scispace - formally typeset
Search or ask a question

Showing papers in "Journal of The Air & Waste Management Association in 2000"


Journal ArticleDOI
TL;DR: Particle surface area, number of ultrafine particles, bioavailable transition metals, polycyclic aromatic hydrocarbons (PAH), and other particle-bound organic compounds are suspected to be more important than particle mass in determining the effects of air pollution.
Abstract: Particulate matter (PM) emissions from stationary combustion sources burning coal, fuel oil, biomass, and waste, and PM from internal combustion (IC) engines burning gasoline and diesel, are a significant source of primary particles smaller than 2.5 μm (PM2.5) in urban areas. Combustion-generated particles are generally smaller than geologically produced dust and have unique chemical composition and morphology. The fundamental processes affecting formation of combustion PM and the emission characteristics of important applications are reviewed. Particles containing transition metals, ultrafine particles, and soot are emphasized because these types of particles have been studied extensively, and their emissions are controlled by the fuel composition and the oxidant-tem-perature-mixing history from the flame to the stack. There is a need for better integration of the combustion, air pollution control, atmospheric chemistry, and inhalation health research communities. Epidemiology has demonstrated t...

1,018 citations


Journal ArticleDOI
TL;DR: (2000).
Abstract: (2000) Combustion Aerosols: Factors Governing Their Size and Composition and Implications to Human Health Journal of the Air & Waste Management Association: Vol 50, No 9, pp 1619-1622

381 citations


Journal ArticleDOI
TL;DR: This rich data set shows that indoor particle events tend to be brief, intermittent, and highly variable, thus requiring the use of continuous instrumentation for their characterization, and suggests that organic carbon is a major constituent of particles emitted during indoor source events.
Abstract: A comprehensive indoor particle characterization study was conducted in nine Boston-area homes in 1998 in order to characterize sources of PM in indoor environments. State-of-the-art sampling methodologies were used to obtain continuous PM2.5 concentration and size distribution particulate data for both indoor and outdoor air. Study homes, five of which were sampled during two seasons, were monitored over week-long periods. Among other data collected during the extensive monitoring efforts were 24-hr elemental/organic carbon (EC/OC) particulate data as well as semi-continuous air exchange rates and time-activity information. This rich data set shows that indoor particle events tend to be brief, intermittent, and highly variable, thus requiring the use of continuous instrumentation for their characterization. In addition to dramatically increasing indoor PM2.5 concentrations, these data demonstrate that indoor particle events can significantly alter the size distribution and composition of indoor particles. Source event data demonstrate that the impacts of indoor activities are especially pronounced in the ultrafine (da < or = 0.1 micron) and coarse (2.5 < or = da < or = 10 microns) modes. Among the sources of ultrafine particles characterized in this study are indoor ozone/terpene reactions. Furthermore, EC/OC data suggest that organic carbon is a major constituent of particles emitted during indoor source events. Whether exposures to indoor-generated particles, particularly from large short-term peak events, may be associated with adverse health effects will become clearer when biological mechanisms are better known.

359 citations


Journal ArticleDOI
TL;DR: The results are suggestive of an association between proximal high traffic streets with traffic counts ≥ 20,000 VPD and childhood cancer, including leukemia.
Abstract: Occupational exposure to elevated concentrations of benzene is a known cause of leukemia in adults. Concentrations of benzene from motor vehicle exhaust could be elevated along highly trafficked streets. Several studies have reported significant associations between proximity to highly trafficked streets and the occurrence of childhood cancers and childhood leukemia. These associations may be due to chronic exposure to benzene or other carcinogenic components of vehicle exhaust from these nearby streets or to some other factor (e.g., noise, increased light exposure, or some unaccounted--for socioeconomic variable). We used data for homes studied in an earlier childhood cancer study conducted in Denver, CO, in the 1980s. No air pollution measurements were made in the original study. We identified the highest trafficked street near each study home and obtained the traffic density in 1979 and 1990. Traffic density was weighted for the distance from the street to the home using 3 different widths of Gaussian curves to approximate the decay of the emissions into the surrounding neighborhoods. The associations between the 750-ft-wide distance-weighted traffic density metrics and all childhood cancers and childhood leukemia are strongest in the highest traffic density category (> or = 20,000 vehicles per day [VPD]). The odds ratio is 5.90 (95% confidence interval [CI] 1.69-20.56) for all cancers and 8.28 (95% CI 2.09-32.80) for leukemia. The results are suggestive of an association between proximal high traffic streets with traffic counts > or = 20,000 VPD and childhood cancer, including leukemia.

