discriminate healthy lean from healthy obese individuals in an exploratory study design. To correct for variations in physical activity, study participants performed a one hour exercise bout to exhaustion. Subsequently, circulating factors differing between lean and obese individuals, independent of physical activity, were identified. The DIGE approach yielded 126 differentially abundant spots representing 39 unique proteins. Differential abundance of proteins was confirmed by ELISA for antithrombin-III, clusterin, complement C3 and complement C3b, pigment epithelium-derived factor (PEDF), retinol binding protein 4 (RBP4), serum amyloid P (SAP), and vitamin-D binding protein (VDBP). Targeted serum metabolomics of 163 metabolites identified 12 metabolites significantly related to obesity. Among those, glycine (GLY), glutamine (GLN), and glycero-phosphatidylcholine 42:0 (PCaa 42:0) serum concentrations were higher, whereas PCaa 32:0, PCaa 32:1, and PCaa 40:5 were decreased in obese compared to lean individuals. The integrated bioinformatic evaluation of proteome and metabolome data yielded an improved group separation score of 2.65 in contrast to 2.02 and 2.16 for the single-type use of proteomic or metabolomics data, respectively. The identified circulating parameters were further investigated in an extended set of 30 volunteers and in the context of two intervention studies. Those included 14 obese patients who had undergone sleeve gastrectomy and 12 patients on a hypocaloric diet. For determining the long-term adaptation process the samples were taken six months after the treatment. In multivariate regression analyses, SAP, CLU, RBP4, PEDF, GLN, and C18:2 showed the strongest correlation to changes in body fat mass. The combined serum proteomic and metabolomic profiling reveals a link between the complement system and obesity and identifies both novel (C3b, CLU, VDBP, and all metabolites) and confirms previously discovered markers (PEDF, RBP4, C3, ATIII, and SAP) of body fat mass changes.

Journal ArticleDOI
TL;DR: Determination of the normal fluctuation of individual urinary proteins should be useful in establishing significance thresholds in biomarker studies and allowed definition of a common and abundant set of 500 proteins that were readily detectable in all studied individuals.
Abstract: Urine is a readily and noninvasively obtainable body fluid. Mass spectrometry (MS)-based proteomics has shown that urine contains thousands of proteins. Urine is a potential source of biomarkers for diseases of proximal and distal tissues but it is thought to be more variable than the more commonly used plasma. By LC-MS/MS analysis on an LTQ-Orbitrap without prefractionation we characterized the urinary proteome of seven normal human donors over three consecutive days. Label-free quantification of triplicate single runs covered the urinary proteome to a depth of more than 600 proteins. The median coefficient of variation (cv) of technical replicates was 0.18. Interday variability was markedly higher with a cv of 0.48 and the overall variation of the urinary proteome between individuals was 0.66. Thus technical variability in our data was 7.5%, whereas intrapersonal variability contributed 45.5% and interpersonal variability contributed 47.1% to total variability. Determination of the normal fluctuation of individual urinary proteins should be useful in establishing significance thresholds in biomarker studies. Our data also allowed definition of a common and abundant set of 500 proteins that were readily detectable in all studied individuals. This core urinary proteome has a high proportion of secreted, membrane, and relatively high-molecular weight proteins.

Journal ArticleDOI
TL;DR: Tide, introduced here, is a software program that implements the SEQUEST algorithm for peptide identification and achieves a dramatic speedup over Crux and SEQUEST, employing a combination of algorithmic and software engineering techniques.
Abstract: Computational analysis of mass spectra remains the bottleneck in many proteomics experiments. SEQUEST was one of the earliest software packages to identify peptides from mass spectra by searching a database of known peptides. Though still popular, SEQUEST performs slowly. Crux and TurboSEQUEST have successfully sped up SEQUEST by adding a precomputed index to the search, but the demand for ever-faster peptide identification software continues to grow. Tide, introduced here, is a software program that implements the SEQUEST algorithm for peptide identification and that achieves a dramatic speedup over Crux and SEQUEST. The optimization strategies detailed here employ a combination of algorithmic and software engineering techniques to achieve speeds up to 170 times faster than a recent version of SEQUEST that uses indexing. For example, on a single Xeon CPU, Tide searches 10 000 spectra against a tryptic database of 27 499 Caenorhabditis elegans proteins at a rate of 1550 spectra per second, which compares ...

