scispace - formally typeset
Search or ask a question

Showing papers in "Journal of the Acoustical Society of America in 2014"


Journal ArticleDOI
TL;DR: The study suggests that certain apps may be appropriate for use in occupational noise measurements and shows two apps with mean differences within ±2 dB from the reference values.
Abstract: This study reports on the accuracy of smartphone sound measurement applications (apps) and whether they can be appropriately employed for occupational noise measurements. A representative sample of smartphones and tablets on various platforms were acquired, more than 130 iOS apps were evaluated but only 10 apps met our selection criteria. Only 4 out of 62 Android apps were tested. The results showed two apps with mean differences of 0.07 dB (unweighted) and −0.52 dB (A-weighted) from the reference values. Two other apps had mean differences within ±2 dB. The study suggests that certain apps may be appropriate for use in occupational noise measurements.

271 citations


PatentDOI
TL;DR: In this article, a method of delivering an audio and/or visual media file over the air wirelessly, from one or more servers to an electronic device with or without an Internet connection, is presented.
Abstract: A method of delivering an audio and/or visual media file including, for example, one or more of full or partial master recordings of songs, musical compositions, ringtones, videos, films, television shows, personal recordings, animation and combinations thereof, over the air wirelessly, from one or more servers to an electronic device with or without an Internet connection, said method comprising transmitting and audio and/or visual media file in compressed format to said electronic device, and wherein the electronic device is effective to receive said audio and/or visual file and playback said audio and/or visual content on demand by a user.

270 citations


Journal ArticleDOI
TL;DR: The parameters of the synapse model have been readjusted to better simulate reported physiological discharge rates at saturation for higher characteristic frequencies and an analytical method has been implemented to compute the mean discharge rate and variance from the model's synapse output that takes into account the effects of absolute refractoriness.
Abstract: A phenomenological model of the auditory periphery in cats was previously developed by Zilany and colleagues [J. Acoust. Soc. Am. 126, 2390–2412 (2009)] to examine the detailed transformation of acoustic signals into the auditory-nerve representation. In this paper, a few issues arising from the responses of the previous version have been addressed. The parameters of the synapse model have been readjusted to better simulate reported physiological discharge rates at saturation for higher characteristic frequencies [Liberman, J. Acoust. Soc. Am. 63, 442–455 (1978)]. This modification also corrects the responses of higher-characteristic frequency (CF) model fibers to low-frequency tones that were erroneously much higher than the responses of low-CF model fibers in the previous version. In addition, an analytical method has been implemented to compute the mean discharge rate and variance from the model's synapse output that takes into account the effects of absolute refractoriness.

248 citations


Journal ArticleDOI
TL;DR: The USC-TIMIT database currently includes real-time magnetic resonance imaging data from five male and five female speakers of American English, and Electromagnetic articulography data have also been presently collected from four of these speakers.
Abstract: USC-TIMIT is an extensive database of multimodal speech production data, developed to complement existing resources available to the speech research community and with the intention of being continuously refined and augmented. The database currently includes real-time magnetic resonance imaging data from five male and five female speakers of American English. Electromagnetic articulography data have also been presently collected from four of these speakers. The two modalities were recorded in two independent sessions while the subjects produced the same 460 sentence corpus used previously in the MOCHA-TIMIT database. In both cases the audio signal was recorded and synchronized with the articulatory data. The database and companion software are freely available to the research community.

147 citations


Journal ArticleDOI
TL;DR: An analytical vibroacoustic membrane model is developed to study sound transmission behavior of the MAM under a normal incidence and can be served as an efficient tool for design of such membrane-type metamaterials.
Abstract: By considering the elastic membrane's dissipation, the membrane-type acoustic metamaterial (MAM) has been demonstrated to be a super absorber for low-frequency sound. In the paper, a theoretical vibroacoustic plate model is developed to reveal the sound energy absorption mechanism within the MAM under a plane normal incidence. Based on the plate model in conjunction with the point matching method, the in-plane strain energy of the membrane due to the resonant and antiresonant motion of the attached masses can be accurately captured by solving the coupled vibroacoustic integrodifferential equation. The sound absorption ability of the MAM is quantitatively determined, which is also in good agreement with the prediction from the finite element method. In particular, microstructure effects including eccentricity of the attached masses, the depth, thickness, and loss factor of the membrane on sound absorption peak values are discussed.