245 citations


Journal ArticleDOI
TL;DR: The major sources for the fine particles were motor vehicles, vegetation burning factors (biomass and wood burning), and coal-fired power plants, and these sources have higher contributions in winter.
Abstract: Chemical composition data for fine and coarse particles collected in Phoenix, AZ, were analyzed using positive matrix factorization (PMF). The objective was to identify the possible aerosol sources at the sampling site. PMF uses estimates of the error in the data to provide optimum data point scaling and permits a better treatment of missing and below-detection-limit values. It also applies nonnegativity constraints to the factors. Two sets of fine particle samples were collected by different samplers. Each of the resulting fine particle data sets was analyzed separately. For each fine particle data set, eight factors were obtained, identified as (1) biomass burning characterized by high concentrations of organic carbon (OC), elemental carbon (EC), and K; (2) wood burning with high concentrations of Na, K, OC, and EC; (3) motor vehicles with high concentrations of OC and EC; (4) nonferrous smelting process characterized by Cu, Zn, As, and Pb; (5) heavy-duty diesel characterized by high EC, OC, and Mn; (6) sea-salt factor dominated by Na and Cl; (7) soil with high values for Al, Si, Ca, Ti, and Fe; and (8) secondary aerosol with SO4(-2) and OC that may represent coal-fired power plant emissions. For the coarse particle samples, a five-factor model gave source profiles that are attributed to be (1) sea salt, (2) soil, (3) Fe source/motor vehicle, (4) construction (high Ca), and (5) coal-fired power plant. Regression of the PM mass against the factor scores was performed to estimate the mass contributions of the resolved sources. The major sources for the fine particles were motor vehicles, vegetation burning factors (biomass and wood burning), and coal-fired power plants. These sources contributed most of the fine aerosol mass by emitting carbonaceous particles, and they have higher contributions in winter. For the coarse particles, the major source contributions were soil and construction (high Ca). These sources also peaked in winter.

240 citations


Journal ArticleDOI
TL;DR: It was found that the transient driving modes were more polluting than the steady-speed driving modes in terms of g/km and g/ sec, indicating that the on-road emission measurement is feasible in deriving vehicle emissions and fuel consumption factors in urban driving conditions.
Abstract: This paper reports on the analysis of on-road vehicle speed, emission, and fuel consumption data collected by four instrumented vehicles. Time-, distance-, and fuel-based average fuel consumption, as well as CO, HC, NOx, and soot emission factors, were derived. The influences of instantaneous vehicle speed on emissions and fuel consumption were studied. It was found that the fuel-based emission factors varied much less than the time- and distance-based emission factors as instantaneous speed changed. The trends are similar to the results obtained from laboratory tests. The low driving speed contributed to a significant portion of the total emissions over a trip. Furthermore, the on-road data were analyzed using the modal approach. The four standard driving modes are acceleration, cruising, deceleration, and idling. It was found that the transient driving modes (i.e., acceleration and deceleration) were more polluting than the steady-speed driving modes (i.e., cruising and idling) in terms of g/km and g/sec. These results indicated that the on-road emission measurement is feasible in deriving vehicle emissions and fuel consumption factors in urban driving conditions.

229 citations


Journal ArticleDOI
TL;DR: Results of this study showed that longitudinal associations between ambient PM2.5 concentrations and corresponding personal exposures tended to be high in the summer and low in the winter, and indicated that the potential for confounding by PM 2.5 co-pollutants is limited, despite significant correlations among ambient pollutant concentrations.
Abstract: We conducted a multi-pollutant exposure study in Baltimore, MD, in which 15 non-smoking older adult subjects (> 64 years old) wore a multi-pollutant sampler for 12 days during the summer of 1998 and the winter of 1999. The sampler measured simultaneous 24-hr integrated personal exposures to PM2.5, PM10, SO4(2-), O3, NO2, SO2, and exhaust-related VOCs. Results of this study showed that longitudinal associations between ambient PM2.5 concentrations and corresponding personal exposures tended to be high in the summer (median Spearman's r = 0.74) and low in the winter (median Spearman's r = 0.25). Indoor ventilation was an important determinant of personal PM2.5 exposures and resulting personal-ambient associations. Associations between personal PM2.5 exposures and corresponding ambient concentrations were strongest for well-ventilated indoor environments and decreased with ventilation. This decrease was attributed to the increasing influence of indoor PM2.5 sources. Evidence for this was provided by SO4(2-) measurements, which can be thought of as a tracer for ambient PM2.5. For SO4(2-), personal-ambient associations were strong even in poorly ventilated indoor environments, suggesting that personal exposures to PM2.5 of ambient origin are strongly associated with corresponding ambient concentrations. The results also indicated that the contribution of indoor PM2.5 sources to personal PM2.5 exposures was lowest when individuals spent the majority of their time in well-ventilated indoor environments. Results also indicate that the potential for confounding by PM2.5 co-pollutants is limited, despite significant correlations among ambient pollutant concentrations. In contrast to ambient concentrations, PM2.5 exposures were not significantly correlated with personal exposures to PM2.5-10, PM2.5 of non-ambient origin, O3, NO2, and SO2. Since a confounder must be associated with the exposure of interest, these results provide evidence that the effects observed in the PM2.5 epidemiologic studies are unlikely to be due to confounding by the PM2.5 co-pollutants measured in this study.