Journal ArticleDOI
TL;DR: Salinity caused systems alterations in widespread metabolic networks involving transamination, TCA cycle, gluconeogenesis/glycolysis, glutamate-mediated proline biosynthesis, shikimate-mediated secondary metabolisms, and the metabolisms of choline, pyrimidine, and purine.
Abstract: Metabolic responses are important for plant adaptation to osmotic stresses. To understand the dosage and duration dependence of salinity effects on plant metabolisms, we analyzed the metabonome of tobacco plants and its dynamic responses to salt treatments using NMR spectroscopy in combination with multivariate data analysis. Our results showed that the tobacco metabonome was dominated by 40 metabolites including organic acids/bases, amino acids, carbohydrates and choline, pyrimidine, and purine metabolites. A dynamic trajectory was clearly observable for the tobacco metabonomic responses to the dosage of salinity. Short-term low-dose salt stress (50 mM NaCl, 1 day) caused metabolic shifts toward gluconeogenesis with depletion of pyrimidine and purine metabolites. Prolonged salinity with high-dose salt (500 mM NaCl) induced progressive accumulation of osmolytes, such as proline and myo-inositol, and changes in GABA shunt. Such treatments also promoted the shikimate-mediated secondary metabolisms with enhanced biosynthesis of aromatic amino acids. Therefore, salinity caused systems alterations in widespread metabolic networks involving transamination, TCA cycle, gluconeogenesis/glycolysis, glutamate-mediated proline biosynthesis, shikimate-mediated secondary metabolisms, and the metabolisms of choline, pyrimidine, and purine. These findings provided new insights for the tobacco metabolic adaptation to salinity and demonstrated the NMR-based metabonomics as a powerful approach for understanding the osmotic effects on plant biochemistry.

Journal ArticleDOI
TL;DR: The most significantly altered HILIC peak in lung cancer samples includes predominantly disialylated and tri- and tetra-antennary glycans, which is the combination of all glyco-biomarkers had the highest sensitivity and specificity.
Abstract: Lung cancer has a poor prognosis and a 5-year survival rate of 15%. Therefore, early detection is vital. Diagnostic testing of serum for cancer-associated biomarkers is a noninvasive detection method. Glycosylation is the most frequent post-translational modification of proteins and it has been shown to be altered in cancer. In this paper, high-throughput HILIC technology was applied to serum samples from 100 lung cancer patients, alongside 84 age-matched controls and significant alterations in N-linked glycosylation were identified. Increases were detected in glycans containing Sialyl Lewis X, monoantennary glycans, highly sialylated glycans and decreases were observed in core-fucosylated biantennary glycans, with some being detectable as early as in Stage I. The N-linked glycan profile of haptoglobin demonstrated similar alterations to those elucidated in the total serum glycome. The most significantly altered HILIC peak in lung cancer samples includes predominantly disialylated and tri- and tetra-antennary glycans. This potential disease marker is significantly increased across all disease groups compared to controls and a strong disease effect is visible even after the effect of smoking is accounted for. The combination of all glyco-biomarkers had the highest sensitivity and specificity. This study identifies candidates for further study as potential biomarkers for the disease.

Journal ArticleDOI
TL;DR: The ability of EchiTAb-Plus-ICP antivenom to immunodeplete and neutralize the venoms of African spitting cobras was assessed by antivenomics and neutralization tests and the lack of neutralization of lethality of N. nubiae venom may be of medical relevance only in relatively populous areas of the Saharan region.
Abstract: Venomic analysis of the venoms of Naja nigricollis, N. katiensis, N. nubiae, N. mossambica, and N. pallida revealed similar compositional trends. The high content of cytotoxins and PLA(2)s may account for the extensive tissue necrosis characteristic of the envenomings by these species. The high abundance of a type I α-neurotoxin in N. nubiae may be responsible for the high lethal toxicity of this venom (in rodents). The ability of EchiTAb-Plus-ICP antivenom to immunodeplete and neutralize the venoms of African spitting cobras was assessed by antivenomics and neutralization tests. It partially immunodepleted 3FTx and PLA(2)s and completely immunodepleted SVMPs and CRISPs in all venoms. The antivenom neutralized the dermonecrotic and PLA(2) activities of all African Naja venoms, whereas lethality was eliminated in the venoms of N. nigricollis, N. mossambica, and N. pallida but not in those of N. nubiae and N. katiensis. The lack of neutralization of lethality of N. nubiae venom may be of medical relevance only in relatively populous areas of the Saharan region. The impaired activity of EchiTAb-Plus-ICP against N. katiensis may not represent a major concern. This species is sympatric with N. nigricollis in many regions of Africa, although very few bites have been attributed to it.

Journal ArticleDOI
TL;DR: It is suggested that NMR-based global metabolite profiling of organ tissues and serum could provide insight into the metabolic changes in host infected aerobically with virulent Mycobacterium tuberculosis.
Abstract: Tuberculosis (TB) is one of three major infectious diseases, and the control of TB is becoming more difficult because of the emergence of multidrug-resistant and extensively drug-resistant strains....