131 citations


Journal ArticleDOI
TL;DR: A method is discussed for Green's function retrieval from controlled-source reflection data, which circumvents the requirement of having an actual receiver at the position of the virtual source.
Abstract: The methodology of Green’s function retrieval by cross-correlation has led to many interesting applications for passive and controlled-source acoustic measurements. In all applications, a virtual source is created at the position of a receiver. Here a method is discussed for Green’s function retrieval from controlled-source reflection data, which circumvents the requirement of having an actual receiver at the position of the virtual source. The method requires, apart from the reflection data, an estimate of the direct arrival of the Green’s function. A single-sided three-dimensional (3D) Marchenko equation underlies the method. This equation relates the reflection response, measured at one side of the medium, to the scattering coda of a so-called focusing function. By iteratively solving the 3D Marchenko equation, this scattering coda is retrieved from the reflection response. Once the scattering coda has been resolved, the Green’s function (including all multiple scattering) can be constructed from the reflection response and the focusing function. The proposed methodology has interesting applications in acoustic imaging, properly accounting for internal multiple scattering.

100 citations


Journal ArticleDOI
TL;DR: Sounds recorded by audio sensors carried by killer whales and pilot whales close to the coasts of Norway, Iceland, and the Bahamas were analyzed using computer methods and citizen scientists as part of the Whale FM project to show that at least some whales from these two locations have different acoustic repertoires that can be sensed by the computer analysis.
Abstract: Vocal communication is a primary communication method of killer and pilot whales, and is used for transmitting a broad range of messages and information for short and long distance. The large variation in call types of these species makes it challenging to categorize them. In this study, sounds recorded by audio sensors carried by ten killer whales and eight pilot whales close to the coasts of Norway, Iceland, and the Bahamas were analyzed using computer methods and citizen scientists as part of the Whale FM project. Results show that the computer analysis automatically separated the killer whales into Icelandic and Norwegian whales, and the pilot whales were separated into Norwegian long-finned and Bahamas short-finned pilot whales, showing that at least some whales from these two locations have different acoustic repertoires that can be sensed by the computer analysis. The citizen science analysis was also able to separate the whales to locations by their sounds, but the separation was somewhat less accurate compared to the computer method.

91 citations


Journal ArticleDOI
TL;DR: The method of observation by means of a sonar/echo sounder proved successful in examining the behavior of unrestrained fish exposed to different sound levels, and may allow further testing of the relationship between responsiveness, sound level, and sound characteristics for different types of man-made sound, for a variety of fish species under varied conditions.
Abstract: The behavior of wild, pelagic fish in response to sound playback was observed with a sonar/echo sounder. Schools of sprat Sprattus sprattus and mackerel Scomber scombrus were examined at a quiet coastal location. The fish were exposed to a short sequence of repeated impulsive sounds, simulating the strikes from a pile driver, at different sound pressure levels. The incidence of behavioral responses increased with increasing sound level. Sprat schools were more likely to disperse and mackerel schools more likely to change depth. The sound pressure levels to which the fish schools responded on 50% of presentations were 163.2 and 163.3 dB re 1 μPa peak-to-peak, and the single strike sound exposure levels were 135.0 and 142.0 dB re 1 μPa2 s, for sprat and mackerel, respectively, estimated from dose response curves. For sounds leading to mackerel responses, particle velocity levels were also estimated. The method of observation by means of a sonar/echo sounder proved successful in examining the behavior of unrestrained fish exposed to different sound levels. The technique may allow further testing of the relationship between responsiveness, sound level, and sound characteristics for different types of man-made sound, for a variety of fish species under varied conditions.