229 citations


Journal ArticleDOI
TL;DR: The results suggest that combustion-generated pollutants, especially from motor vehicles, may be associated with increased mortality, as was O3 in the warmer months.
Abstract: Daily counts of non-accidental deaths in Santiago, Chile, from 1988 to 1996 were regressed on six air pollutants— fine particles (PM2.5), coarse particles (PM10–2.5), CO, SO2, NO2, and O3. Controlling for seasonal and meteorological conditions was done using three different models— a generalized linear model, a generalized additive model, and a generalized additive model on previously filtered data. Single- and two-pollutant models were tested for lags of 1-5 days and the average of the previous 2-5 days. The increase in mortality associated with the mean levels of air pollution varied from 4 to 11%, depending on the pollutants and the way season of the year was considered. The results were not sensitive to the modeling approaches, but different effects for warmer and colder months were found. Fine particles were more important than coarse particles in the whole year and in winter, but not in summer. NO2 and CO were also significantly associated with daily mortality, as was O3 in the warmer month...

202 citations


Journal ArticleDOI
TL;DR: The findings of this study provide further support for using fixed-site measurements as a measure of exposure to PM2.5 in epidemiological time-series studies.
Abstract: The time-series correlation between ambient levels, indoor levels, and personal exposure to PM2.5 was assessed in panels of elderly subjects with cardiovascular disease in Amsterdam, the Netherlands, and Helsinki, Finland. Subjects were followed for 6 months with biweekly clinical visits. Each subject's indoor and personal exposure to PM2.5 was measured biweekly, during the 24-hr period preceding the clinical visits. Outdoor PM2.5 concentrations were measured at fixed sites. The absorption coefficients of all PM2.5 filters were measured as a marker for elemental carbon (EC). Regression analyses were conducted for each subject separately, and the distribution of the individual regression and correlation coefficients was investigated. Personal, indoor, and ambient concentrations were highly correlated within subjects over time. Median Pearson's R between personal and outdoor PM2.5 was 0.79 in Amsterdam and 0.76 in Helsinki. For absorption, these values were 0.93 and 0.81 for Amsterdam and Helsinki,...

193 citations


Journal ArticleDOI
TL;DR: The PTEP data indicate that the most abundant chemical components of PM10 and PM25 in the SCAB are NH4+, NO3, NH3, and organic carbon, and elemental carbon, while PM25 comprises 52-59% of theSCAB PM10.
Abstract: In December 1994, the South Coast Air Quality Management District (SCAQMD) initiated a comprehensive program, the PM10 Technical Enhancement Program (PTEP), to characterize fine PM in the South Coast Air Basin (SCAB). A 1-year special particulate monitoring project was conducted from January 1995 to February 1996 as part of the PTEP. Under this enhanced monitoring, HNO3, NH3, and speciated PM10 and PM2.5 concentrations were measured at five stations (Anaheim, downtown Los Angeles, Diamond Bar, Fontana, and Rubidoux) in the SCAB and at one background station at San Nicolas Island. PM2.5 and PM10 mass and 43 individual species were analyzed for a full chemical speciation of the particle data. The PTEP data indicate that the most abundant chemical components of PM10 and PM2.5 in the SCAB are NH4+ (8-9% of PM10 and 14-17% of PM2.5), NO3- (23-26% of PM10 and 28-41% of PM2.5), SO4- (6-11% of PM10 and 9-18% of PM2.5), organic carbon (OC) (15-19% of PM10 and 18-26% of PM2.5), and elemental carbon (EC) (5-8% of PM10 and 8-13% of PM2.5). On an annual average basis, PM2.5 comprises 52-59% of the SCAB PM10. Annual average PM10 and PM2.5 concentrations showed strong spatial variations, low at coastal sites and high at inland sites. Annual average PM10 concentrations varied from 40.8 micrograms/m3 at Anaheim to 76.8 micrograms/m3 at Rubidoux, while annual average PM2.5 concentrations varied from 21.7 micrograms/m3 at Anaheim to 39.8 micrograms/m3 at Rubidoux. The chemical characterizations of the PM2.5 and PM10 concentrations, as well as their spatial variations, were examined; the important findings are summarized in this paper, and the temporal variations are discussed in the companion paper.

193 citations


Journal ArticleDOI
TL;DR: Ozone had the most consistent, independent association with mortality and particulate air pollution was not more consistently associated with mortality than were the gaseous pollutants SO2 and NO2.
Abstract: We studied the association of daily mortality with short-term variations in the ambient concentrations of major gaseous pollutants and PM in the Netherlands. The magnitude of the association in the four major urban areas was compared with that in the remainder of the country. Daily cause-specific mortality counts, air quality, temperature, relative humidity, and influenza data were obtained from 1986 to 1994. The relationship between daily mortality and air pollution was modeled using Poisson regression analysis. We adjusted for potential confounding due to long-term and seasonal trends, influenza epidemics, ambient temperature and relative humidity, day of the week, and holidays, using generalized additive models. Influenza episodes were associated with increased mortality up to 3 weeks later. Daily mortality was significantly associated with the concentration of all air pollutants. An increase in the PM10 concentration by 100 u.g/m3 was associated with a relative risk (RR) of 1.02 for total mor...

