scispace - formally typeset
Search or ask a question

Showing papers in "Journal of the American Chemical Society in 2002"


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that cellulose can be dissolved without activation or pretreatment in, and regenerated from, 1-butyl-3-methylimidazolium chloride and other hydrophilic ionic liquids.
Abstract: We report here initial results that demonstrate that cellulose can be dissolved without activation or pretreatment in, and regenerated from, 1-butyl-3-methylimidazolium chloride and other hydrophilic ionic liquids. This may enable the application of ionic liquids as alternatives to environmentally undesirable solvents currently used for dissolution of this important bioresource.

4,276 citations


Journal ArticleDOI
Shouheng Sun1, Hao Zeng1
TL;DR: The reported procedure can be used as a general approach to various ferrite nanoparticles and nanoparticle superlattices.
Abstract: Monodisperse magnetite nanoparticles have been synthesized by high-temperature solution-phase reaction of Fe(acac)3 in phenyl ether with alcohol, oleic acid, and oleylamine. Seed-mediated growth is used to control Fe3O4 nanoparticle size, and variously sized nanoparticles from 3 to 20 nm have been produced. The as-synthesized Fe3O4 nanoparticles have inverse spinel structure, and their assemblies can be transformed into γ-Fe2O3 or α-Fe nanoparticle assemblies, depending on the annealing conditions. The reported procedure can be used as a general approach to various ferrite nanoparticles and nanoparticle superlattices.

2,605 citations


Journal ArticleDOI
TL;DR: In this article, the crystal and molecular structure of cellulose Iβ were determined using synchrotron and neutron diffraction data recorded from oriented fibrous samples prepared by aligning cellulose microcrystals from tunicin.
Abstract: The crystal and molecular structure together with the hydrogen-bonding system in cellulose Iβ has been determined using synchrotron and neutron diffraction data recorded from oriented fibrous samples prepared by aligning cellulose microcrystals from tunicin. These samples diffracted both synchrotron X-rays and neutrons to better than 1 A resolution (>300 unique reflections; P21). The X-ray data were used to determine the C and O atom positions. The resulting structure consisted of two parallel chains having slightly different conformations and organized in sheets packed in a “parallel-up” fashion, with all hydroxymethyl groups adopting the tg conformation. The positions of hydrogen atoms involved in hydrogen-bonding were determined from a Fourier-difference analysis using neutron diffraction data collected from hydrogenated and deuterated samples. The hydrogen atoms involved in the intramolecular O3···O5 hydrogen bonds have well-defined positions, whereas those corresponding to O2 and O6 covered a wider v...

2,583 citations


Journal ArticleDOI
TL;DR: A new room temperature ionic liquid incorporating a cation with an appended amine group is produced, comparable in efficiency for CO2 capture to commercial amine sequestering reagents, and yet is nonvolatile and does not require water to function.
Abstract: Reaction of 1-butyl imidazole with 3-bromopropylamine hydrobromide, followed by workup and anion exchange, yields a new room temperature ionic liquid incorporating a cation with an appended amine group. The new ionic liquid reacts reversibly with CO2, reversibly sequestering the gas as a carbamate salt. The new ionic liquid, which can be repeatedly recycled in this role, is comparable in efficiency for CO2 capture to commercial amine sequestering reagents, and yet is nonvolatile and does not require water to function.

2,050 citations


Journal ArticleDOI
TL;DR: The LSPR nanobiosensor provides a pathway to ultrasensitive biodetection experiments with extremely simple, small, light, robust, low-cost instrumentation that will greatly facilitate field-portable environmental or point-of-service medical diagnostic applications.
Abstract: Triangular silver nanoparticles (∼100 nm wide and 50 nm high) have remarkable optical properties. In particular, the peak extinction wavelength, λmax of their localized surface plasmon resonance (LSPR) spectrum is unexpectedly sensitive to nanoparticle size, shape, and local (∼10−30 nm) external dielectric environment. This sensitivity of the LSPR λmax to the nanoenvironment has allowed us to develop a new class of nanoscale affinity biosensors. The essential characteristics and operational principles of these LSPR nanobiosensors will be illustrated using the well-studied biotin−streptavidin system. Exposure of biotin-functionalized Ag nanotriangles to 100 nM streptavidin (SA) caused a 27.0 nm red-shift in the LSPR λmax. The LSPR λmax shift, ΔR/ΔRmax, versus [SA] response curve was measured over the concentration range 10-15 M < [SA] < 10-6 M. Comparison of the data with the theoretical normalized response expected for 1:1 binding of a ligand to a multivalent receptor with different sites but invariant af...