88 citations


Journal ArticleDOI
TL;DR: Whether the interactions between pitch and timbre are symmetric and whether musical training affects listeners' ability to ignore variations in irrelevant perceptual dimensions is tested.
Abstract: Variations in the spectral shape of harmonic tone complexes are perceived as timbre changes and can lead to poorer fundamental frequency (F0) or pitch discrimination. Less is known about the effects of F0 variations on spectral shape discrimination. The aims of the study were to determine whether the interactions between pitch and timbre are symmetric, and to test whether musical training affects listeners' ability to ignore variations in irrelevant perceptual dimensions. Difference limens (DLs) for F0 were measured with and without random, concurrent, variations in spectral centroid, and vice versa. Additionally, sensitivity was measured as the target parameter and the interfering parameter varied by the same amount, in terms of individual DLs. Results showed significant and similar interference between pitch (F0) and timbre (spectral centroid) dimensions, with upward spectral motion often confused for upward F0 motion, and vice versa. Musicians had better F0DLs than non-musicians on average, but similar spectral centroid DLs. Both groups showed similar interference effects, in terms of decreased sensitivity, in both dimensions. Results reveal symmetry in the interference effects between pitch and timbre, once differences in sensitivity between dimensions and subjects are controlled. Musical training does not reliably help to overcome these effects.

85 citations


Journal ArticleDOI
TL;DR: The dose-response functions indicate that some killer whales started to avoid sonar at received SPL below thresholds assumed by the U.S. Navy.
Abstract: Eight experimentally controlled exposures to 1−2 kHz or 6−7 kHz sonar signals were conducted with four killer whale groups. The source level and proximity of the source were increased during each exposure in order to reveal response thresholds. Detailed inspection of movements during each exposure session revealed sustained changes in speed and travel direction judged to be avoidance responses during six of eight sessions. Following methods developed for Phase-I clinical trials in human medicine, response thresholds ranging from 94 to 164 dB re 1 uPa received sound pressure level (SPL) were fitted to Bayesian dose-response functions. Thresholds did not consistently differ by sonar frequency or whether a group had previously been exposed, with a mean SPL response threshold of 142 ± 15 dB (mean ± s.d.). High levels of between- and within-individual variability were identified, indicating that thresholds depended upon other undefined contextual variables. The dose-response functions indicate that some killer whales started to avoid sonar at received SPL below thresholds assumed by the U.S. Navy. The predicted extent of habitat over which avoidance reactions occur depends upon whether whales responded to proximity or received SPL of the sonar or both, but was large enough to raise concerns about biological consequences to the whales. © 2014 Acoustical Society of America

84 citations


Journal ArticleDOI
TL;DR: This study investigates the suitability of energy focusing, energy cancelation, and synthesis approaches for sound zone reproduction and shows each to have a characteristic performance, quantified in terms of acoustic contrast, array control effort and target sound field planarity.
Abstract: Since the mid 1990s, acoustics research has been undertaken relating to the sound zone problem—using loudspeakers to deliver a region of high sound pressure while simultaneously creating an area where the sound is suppressed—in order to facilitate independent listening within the same acoustic enclosure. The published solutions to the sound zone problem are derived from areas such as wave field synthesis and beamforming. However, the properties of such methods differ and performance tends to be compared against similar approaches. In this study, the suitability of energy focusing, energy cancelation, and synthesis approaches for sound zone reproduction is investigated. Anechoic simulations based on two zones surrounded by a circular array show each of the methods to have a characteristic performance, quantified in terms of acoustic contrast, array control effort and target sound field planarity. Regularization is shown to have a significant effect on the array effort and achieved acoustic contrast, particularly when mismatched conditions are considered between calculation of the source weights and their application to the system.

Journal ArticleDOI
TL;DR: A probabilistic, functional model of sagittal-plane localization that is based on human listeners' HRTFs, which approximates spectral auditory processing, accounts for acoustic and non-acoustic listener specificity, allows for predictions beyond the median plane, and directly predicts psychoacoustic measures of localization performance is proposed.
Abstract: Monaural spectral features are important for human sound-source localization in sagittal planes, including front-back discrimination and elevation perception. These directional features result from the acoustic filtering of incoming sounds by the listener's morphology and are described by listener-specific head-related transfer functions (HRTFs). This article proposes a probabilistic, functional model of sagittal-plane localization that is based on human listeners' HRTFs. The model approximates spectral auditory processing, accounts for acoustic and non-acoustic listener specificity, allows for predictions beyond the median plane, and directly predicts psychoacoustic measures of localization performance. The predictive power of the listener-specific modeling approach was verified under various experimental conditions: The model predicted effects on localization performance of band limitation, spectral warping, non-individualized HRTFs, spectral resolution, spectral ripples, and high-frequency attenuation in speech. The functionalities of vital model components were evaluated and discussed in detail. Positive spectral gradient extraction, sensorimotor mapping, and binaural weighting of monaural spatial information were addressed in particular. Potential applications of the model include predictions of psychophysical effects, for instance, in the context of virtual acoustics or hearing assistive devices.