Journal ArticleDOI
TL;DR: It is demonstrated by several examples how well-established models and data typically obtained in exposure field studies can be used to estimate both individual and community average exposure to ambient-generated PM.
Abstract: This paper discusses the legal and scientific reasons for separating personal exposure to PM into ambient and nonambient components. It then demonstrates by several examples how well-established models and data typically obtained in exposure field studies can be used to estimate both individual and community average exposure to ambient-generated PM (ambient PM outdoors plus ambient PM that has infiltrated indoors), indoor-generated PM, and personal activity PM. Ambient concentrations are not highly correlated with personal exposure to nonambient PM or total PM but are highly correlated with personal exposure to ambient-generated PM. Therefore, ambient concentrations may be used in epidemiology as an appropriate surrogate for personal exposure to ambient-generated PM. Suggestions are offered as to how exposure to ambient-generated PM may be obtained and used in epidemiology and risk assessment.

Journal ArticleDOI
TL;DR: Experimental results on the mass and compositions of particles between 0.03 and >20 μm in aerodynamic diameter show that PM from the combustion of these fuels produces distinctive bimodal and trimodal PSDs, with a fine mode dominated by vaporization, nucleation, and growth processes.
Abstract: U.S. Environmental Protection Agency (EPA) research examining the characteristics of primary PM generated by the combustion of fossil fuels is being conducted in efforts to help determine mechanisms controlling associated adverse health effects. Transition metals are of particular interest, due to the results of studies that have shown cardiopulmonary damage associated with exposure to these elements and their presence in coal and residual fuel oils. Further, elemental speciation may influence this toxicity, as some species are significantly more water-soluble, and potentially more bio-available, than others. This paper presents results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particle size distributions (PSDs) were determined using atmospheric and low-pressure impaction as well as electrical mobility, time-of-flight, and light-scattering techniques. Size-classified PM samples from this study are also being utilized by colleagues for animal instillation experiments. Experimental results on the mass and compositions of particles between 0.03 and > 20 microns in aerodynamic diameter show that PM from the combustion of these fuels produces distinctive bimodal and trimodal PSDs, with a fine mode dominated by vaporization, nucleation, and growth processes. Depending on the fuel and combustion equipment, the coarse mode is composed primarily of unburned carbon char and associated inherent trace elements (fuel oil) and fragments of inorganic (largely calcium-alumino-silicate) fly ash including trace elements (coal). The three coals also produced a central mode between 0.8- and 2.0-micron aerodynamic diameter. However, the origins of these particles are less clear because vapor-to-particle growth processes are unlikely to produce particles this large. Possible mechanisms include the liberation of micron-scale mineral inclusions during char fragmentation and burnout and indicates that refractory transition metals can contribute to PM < 2.5 microns without passing through a vapor phase. When burned most efficiently, the residual fuel oil produces a PSD composed almost exclusively of an ultrafine mode (approximately 0.1 micron). The transition metals associated with these emissions are composed of water-soluble metal sulfates. In contrast, the transition metals associated with coal combustion are not significantly enriched in PM < 2.5 microns and are significantly less soluble, likely because of their association with the mineral constituents. These results may have implications regarding health effects associated with exposure to these particles.

Journal ArticleDOI
TL;DR: Airborne fine particle mass concentrations in Southern California have declined in recent years, and trends in sulfate and elemental carbon particle concentrations over the period 1982-1993 are consistent with this overall improvement in air quality and help to confirm some of the reasons for the changes.
Abstract: Airborne fine particle mass concentrations in Southern California have declined in recent years. Trends in sulfate and elemental carbon (EC) particle concentrations over the period 1982-1993 are consistent with this overall improvement in air quality and help to confirm some of the reasons for the changes that are seen. Fine particle sulfate concentrations have declined as a strict sulfur oxides (SOx) emission control program adopted in 1978 was implemented over time. Fine particle elemental (black) carbon concentrations have declined over a period when newer diesel engines and improved diesel fuels have been introduced into the vehicle fleet. Organic aerosol concentrations have not declined as rapidly as the EC particle concentrations, despite the fact that catalyst-equipped cars having lower particle emission rates were introduced into the vehicle fleet alongside the diesel engine improvements mentioned above. This situation is consistent with the growth in population and vehicle miles traveled...