Journal ArticleDOI
TL;DR: The protein composition and characterization of skeletal muscle LDs are reported, and a novel LD-associated protein, apo A-I, the principal apolipoprotein of high density lipoprotein (HDL) particles, was also localized on skeletal muscleLDs.
Abstract: The lipid droplet (LD) is a universal organelle governing the storage and turnover of neutral lipids. Mounting evidence indicates that elevated intramuscular triglyceride (IMTG) in skeletal muscle LDs is closely associated with insulin resistance and Type 2 Diabetes Mellitus (T2DM). Therefore, the identification of the skeletal muscle LD proteome will provide some clues to dissect the mechanism connecting IMTG with T2DM. In the present work, we identified 324 LD-associated proteins in mouse skeletal muscle LDs through mass spectrometry analysis. Besides lipid metabolism and membrane traffic proteins, a remarkable number of mitochondrial proteins were observed in the skeletal muscle LD proteome. Furthermore, imaging by fluorescence microscopy and transmission electronic microscopy (TEM) directly demonstrated that mitochondria closely adhere to LDs in vivo. Moreover, our results revealed for the first time that apolipoprotein A-I (apo A-I), the principal apolipoprotein of high density lipoprotein (HDL) part...

Journal ArticleDOI
TL;DR: P. tenuiflora plants developed diverse reactive oxygen species (ROS) scavenging mechanisms in their leaves to cope with moderate salinity, including enhancement of the photorespiration pathway and thermal dissipation, synthesis of the low-molecular-weight antioxidant α-tocopherol, and an accumulation of compatible solutes.
Abstract: Soil salinity poses a serious threat to agriculture productivity throughout the world. Studying mechanisms of salinity tolerance in halophytic plants will provide valuable information for engineering plants for enhanced salt tolerance. Monocotyledonous Puccinellia tenuiflora is a halophytic species that widely distributed in the saline-alkali soil of the Songnen plain in northeastern China. Here we investigate the molecular mechanisms underlying moderate salt tolerance of P. tenuiflora using a combined physiological and proteomic approach. The changes in biomass, inorganic ion content, osmolytes, photosynthesis, defense-related enzyme activities, and metabolites in the course of salt treatment were analyzed in the leaves. Comparative proteomic analysis revealed 107 identities (representing 93 unique proteins) differentially expressed in P. tenuiflora leaves under saline conditions. These proteins were mainly involved in photosynthesis, stress and defense, carbohydrate and energy metabolism, protein metabolism, signaling, membrane, and transport. Our results showed that reduction of photosynthesis under salt treatment was attributed to the down-regulation of the light-harvesting complex (LHC) and Calvin cycle enzymes. Selective uptake of inorganic ions, high K(+)/Na(+) ratio, Ca(2+) concentration changes, and an accumulation of osmolytes contributed to ion balance and osmotic adjustment in leaf cells. Importantly, P. tenuiflora plants developed diverse reactive oxygen species (ROS) scavenging mechanisms in their leaves to cope with moderate salinity, including enhancement of the photorespiration pathway and thermal dissipation, synthesis of the low-molecular-weight antioxidant α-tocopherol, and an accumulation of compatible solutes. This study provides important information toward improving salt tolerance of cereals.

Journal ArticleDOI
TL;DR: In this paper, the authors reported 43 novel genes in the water flea Daphnia pulex encoding 73 predicted neuropeptide and protein hormones as partly confirmed by RT-PCR.
Abstract: We report 43 novel genes in the water flea Daphnia pulex encoding 73 predicted neuropeptide and protein hormones as partly confirmed by RT-PCR. MALDI-TOF mass spectrometry identified 40 neuropeptides by mass matches and 30 neuropeptides by fragmentation sequencing. Single genes encode adipokinetic hormone, allatostatin-A, allatostatin-B, allatotropin, Ala(7)-CCAP, CCHamide, Arg(7)-corazonin, DENamides, CRF-like (DH52) and calcitonin-like (DH31) diuretic hormones, two ecdysis-triggering hormones, two FIRFamides, one insulin, two alternative splice forms of ion transport peptide (ITP), myosuppressin, neuroparsin, two neuropeptide-F splice forms, three periviscerokinins (but no pyrokinins), pigment dispersing hormone, proctolin, Met(4)-proctolin, short neuropeptide-F, three RYamides, SIFamide, two sulfakinins, and three tachykinins. There are two genes for a preprohormone containing orcomyotropin-like peptides and orcokinins, two genes for N-terminally elongated ITPs, two genes (clustered) for eclosion hormones, two genes (clustered) for bursicons alpha, beta, and two genes (clustered) for glycoproteins GPA2, GPB5, three genes for different allatostatins-C (two of them clustered) and three genes for IGF-related peptides. Detailed comparisons of genes or their products with those from insects and decapod crustaceans revealed that the D. pulex peptides are often closer related to their insect than to their decapod crustacean homologues, confirming that branchiopods, to which Daphnia belongs, are the ancestor group of insects.