Journal ArticleDOI
TL;DR: Recordings of tones produced by tethered flying male and female Aedes aegypti were undertaken using pairs of pressure-gradient microphones above and below, ahead and behind, and to the left and right over a range of distances.
Abstract: Mosquito flight produces a tone as a side effect of wing movement; this tone is also a communication signal that is frequency-modulated during courtship. Recordings of tones produced by tethered flying male and female Aedes aegypti were undertaken using pairs of pressure-gradient microphones above and below, ahead and behind, and to the left and right over a range of distances. Fundamental frequencies were close to those previously reported, although amplitudes were lower. The male fundamental frequency was higher than that of the female and males modulated it over a wider range. Analysis of harmonics shows that the first six partials were nearly always within 1 Hz of integer multiples of the fundamental, even when the fundamental was being modulated. Along the front-back axis, amplitude attenuated as a function of distance raised to the power 2.3. Front and back recordings were out of phase, as were above and below, while left and right were in phase. Recordings from ahead and behind showed quadratic phase coupling, while others did not. Finally, two methods are presented for separating simultaneous flight tones in a single recording and enhancing their frequency resolution. Implications for mosquito behavior are discussed.

Journal ArticleDOI
TL;DR: It is concluded that a diverse range of vessels produce substantial noise at high frequencies, where toothed whale hearing is most sensitive, and that vessel noise should be considered over a broad frequency range, when assessing noise effects on porpoises and other small toothing whales.
Abstract: Growing ship traffic worldwide has led to increased vessel noise with possible negative impacts on marine life. Most research has focused on low frequency components of ship noise, but for high-frequency specialists, such as the harbor porpoise (Phocoena phocoena), medium-to-high frequency noise components are likely more of a concern. To test for biologically relevant levels of medium-to-high frequency vessel noise, different types of Automatic Identification System located vessels were recorded using a broadband recording system in four heavily ship-trafficked marine habitats in Denmark. Vessel noise from a range of different ship types substantially elevated ambient noise levels across the entire recording band from 0.025 to 160 kHz at ranges between 60 and 1000 m. These ship noise levels are estimated to cause hearing range reduction of >20 dB (at 1 and 10 kHz) from ships passing at distances of 1190 m and >30 dB reduction (at 125 kHz) from ships at distances of 490 m or less. It is concluded that a diverse range of vessels produce substantial noise at high frequencies, where toothed whale hearing is most sensitive, and that vessel noise should be considered over a broad frequency range, when assessing noise effects on porpoises and other small toothed whales.

Journal ArticleDOI
TL;DR: Compared with delay-based models that are commonly used in structural health monitoring, the data-driven matched field processing framework is shown to successfully localize two nearby scatterers with significantly smaller localization errors and finer resolutions.
Abstract: Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been extensively studied for improving localization performance in multimodal and multipath media. For guided wave structural health monitoring problems, matched field processing has not been widely applied but is an attractive option for damage localization due to equally complex propagation environments. Although effective, matched field processing is often challenging to implement because it requires accurate models of the propagation environment, and the optimization methods used to generate these models are often unreliable and computationally expensive. To address these obstacles, this paper introduces data-driven matched field processing, a framework to build models of multimodal propagation environments directly from measured data, and then use these models for localization. This paper presents the data-driven framework, analyzes its behavior under unmodeled multipath interference, and demonstrates its localization performance by distinguishing two nearby scatterers from experimental measurements of an aluminum plate. Compared with delay-based models that are commonly used in structural health monitoring, the data-driven matched field processing framework is shown to successfully localize two nearby scatterers with significantly smaller localization errors and finer resolutions.