Journal ArticleDOI
TL;DR: The theoretical and empirical basis for assumptions commonly made in the published literature to extrapolate total fine particle concentration on the basis of chemical measurements of ions, carbon and elements are examined.
Abstract: We summarize the results from the various measurements and the inter-sampler comparisons from Southeastern Aerosol and Visibility Study (SEAVS), a study with one of its objectives to test for closure among chemical, gravimetric and optical measurements of atmospheric aerosol particles. Sulfate and organics are the dominant components of the SEAVS fine particles (nominally, particles with aerodynamic diameter <2.5 u,m) but between 28 and 42% (range over various samplers) of the gravimetrically measured total fine particle concentration is unidentified by the chemical measurements. Estimates of water associated with inorganic components and measurement imprecision do not totally explain the observed difference between gravimetric and chemical measurements. We examine the theoretical and empirical basis for assumptions commonly made in the published literature to extrapolate total fine particle concentration on the basis of chemical measurements of ions, carbon and elements.

Journal ArticleDOI
TL;DR: The relationship between ambient particle concentrations and personal exposures of a population expected to be at risk of particle health effects is evaluated and SO4 2- was measured in all PM2 5 samples as an indicator of accumulation mode particu-late matter of ambient origin.
Abstract: Most time-series studies of particulate air pollution and acute health outcomes assess exposure of the study population using fixed-site outdoor measurements. To address the issue of exposure misclassification, we evaluate the relationship between ambient particle concentrations and personal exposures of a population expected to be at risk of particle health effects. Sampling was conducted within the Vancouver metropolitan area during April-September 1998. Sixteen subjects (non-smoking, ages 54-86) with physician-diagnosed chronic obstructive pulmonary disease (COPD) wore personal PM2 5 monitors for seven 24-hr periods, randomly spaced approximately 1.5 weeks apart. Time-activity logs and dwelling characteristics data were also obtained for each subject. Daily 24-hr ambient PM10 and PM2.5 concentrations were measured at five fixed sites spaced throughout the study region. SO4 2-, which is found almost exclusively in the fine particle fraction and which does not have major indoor sources, was meas...

Journal ArticleDOI
TL;DR: In this paper, ITFs and PITFs are calculated for outdoor releases from area, point, and line sources, indoor releases in single zone and multizone indoor environments, and releases within motor vehicles.
Abstract: To facilitate routine health risk assessments, we develop the concept of an inhalation transfer factor (ITF). The ITF is defined as the pollutant mass inhaled by an exposed individual per unit poll...

Journal ArticleDOI
TL;DR: New system design rules and different handling policies—both during maintenance and final disposal—now should be considered globally to provide for environmental and personnel safety.
Abstract: This work provides information concerning possible global environmental implications and personnel safety aspects that should be considered during the commercial uses of sulfur hexafluoride (SF6). SF6 is an anthropogenically produced compound, mainly used as a gaseous dielectric in gas insulated switchgear power installations. It is a potent greenhouse gas with a high global warming potential, and its concentration in the earth atmosphere is rapidly increasing. During its working cycle, SF6 decomposes under electrical stress, forming toxic byproducts that are a health threat for working personnel in the event of exposure. Several precautions are recommended to avoid personnel exposure to toxic byproducts: oxyfluoride levels or other byproduct concentrations in the operating gas matrix should be traced to predetermine the overall gas toxicity; contaminants should be systematically considered during maintenance, chamber evacuation and system opening process; small SF6 quantities leaking into air or stagnated pollutant concentrations in the operating field should be analyzed and compared to the threshold limit values and permissible exposure levels. New system design rules (i.e., hermetically sealed gas compartments, gas recycling or disposal in the field area) and different handling policies--both during maintenance and final disposal--now should be considered globally to provide for environmental and personnel safety.

Journal ArticleDOI
TL;DR: Methods that measure PM25 mass, total particulate NO3 -, and elemental carbon were evaluated in seven U.S. cities from 1997 to 1999 and showed excellent agreement with the PM25 Federal Reference Method, but the BC values were approximately 24% less than the EC measurements consistently across all six cites.
Abstract: Methods that measure PM25 mass, total particulate NO3 -, and elemental carbon (EC) were evaluated in seven U.S. cities from 1997 to 1999. Sampling was performed in Bakersfield, CA; Boston, MA; Chicago, IL; Dallas, TX; Philadelphia, PA; Phoenix, AZ; and Riverside, CA. Evaluating and validating methods that measure the components of fine mass are important to the effort of establishing a speciation-monitoring network. The Harvard Impactor (HI), which measures fine particle mass, showed excellent agreement (r2 = 0.99) with the PM25 Federal Reference Method (FRM) for 81 24-hr samples in Riverside and Bakersfield. The HI also showed good precision (4.8%) for 243 24-hr collocated samples over eight studies. The Aethalometer was employed in six of the sampling locations to measure black carbon (BC). These values were compared to EC as measured from a quartz filter using thermal analysis. For the six cities combined, the two methods were highly correlated (r2 = 0.94; 187 24-hr samples); however, the BC v...