Journal ArticleDOI
TL;DR: A comparison of biomarkers/mechanistic knowledge determined from conventional approaches to biospectroscopy coupled with multivariate analysis often provides complementary answers and a novel approach for diagnosis of disease and cell biology.
Abstract: Biospectroscopy is employed to derive absorbance spectra representative of biomolecules present in biological samples. The mid-infrared region (λ = 2.5 μm-25 μm) is absorbed to give a biochemical-cell fingerprint (v = 1800-900 cm(-1)). Cellular material produces complex spectra due to the variety of chemical bonds present. The complexity and size of spectral data sets warrant multivariate analysis for data reduction, interpretation, and classification. Various multivariate analyses are available including principal component analysis (PCA), partial least-squares (PLS), linear discriminant analysis (LDA), and evolving fuzzy rule-based classifier (eClass). Interpretation of both visual and numerical results facilitates biomarker identification, cell-type discrimination, and predictive and mechanistic understanding of cellular behavior. Biospectroscopy is a high-throughput nondestructive technology. A comparison of biomarkers/mechanistic knowledge determined from conventional approaches to biospectroscopy coupled with multivariate analysis often provides complementary answers and a novel approach for diagnosis of disease and cell biology.

Journal ArticleDOI
TL;DR: This study represents the first clinical application of top-down MS-based quantitative proteomics for biomarker discovery from tissues, highlighting the potential of PTMs as disease biomarkers.
Abstract: The rapid increase in the prevalence of chronic heart failure (CHF) worldwide underscores an urgent need to identify biomarkers for the early detection of CHF. Post-translational modifications (PTMs) are associated with many critical signaling events during disease progression and thus offer a plethora of candidate biomarkers. We have employed a top-down quantitative proteomics methodology for comprehensive assessment of PTMs in whole proteins extracted from normal and diseased tissues. We systematically analyzed 36 clinical human heart tissue samples and identified phosphorylation of cardiac troponin I (cTnI) as a candidate biomarker for CHF. The relative percentages of the total phosphorylated cTnI forms over the entire cTnI populations (%Ptotal) were 56.4 ± 3.5%, 36.9 ± 1.6%, 6.1 ± 2.4%, and 1.0 ± 0.6% for postmortem hearts with normal cardiac function (n = 7), early stage of mild hypertrophy (n = 5), severe hypertrophy/dilation (n = 4), and end-stage CHF (n = 6), respectively. In fresh transplant samp...

Journal ArticleDOI
TL;DR: A comprehensive analysis of human urinary proteome from healthy individuals using high-resolution Fourier transform mass spectrometry identified 1,823 proteins, of which 671 proteins have not previously been reported as constituents of human urine.
Abstract: The study of the human urinary proteome has the potential to offer significant insights into normal physiology as well as disease pathology. The information obtained from such studies could be applied to the diagnosis of various diseases. The high sensitivity, resolution, and mass accuracy of the latest generation of mass spectrometers provides an opportunity to accurately catalog the proteins present in human urine, including those present at low levels. To this end, we carried out a comprehensive analysis of human urinary proteome from healthy individuals using high-resolution Fourier transform mass spectrometry. Importantly, we used the Orbitrap for detecting ions in both MS (resolution 60 000) and MS/MS (resolution 15 000) modes. To increase the depth of our analysis, we characterized both unfractionated as well as lectin-enriched proteins in our experiments. In all, we identified 1823 proteins with less than 1% false discovery rate, of which 671 proteins have not previously been reported as constitue...

Journal ArticleDOI
TL;DR: The review discusses the structural domains that are not directly linked to protease activity followed by a more detailed overview over the role of the metalloprotease domain.
Abstract: The "a disintegrin and metalloproteases" (ADAMs) are membrane-anchored metzincins of the adamalysin subfamily. This review gives an overview over the biological function and structure of ADAMs focusing on members of the family that display proteolytic activity. ADAMs are involved in a range of human diseases such as cancer metastasis, inflammatory disorders, neurological disease or asthma. It is, however, often difficult to assign a definitive role to a specific member of the ADAM family in a given disease mechanism due to overlapping activities and redundancy in function, as shown in various knock-out studies. The review discusses the structural domains that are not directly linked to protease activity followed by a more detailed overview over the role of the metalloprotease domain. Different family members are critically reviewed with respect to their role in biological processes with particular emphasis on disease-relevant functions.