Journal ArticleDOI
TL;DR: The reliability of nine measures of the stimulus level in the human ear canal was compared by measuring the sensitivity of behavioral hearing thresholds to changes in the depth of insertion of an otoacoustic emission probe, and forward pressure is advantageous because it quantifies stimulus phase.
Abstract: The reliability of nine measures of the stimulus level in the human ear canal was compared by measuring the sensitivity of behavioral hearing thresholds to changes in the depth of insertion of an otoacoustic emission probe. Four measures were the ear-canal pressure, the eardrum pressure estimated from it and the pressure measured in an ear simulator with and without compensation for insertion depth. The remaining five quantities were derived from the ear-canal pressure and the Thevenin-equivalent source characteristics of the probe: Forward pressure, initial forward pressure, the pressure transmitted into the middle ear, eardrum sound pressure estimated by summing the magnitudes of the forward and reverse pressure (integrated pressure) and absorbed power. Two sets of behavioral thresholds were measured in 26 subjects from 0.125 to 20 kHz, with the probe inserted at relatively deep and shallow positions in the ear canal. The greatest dependence on insertion depth was for transmitted pressure and absorbed power. The measures with the least dependence on insertion depth throughout the frequency range (best performance) included the depth-compensated simulator, eardrum, forward, and integrated pressures. Among these, forward pressure is advantageous because it quantifies stimulus phase.

Journal ArticleDOI
TL;DR: In this article, the absorption properties of a metaporous material made of non-resonant simple shape 3D rigid inclusions (cube, cylinder, sphere, cone, and ring torus) embedded in a rigidly backed rigid-frame porous material are studied.
Abstract: The absorption properties of a metaporous material made of non-resonant simple shape three-dimensional rigid inclusions (cube, cylinder, sphere, cone, and ring torus) embedded in a rigidly backed rigid-frame porous material are studied. A nearly total absorption can be obtained for a frequency lower than the quarter-wavelength resonance frequency due to the excitation of a trapped mode. To be correctly excited, this mode requires a filling fraction larger in three-dimensions than in two-dimensions for purely convex (cube, cylinder, sphere, and cone) shapes. At long wavelengths compared to the spatial period, a cube is found to be the best purely convex inclusion shape to embed in a cubic unit cell, while the embedment of a sphere or a cone cannot lead to an optimal absorption for some porous material properties and dimensions of the unit cell. At a fixed position of purely convex shape inclusion barycenter, the absorption coefficient only depends on the filling fraction and does not depend on the shape below the Bragg frequency arising from the interaction between the inclusion and its image with respect to the rigid backing. The influence of the incidence angle and of the material properties, namely, the flow resistivity is also shown. The results of the modeling are validated experimentally in the case of cubic and cylindrical inclusions.

Journal ArticleDOI
TL;DR: Results show that compared with the traditional acoustic contrast control method, the proposed method can improve the flatness of response in the bright zone by sacrificing the level of acoustic contrast.
Abstract: This paper describes a method for focusing the reproduced sound in the bright zone without disturbing other people in the dark zone in personal audio systems. The proposed method combines the least-squares and acoustic contrast criteria. A constrained parameter is introduced to tune the balance between two performance indices, namely, the acoustic contrast and the spatial average error. An efficient implementation of this method using convex optimization is presented. Offline simulations and real-time experiments using a linear loudspeaker array are conducted to evaluate the performance of the presented method. Results show that compared with the traditional acoustic contrast control method, the proposed method can improve the flatness of response in the bright zone by sacrificing the level of acoustic contrast.