Journal ArticleDOI
TL;DR: The reconstruction of the original results reported by Schwartz, Dockery, and Neas1 were essentially replicated and combined effect estimates essentially equivalent to the originally published results are presented.
Abstract: In 1996, Schwartz, Dockery, and Neas reported that daily mortality was more strongly associated with concentrations of PM2.5 than with concentrations of larger particles (coarse mass [CM]) in six U.S. cities ("original paper"/"original analyses"). Because of the public policy implications of the findings and the uniqueness of the concentration data, we undertook a reanalysis of these results. This paper presents results of the reconstruction of these data and replication of the original analyses using the reconstructed data. The original investigators provided particulate air pollution data for this paper. Daily weather and daily counts of total and cause-specific deaths were reconstructed from original public records. The reconstructed particulate air pollution and weather data were consistent with the summaries presented in the original paper. Daily counts of deaths in the reconstructed data set were lower than in the original paper because of restrictions on residence and place of death. The reconstruction process identified an administrative change in county codes that led to higher numbers of deaths in St. Louis. Despite these differences in daily counts of deaths, the estimated effects of particulate air pollution from the reconstructed dataset, using analytic methods as described in the original paper, produced combined effect estimates essentially equivalent to the originally published results. For example, the estimated association of a 10 micrograms/m3 increase in 2-day mean particulate air pollution on total mortality was 1.3% (95% confidence interval [CI] 0.9-1.7%, t = 6.53) for PM2.5 based on the reconstructed dataset, compared to the originally reported association of 1.5% (95% CI 1.1-1.9%, t = 7.41). For coarse particles, the estimated association from the reconstructed dataset was 0.4% (95% CI -0.2-0.9%, t = 1.43) compared to the originally reported association of 0.4% (95% CI -0.1-1.0%, t = 1.48). These results from the reconstructed data suggest that the original results reported by Schwartz, Dockery, and Neas were essentially replicated.

Journal ArticleDOI
TL;DR: For regional air pollution, fixed-site fine particle levels are valid exposure surrogates, however, source-specific exposures are probably not the optimal measure, and ambient PM2.5 levels may be more appropriate exposure estimates than total personal PM 2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.
Abstract: To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM2.5 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated. Personal exposures to PM2.5 mass were not correlated to corresponding home outdoor levels (n = 44, rSpearman (Sp) = 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, rSp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, rSp = 0.53; Br: n = 44, rSp = 0.21) and crustal (Ca: n = 44, rSp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland. We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM2.5 levels may be more appropriate exposure estimates than total personal PM2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.

Journal ArticleDOI
TL;DR: Results of this study suggest that in 1996, off-road diesel equipment (including railroad locomotives, marine vessels, and equipment used for agriculture, construction, logging, and mining) in the United States may have run out of diesel fuel.
Abstract: The use of diesel engines in off-road applications is a significant source of nitrogen oxides (NOx) and particulate matter (PM10). Such off-road applications include railroad locomotives, marine vessels, and equipment used for agriculture, construction, logging, and mining. Emissions from these sources are only beginning to be controlled. Due to the large number of these engines and their wide range of applications, total activity and emissions from these sources are uncertain. A method for estimating the emissions from off-road diesel engines based on the quantity of diesel fuel consumed is presented. Emission factors are normalized by fuel consumption, and total activity is estimated by the total fuel consumed. Total exhaust emissions from off-road diesel equipment (excluding locomotives and marine vessels) in the United States during 1996 have been estimated to be 1.2 x 10(9) kg NOx and 1.2 x 10(8) kg PM10. Emissions estimates published by the U.S. Environmental Protection Agency are 2.3 times higher for both NOx and exhaust PM10 emissions than estimates based directly on fuel consumption. These emissions estimates disagree mainly due to differences in activity estimates, rather than to differences in the emission factors. All current emission inventories for off-road engines are uncertain because of the limited in-use emissions testing that has been performed on these engines. Regional- and state-level breakdowns in diesel fuel consumption by off-road mobile sources are also presented. Taken together with on-road measurements of diesel engine emissions, results of this study suggest that in 1996, off-road diesel equipment (including agriculture, construction, logging, and mining equipment, but not locomotives or marine vessels) was responsible for 10% of mobile source NOx emissions nationally, whereas on-road diesel vehicles contributed 33%.

