scispace - formally typeset
Search or ask a question
JournalISSN: 2194-8771

Journal of Sensors and Sensor Systems 

Copernicus Publications
About: Journal of Sensors and Sensor Systems is an academic journal published by Copernicus Publications. The journal publishes majorly in the area(s): Measurement uncertainty & Materials science. It has an ISSN identifier of 2194-8771. It is also open access. Over the lifetime, 392 publications have been published receiving 3620 citations. The journal is also known as: JSSS (Göttingen. Internet) & JSSS (Göttingen. Print).

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an updated review of EIS main implementations and applications is presented, as well as a broad range of applications as a quick and easily automated technique to characterize solid, liquid, semiliquid, organic as well and inorganic materials.
Abstract: . Electrical impedance spectroscopy (EIS), in which a sinusoidal test voltage or current is applied to the sample under test to measure its impedance over a suitable frequency range, is a powerful technique to investigate the electrical properties of a large variety of materials. In practice, the measured impedance spectra, usually fitted with an equivalent electrical model, represent an electrical fingerprint of the sample providing an insight into its properties and behavior. EIS is used in a broad range of applications as a quick and easily automated technique to characterize solid, liquid, semiliquid, organic as well as inorganic materials. This paper presents an updated review of EIS main implementations and applications.

234 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the development of sensor technology over the last 2 centuries and highlighted some of the potential that can be achieved with smart sensors and data evaluation, and discussed success requirements for future developments.
Abstract: . “Industrie 4.0” or the Industrial Internet of Things (IIoT) are two terms for the current (r)evolution seen in industrial automation and control. Everything is getting smarter and data generated at all levels of the production process are used to improve product quality, flexibility, and productivity. This would not be possible without smart sensors, which generate the data and allow further functionality from self-monitoring and self-configuration to condition monitoring of complex processes. In analogy to Industry 4.0, the development of sensors has undergone distinctive stages culminating in today's smart sensors or “Sensor 4.0”. This paper briefly reviews the development of sensor technology over the last 2 centuries, highlights some of the potential that can be achieved with smart sensors and data evaluation, and discusses success requirements for future developments. In addition to magnetic sensor technologies which allow self-test and self-calibration and can contribute to many applications due to their wide spectrum of measured quantities, the paper discusses condition monitoring as a primary paradigm for introducing smart sensors and data analysis in manufacturing processes based on two projects performed in our group.

151 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a new design of a cryogenic vacuum extraction system with 18 extraction slots and an innovative mechanism to aerate the vacuum system after extraction to prevent the loss or mixture of water vapor during defrosting by purging every sample with high-purity nitrogen gas.
Abstract: . Stable isotopic analysis of water in plant, soil, and hydrological studies often requires the extraction of water from plant or soil samples. Cryogenic vacuum extraction is one of the most widely used and accurate extraction methods to obtain such water samples. Here, we present a new design of a cryogenic vacuum extraction system with 18 extraction slots and an innovative mechanism to aerate the vacuum system after extraction. This mobile and extendable multi-port extraction system overcomes the bottleneck of time required for capturing unfractionated extracted water samples by providing the possibility to extract a larger number of samples per day simultaneously. The aeration system prevents the loss or mixture of water vapor during defrosting by purging every sample with high-purity nitrogen gas. A set of system functionality tests revealed that the extraction device guarantees stable extraction conditions with no changes in the isotopic composition of the extracted water samples. Surprisingly, extractions of dried and rehydrated soils showed significant differences of the isotopic composition of the added water and the extracts. This observation challenges the assumption that cryogenic extraction systems to fully extract soil water. Furthermore, in a plant water uptake study different results for hydrogen and oxygen isotope data were obtained, raising problems in the definition from which depths plants really take up water. Results query whether the well-established and widely used cryogenic vacuum distillation method can be used in a standard unified method of fixed extraction times as it is often done.

147 citations

Journal ArticleDOI
TL;DR: In this article, the mathematical and physical principles of calibration of uncooled thermal infrared (IR) cameras to absolute temperature measurement are discussed, which are based on radiometric camera models.
Abstract: . The calibration of uncooled thermal infrared (IR) cameras to absolute temperature measurement is a time-consuming, complicated process that significantly influences the cost of an IR camera. Temperature-measuring IR cameras display a temperature value for each pixel in the thermal image. Calibration is used to calculate a temperature-proportional output signal (IR or thermal image) from the measurement signal (raw image) taking into account all technical and physical properties of the IR camera. The paper will discuss the mathematical and physical principles of calibration, which are based on radiometric camera models. The individual stages of calibration will be presented. After start-up of the IR camera, the non-uniformity of the pixels is first corrected. This is done with a simple two-point correction. If the microbolometer array is not temperature-stabilized, then, in the next step the temperature dependence of the sensor parameters must be corrected. Ambient temperature changes are compensated for by the shutter correction. The final stage involves radiometric calibration, which establishes the relationship between pixel signal and target object temperature. Not all pixels of a microbolometer array are functional. There are also a number of defective, so-called "dead" pixels. The discovery of defective pixels is a multistep process that is carried out after each stage of the calibration process.

78 citations

Journal ArticleDOI
TL;DR: In this paper, an approach for detecting hazardous volatile organic compounds (VOCs) in ppb and sub-ppb concentrations is presented, using three types of metal oxide semiconductor (MOS) gas sensors in temperature cycled operation.
Abstract: . An approach for detecting hazardous volatile organic compounds (VOCs) in ppb and sub-ppb concentrations is presented. Using three types of metal oxide semiconductor (MOS) gas sensors in temperature cycled operation, formaldehyde, benzene and naphthalene in trace concentrations, reflecting threshold limit values as proposed by the WHO and European national health institutions, are successfully identified against a varying ethanol background of up to 2 ppm. For signal processing, linear discriminant analysis is applied to single sensor data and sensor fusion data. Integrated field test sensor systems for monitoring of indoor air quality (IAQ) using the same types of gas sensors were characterized using the same gas measurement setup and data processing. Performance of the systems is reduced due to gas emissions from the hardware components. These contaminations have been investigated using analytical methods. Despite the reduced sensitivity, concentrations of the target VOCs in the ppb range (100 ppb of formaldehyde; 5 ppb of benzene; 20 ppb of naphthalene) are still clearly detectable with the systems, especially when using the sensor fusion method for combining data of the different MOS sensor types.

71 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202320
202227
202129
202045
201932
201862