Journal ArticleDOI
TL;DR: This study aims at providing some quantitative information related to the degree of micro-cracking of concrete and cement based materials in the presence of thermal damage in the context of license renewal in the field of nuclear energy.
Abstract: Developed in the late 1980s, Nonlinear Resonant Ultrasound Spectroscopy (NRUS) has been widely employed in the field of material characterization. Most of the studies assume the measured amplitude to be proportional to the strain amplitude which drives nonlinear phenomena. In 1D resonant bar experiments, the configuration for which NRUS was initially developed, this assumption holds. However, it is not true for samples of general shape which exhibit several resonance mode shapes. This paper proposes a methodology based on linear resonant ultrasound spectroscopy, numerical simulations and nonlinear resonant ultrasound spectroscopy to provide quantitative values of nonlinear elastic moduli taking into account the 3D nature of the samples. In the context of license renewal in the field of nuclear energy, this study aims at providing some quantitative information related to the degree of micro-cracking of concrete and cement based materials in the presence of thermal damage. The resonance based method is validated as regard with concrete microstructure evolution during thermal exposure.

Journal ArticleDOI
TL;DR: This paper presents an approach to the design of linear DMAs that first transforms the microphone array signals into the short-time Fourier transform (STFT) domain and then converts the DMA beamforming design to simple linear systems to solve.
Abstract: Differential microphone array (DMA), a particular kind of sensor array that is responsive to the differential sound pressure field, has a broad range of applications in sound recording, noise reduction, signal separation, dereverberation, etc. Traditionally, an Nth-order DMA is formed by combining, in a linear manner, the outputs of a number of DMAs up to (including) the order of N − 1. This method, though simple and easy to implement, suffers from a number of drawbacks and practical limitations. This paper presents an approach to the design of linear DMAs. The proposed technique first transforms the microphone array signals into the short-time Fourier transform (STFT) domain and then converts the DMA beamforming design to simple linear systems to solve. It is shown that this approach is much more flexible as compared to the traditional methods in the design of different directivity patterns. Methods are also presented to deal with the white noise amplification problem that is considered to be the biggest hurdle for DMAs, particularly higher-order implementations.

Journal ArticleDOI
TL;DR: The results suggest that age negatively affects the binaural processing of envelope and TFS at some frequencies independently of SNHL, and supports the idea that SNHL affects TFS processing independently to age.
Abstract: The discrimination of interaural phase differences (IPDs) requires accurate binaural temporal processing and has been used as a measure of sensitivity to temporal envelope and temporal fine structure (TFS). Previous studies found that TFS-IPD discrimination declined with age and with sensorineural hearing loss (SNHL), but age and SNHL have often been confounded. The aim of this study was to determine the independent contributions of age and SNHL to TFS and envelope IPD discrimination by using a sample of adults with a wide range of ages and SNHL. A two-interval, two-alternative forced-choice procedure was used to measure IPD discrimination thresholds for 20-Hz amplitude-modulated tones with carrier frequencies of 250 or 500 Hz when the IPD was in either the stimulus envelope or TFS. There were positive correlations between absolute thresholds and TFS-IPD thresholds, but not envelope-IPD thresholds, when age was accounted for. This supports the idea that SNHL affects TFS processing independently to age. Age was positively correlated with envelope-IPD thresholds at both carrier frequencies and TFS-IPD thresholds at 500 Hz, when absolute thresholds were accounted for. These results suggest that age negatively affects the binaural processing of envelope and TFS at some frequencies independently of SNHL.

Journal ArticleDOI
TL;DR: Results showed that group differences in accuracy of word identification and in error patterns differed depending upon the number of masking voices; specifically, older and middle-aged individuals had particular difficulty, relative to younger subjects, in the presence of a single competing message.
Abstract: The purpose of this study was to examine associations among hearing thresholds, cognitive ability, and speech understanding in adverse listening conditions within and between groups of younger, middle-aged, and older adults. Participants repeated back sentences played in the presence of several types of maskers (syntactically similar and syntactically different competing speech from one or two other talkers, and steady-state speech-shaped noise). They also completed tests of auditory short-term/working memory, processing speed, and inhibitory ability. Results showed that group differences in accuracy of word identification and in error patterns differed depending upon the number of masking voices; specifically, older and middle-aged individuals had particular difficulty, relative to younger subjects, in the presence of a single competing message. However, the effect of syntactic similarity was consistent across subject groups. Hearing loss, short-term memory, processing speed, and inhibitory ability were each related to some aspects of performance by the middle-aged and older participants. Notably, substantial age-related changes in speech recognition were apparent within the group of middle-aged listeners.