Journal ArticleDOI
TL;DR: A new Gaussian dispersion model, the Plume Rise Model Enhancements (PRIME), has been developed for plume rise and building downwash that avoids the discontinuities resulting from the different downwash modules within the current models and the reported overpredictions during light-wind speed, stable conditions.
Abstract: A new Gaussian dispersion model, the Plume Rise Model Enhancements (PRIME), has been developed for plume rise and building downwash. PRIME considers the position of the stack relative to the building, streamline deflection near the building, and vertical wind speed shear and velocity deficit effects on plume rise. Within the wake created by a sharp-edged, rectangular building, PRIME explicitly calculates fields of turbulence intensity, wind speed, and streamline slope, which gradually decay to ambient values downwind of the building. The plume trajectory within these modified fields is estimated using a numerical plume rise model. A probability density function and an eddy diffusivity scheme are used for dispersion in the wake. A cavity module calculates the fraction of plume mass captured by and recirculated within the near wake. The captured plume is re-emitted to the far wake as a volume source and added to the uncaptured primary plume contribution to obtain the far wake concentrations. The modeling procedures currently recommended by the U.S. Environmental Protection Agency (EPA), using SCREEN and the Industrial Source Complex model (ISC), do not include these features. PRIME also avoids the discontinuities resulting from the different downwash modules within the current models and the reported overpredictions during light-wind speed, stable conditions. PRIME is intended for use in regulatory models. It was evaluated using data from a power plant measurement program, a tracer field study for a combustion turbine, and several wind-tunnel studies. PRIME performed as well as or better than ISC/SCREEN for nearly all of the comparisons.

Journal ArticleDOI
TL;DR: Guidance for the performance evaluation of three-dimensional air quality modeling systems for particulate matter and visibility is presented in this article, where four levels are considered: operational, diagnostic, mechanistic, and probabilistic evaluations.
Abstract: Guidance for the performance evaluation of three-dimensional air quality modeling systems for particulate matter and visibility is presented Four levels are considered: operational, diagnostic, mechanistic, and probabilistic evaluations First, a comprehensive model evaluation should be conducted in at least two distinct geographical locations and for several meteorological episodes Next, streamlined evaluations can be conducted for other similar applications if the comprehensive evaluation is deemed satisfactory In all cases, the operational evaluation alone is insufficient, and some diagnostic evaluation must always be carried out Recommendations are provided for designing field measurement programs that can provide the data needed for such model performance evaluations

Journal ArticleDOI
TL;DR: It is indicated that sugar cane burning may cause deleterious health effects in the exposed population because of the significant and dose-dependent relationship between the number of visits and the amount of sediment.
Abstract: This study was designed to evaluate the association between sugar cane plantation burning and hospital visits in Araraquara in the state of Sao Paulo, Brazil. From June 1 to August 31, 1995, the daily number of visits of patients who needed inhalation therapy in one of the main hospitals of the city was recorded and used as health impairment estimation. Sedimentation of particle mass (the amount of particles deposited on four containers filled with water) was measured daily. The association between the weight of the sediment and the number of visits was evaluated by means of Poisson regression models controlled for seasonality, temperature, day of the week, and rain. We found a significant and dose-dependent relationship between the number of visits and the amount of sediment. The relative risk of visit associated with an increase of 10 mg in the sediment weight was 1.09 (1-1.19), and the relative risk of an inhalation therapy was 1.20 (1.03-1.39) on the most polluted days (fourth quartile of sediment mass). These results indicate that sugar cane burning may cause deleterious health effects in the exposed population.

Journal ArticleDOI
TL;DR: A new statistical model designed to extend the understanding from prior personal exposure field measurements of urban populations to other cities where ambient monitoring data, but no personal exposure measurements, exist is presented.
Abstract: This paper presents a new statistical model designed to extend our understanding from prior personal exposure field measurements of urban populations to other cities where ambient monitoring data, but no personal exposure measurements, exist. The model partitions personal exposure into two distinct components: ambient concentration and nonambient concentration. It is assumed the ambient and nonambient concentration components are uncorrelated and add together; therefore, the model is called a random component superposition (RCS) model. The 24-hr ambient outdoor concentration is multiplied by a dimensionless "attenuation factor" between 0 and 1 to account for deposition of particles as the ambient air infiltrates indoors. The RCS model is applied to field PM10 measurement data from three large-scale personal exposure field studies: THEES (Total Human Environmental Exposure Study) in Phillipsburg, NJ; PTEAM (Particle Total Exposure Assessment Methodology) in Riverside, CA; and the Ethyl Corporation study in Toronto, Canada. Because indoor sources and activities (smoking, cooking, cleaning, the personal cloud, etc.) may be similar in similar populations, it was hypothesized that the statistical distribution of nonambient personal exposure is invariant across cities. Using a fixed 24-hr attenuation factor as a first approximation derived from regression analysis for the respondents, the distributions of nonambient PM10 personal exposures were obtained for each city. Although the mean ambient PM10 concentrations in the three cities varied from 27.9 micrograms/m3 in Toronto to 60.9 micrograms/m3 in Phillipsburg to 94.1 micrograms/m3 in Riverside, the mean nonambient components of personal exposures were found to be closer: 52.6 micrograms/m3 in Toronto; 52.4 micrograms/m3 in Phillipsburg; and 59.2 micrograms/m3 in Riverside. The three frequency distributions of the nonambient components of exposure also were similar in shape, giving support to the hypothesis that nonambient concentrations are similar across different cities and populations. These results indicate that, if the ambient concentrations were completely controlled and set to zero in all three cities, the median of the remaining personal exposures to PM10 would range from 32.0 micrograms/m3 (Toronto) to 34.4 micrograms/m3 (Phillipsburg) to 48.8 micrograms/m3 (Riverside). The highest-exposed 30% of the population in the three cities would still be exposed to 24-hr average PM10 concentrations of 47-74 micrograms/m3; the highest 20% would be exposed to concentrations of 56-92 micrograms/m3; the highest 10% to concentrations of 88-131 micrograms/m3; and the highest 5% to 133-175 micrograms/m3, due only to indoor sources and activities. The distribution for the difference between personal exposures and indoor concentrations, or the "personal cloud," also was similar in the three cities, with a mean of 30-35 micrograms/m3, suggesting that the personal cloud accounts for more than half of the nonambient component of PM10 personal exposure in the three cities. Using only the ambient measurements in Toronto, the nonambient data from THEES in Phillipsburg was used to predict the entire personal exposure distribution in Toronto. The PM10 exposure distribution predicted by the model showed reasonable agreement with the PM10 personal exposure distribution measured in Toronto. These initial results suggest that the RCS model may be a powerful tool for predicting personal exposure distributions and statistics in other cities where only ambient particle data are available.