Journal ArticleDOI
TL;DR: Speech intelligibility increased with increasing STI and was significantly better in reverberation only than in noise only at the same STI, and it was shown that the broadband reverberation time is not always a good estimate of speech degradation in reverberations and that different speech materials may differ in their robustness toward detrimental effects of reverberation.
Abstract: This study compared the combined effect of noise and reverberation on listening effort and speech intelligibility to predictions of the speech transmission index (STI). Listening effort was measured in normal-hearing subjects using a scaling procedure. Speech intelligibility scores were measured in the same subjects and conditions: (a) Speech-shaped noise as the only interfering factor, (b) + (c) fixed signal-to-noise ratios (SNRs) of 0 or 7 dB and reverberation as detrimental factors, and (d) reverberation as the only detrimental factor. In each condition, SNR and reverberation were combined to produce STI values of 0.17, 0.30, 0.43, 0.57, and 0.70, respectively. Listening effort always decreased with increasing STI, thus enabling a rough prediction, but a significant bias was observed indicating that listening effort was lower in reverberation only than in noise only at the same STI for one type of impulse responses. Accordingly, speech intelligibility increased with increasing STI and was significantly better in reverberation only than in noise only at the same STI. Further analyses showed that the broadband reverberation time is not always a good estimate of speech degradation in reverberation and that different speech materials may differ in their robustness toward detrimental effects of reverberation.

Journal ArticleDOI
TL;DR: The amplitude of unsteady flow was found to be linearly correlated with collision forces, thus being an indicative measure of vocal hyperfunction.
Abstract: Despite the frequent observation of a persistent opening in the posterior cartilaginous glottis in normal and pathological phonation, its influence on the self-sustained oscillations of the vocal folds is not well understood. The effects of a posterior gap on the vocal fold tissue dynamics and resulting acoustics were numerically investigated using a specially designed flow solver and a reduced-order model of human phonation. The inclusion of posterior gap areas of 0.03–0.1 cm2 reduced the energy transfer from the fluid to the vocal folds by more than 42%–80% and the radiated sound pressure level by 6–14 dB, respectively. The model was used to simulate vocal hyperfucntion, i.e., patterns of vocal misuse/abuse associated with many of the most common voice disorders. In this first approximation, vocal hyperfunction was modeled by introducing a compensatory increase in lung air pressure to regain the vocal loudness level that was produced prior to introducing a large glottal gap. This resulted in a significant increase in maximum flow declination rate and amplitude of unsteady flow, thereby mimicking clinical studies. The amplitude of unsteady flow was found to be linearly correlated with collision forces, thus being an indicative measure of vocal hyperfunction.

Journal ArticleDOI
TL;DR: It is shown that the particle absorption has a pivotal role in single-beam trapping at the transducer focal region and it is found that only the first-order Bessel vortex beam can generate the radiation torque on a small particle.
Abstract: Exact formulas of the acoustic radiation force and torque exerted by an arbitrary time-harmonic wave on an absorbing compressible particle that is suspended in an inviscid fluid are presented. It is considered that the particle diameter is much smaller than the incident wavelength, i.e., the so-called Rayleigh scattering limit. Moreover, the particle absorption assumed here is due to the attenuation of compressional waves only. Shear waves inside and outside the particle are neglected, since the inner and outer viscous boundary layer of the particle are supposed to be much smaller than the particle radius. The obtained radiation force formulas are used to establish the trapping conditions of a particle by a single-beam acoustical tweezer based on a spherically focused ultrasound transducer. In this case, it is shown that the particle absorption has a pivotal role in single-beam trapping at the transducer focal region. Furthermore, it is found that only the first-order Bessel vortex beam can generate the radiation torque on a small particle. In addition, numerical evaluation of the radiation force and torque exerted on a benzene and an olive oil droplet suspended in water are presented and discussed.