Journal ArticleDOI
TL;DR: Examination of PM emission samples revealed that part of the PM2.5 fraction consists of carbonaceous cenospheres and vesicular particles that range up to 10 |j.m in diameter, which is predominantly condensed in graphitic structures.
Abstract: Combustion experiments were carried out on four different residual fuel oils in a 732-kW boiler. PM emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 |j.m in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the PM2.5 fraction consists of carbonaceous cenospheres and vesicular particles that range up to 10 |j.m in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As K-edges and at the Pb L-edge. Deconvolution of the X-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM2.5 samples than in the PM25+ samples. Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra f...

Journal Article
TL;DR: In this paper, the authors present an approach that applies Bayesian statistics to interpret measurements of airborne pollutant concentrations from multiple sensors placed in the building and computes best estimates and uncertainties of the release conditions.
Abstract: Releases of airborne contaminants in or near a building can lead to significant human exposures unless prompt response measures are taken. However, possible responses can include conflicting strategies, such as shutting the ventilation system off versus running it in a purge mode, or having occupants evacuate versus sheltering in place. The proper choice depends in part on knowing the source locations, the amounts released, and the likely future dispersion routes of the pollutants. We present an approach that estimates this information in real time. It applies Bayesian statistics to interpret measurements of airborne pollutant concentrations from multiple sensors placed in the building and computes best estimates and uncertainties of the release conditions. The algorithm is fast, capable of continuously updating the estimates as measurements stream in from sensors. We demonstrate the approach using a hypothetical pollutant release in a five-room building. Unknowns to the interpretation algorithm include location, duration, and strength of the source, and some building and weather conditions. We examine two sensor sampling plans and three levels of data quality. Data interpretation in all examples is rapid; however, locating and characterizing the source with high probability depends on the amount and quality of data, and the sampling plan.

Journal ArticleDOI
TL;DR: The Fresno Supersite is coordinated with health and toxicological studies that will use these data in establishing relationships with asthma, other respiratory disease, and cardiovascular changes in human and animal subjects.
Abstract: The Fresno Supersite intends to 1) evaluate non-routine monitoring methods, establishing their comparability with existing methods and their applicability to air quality planning, exposure assessment, and health effects studies; 2) provide a better understanding of aerosol characteristics, behavior, and sources to assist regulatory agencies in developing standards and strategies that protect public health; and 3) support studies that evaluate relationships between aerosol properties, co-factors, and observed health end-points. Supersite observables include in-situ, continuous, short-duration measurements of

Journal ArticleDOI
TL;DR: The Southeastern Aerosol and Visibility Study (SEAVS) was undertaken to characterize the size-dependent composition, thermodynamic properties, and optical characteristics of the ambient atmospheric particles in the southeastern United States.
Abstract: The Southeastern Aerosol and Visibility Study (SEAVS) was undertaken to characterize the size-dependent composition, thermodynamic properties, and optical characteristics of the ambient atmospheric particles in the southeastern United States. The field portion of the study was carried out from July 15 to August 25, 1995. As part of the study a relative humidity controlled inlet was built to raise or lower the relative humidity to predetermined levels before the aerosol was passed into an integrating nephelometer or particle-sizing device. Five other integrating nephelometers were operated in various configurations, two of which were fitted with a 2.5 μm inlet. Fine particle (<2.5 μm) samplers were operated to measure concentrations of sulfate, nitrate, and ammonium ions, organic and elemental carbon, and fine soil. Mass size distributions were measured with an eight-stage, single orifice cascade impactor.