Journal ArticleDOI
TL;DR: The dependence law of acoustic streaming on frequency and velocity is devised and confirmed by numerical simulations and can be attributed to the centrifugal force of the acoustic fluid flow around a sharp edge.
Abstract: Anomalous acoustic streaming is observed emanating from sharp edges of solid bodies that are vibrating in fluids. The streaming velocities can be orders of magnitude higher than expected from the Rayleigh streaming at similar amplitudes of vibration. Acoustic velocity of fluid relative to a solid body diverges at a sharp edge, giving rise to a localized time-independent body force acting on the fluid. This force results in a formation of a localized jet. Two-dimensional numerical simulations are performed to predict acoustic streaming for low amplitude vibration using two methods: (1) Steady-state solution utilizing perturbation theory and (2) direct transient solution of the Navier–Stokes equations. Both analyses agree with each other and correctly predict the streaming of a sharp-edged vibrating blade measured experimentally. The origin of the streaming can be attributed to the centrifugal force of the acoustic fluid flow around a sharp edge. The dependence of this acoustic streaming on frequency and velocity is examined using dimensional analysis. The dependence law is devised and confirmed by numerical simulations.

Journal ArticleDOI
TL;DR: On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F(0) estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F( 0) estimation algorithm.
Abstract: There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F(0)) of speech signals. This study examines ten F(0) estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F(0) in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F(0) estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F(0) estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F(0) estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F(0) estimation is required.

Journal ArticleDOI
TL;DR: Ten possible nonlinear elastic wave interactions for an isotropic solid described by three constants of the third order are described, including longitudinal and two shear waves polarized in the interacting plane and orthogonal to it.
Abstract: There exist ten possible nonlinear elastic wave interactions for an isotropic solid described by three constants of the third order. All other possible interactions out of 54 combinations (triplets) of interacting and resulting waves are prohibited, because of restrictions of various kinds. The considered waves include longitudinal and two shear waves polarized in the interacting plane and orthogonal to it. The amplitudes of scattered waves have simple analytical forms, which can be used for experimental setup and design. The analytic results are verified by comparison with numerical solutions of initial equations. Amplitude coefficients for all ten interactions are computed as functions of frequency for polyvinyl chloride, together with interaction and scattering angles. The nonlinear equation of motion is put into a general vector form and can be used for any coordinate system.

Journal ArticleDOI
TL;DR: A study that compared the effectiveness of vocal imitations and verbalizations to communicate different referent sounds suggests that they could be used in a number of applications.
Abstract: Describing unidentified sounds with words is a frustrating task and vocally imitating them is often a convenient way to address the issue. This article reports on a study that compared the effectiveness of vocal imitations and verbalizations to communicate different referent sounds. The stimuli included mechanical and synthesized sounds and were selected on the basis of participants' confidence in identifying the cause of the sounds, ranging from easy-to-identify to unidentifiable sounds. The study used a selection of vocal imitations and verbalizations deemed adequate descriptions of the referent sounds. These descriptions were used in a nine-alternative forced-choice experiment: Participants listened to a description and picked one sound from a list of nine possible referent sounds. Results showed that recognition based on verbalizations was maximally effective when the referent sounds were identifiable. Recognition accuracy with verbalizations dropped when identifiability of the sounds decreased. Conversely, recognition accuracy with vocal imitations did not depend on the identifiability of the referent sounds and was as high as with the best verbalizations. This shows that vocal imitations are an effective means of representing and communicating sounds and suggests that they could be used in a number of applications.

Journal ArticleDOI
TL;DR: Numerical simulations demonstrate that the insertion of a defect in the layout, as a shorter resonator, creates strong amplification of the wave-field on the defect, which leads to a >1 factor in terms of the local density of energy.
Abstract: Deep sub-wavelength focusing has been demonstrated for locally resonant metamaterials using electromagnetic and acoustic waves. The elastic equivalents of such objects are made of sub-wavelength resonating beams fixed to a two-dimensional plate, as presented here. Independent of a random or regular arrangement of the resonators, the metamaterial shows large bandgaps that are independent of the incident wave direction. Numerical simulations demonstrate that the insertion of a defect in the layout, as a shorter resonator, creates strong amplification of the wave-field on the defect. This energy trapping, which is localized on a spatial scale that is much smaller than the wavelength in the two-dimensional plate, leads to a >1 factor in terms of the local density of energy.