2,018 citations


Journal ArticleDOI
TL;DR: A new class of organic nanoparticles (CN-MBE nanoparticles) with a mean diameter of ca.
Abstract: A new class of organic nanoparticles (CN-MBE nanoparticles) with a mean diameter of ca. 30−40 nm, which exhibit a strongly enhanced fluorescence emission, were prepared by a simple reprecipitation method. CN-MBE (1-cyano-trans-1,2-bis-(4‘-methylbiphenyl)ethylene) is very weakly fluorescent in solution, but the intensity is increased by almost 700 times in the nanoparticles. Enhanced emission in CN-MBE nanoparticles is attributed to the synergetic effect of intramolecular planarization and J-type aggregate formation (restricted excimer formation) in nanopaticles. On/off fluorescence switching for organic vapor was demonstrated with CN-MBE nanoparticles.

1,770 citations


Journal ArticleDOI
TL;DR: The first three-dimensional chromium(III) dicarboxylate, MIL-53as or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C −C 6H4 −CO2H}0.75, has been obtained under hydrothermal conditions (as: as-synthesized).
Abstract: The first three-dimensional chromium(III) dicarboxylate, MIL-53as or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}0.75, has been obtained under hydrothermal conditions (as: as-synthesized). The free acid can be removed by calcination giving the resulting solid, MIL-53ht or CrIII(OH)·{O2C−C6H4−CO2}. At room temperature, MIL-53ht adsorbs atmospheric water immediately to give CrIII(OH)·{O2C−C6H4−CO2}·H2O or MIL-53lt (lt: low-temperature form, ht: high-temperature form). Both structures, which have been determined by using X-ray powder diffraction data, are built up from chains of chromium(III) octahedra linked through terephthalate dianions. This creates a three-dimensional structure with an array of one-dimensional large pore channels filled with free disordered terephthalic molecules (MIL-53as) or water molecules (MIL-53lt); when the free molecules are removed, this leads to a nanoporous solid (MIL-53ht) with a Langmuir surface area over 1500 m2/g. The transition between the hydrated form (MIL-53lt) and the a...

1,626 citations


Journal ArticleDOI
TL;DR: The experimental results suggest that the existence of the PL bright point is a general phenomenon during the growth of semiconductor nanocrystals and likely is a signature of an optimal surface structure/reconstruction of the nanocry crystals grown under a given set of initial conditions.
Abstract: The photoluminescence (PL) quantum yield (QY) of CdSe nanocrystals during their growth under a given set of initial conditions increases monotonically to a certain maximum value and then decreases gradually. Such a maximum is denoted as a PL “bright point”, which does not always overlap with the minimum point of the PL peak width for the same reaction. The experimental results suggest that the existence of the PL bright point is a general phenomenon during the growth of semiconductor nanocrystals and likely is a signature of an optimal surface structure/reconstruction of the nanocrystals grown under a given set of initial conditions. The position of the bright point, the highest PL QY, the types of the bright points (sharp or flat), the sharpness of the PL peak, etc., were all strongly dependent on the initial Cd:Se ratio of the precursors in the solution. A large excess of the selenium precursor, with 5−10 times more selenium precursor than the amount of the cadmium precursor, was found necessary to achi...

1,597 citations


Journal ArticleDOI
TL;DR: Experimental results indicate that coordinating solvents and two ligands with distinguishable coordinating abilities are both not intrinsic requirements for the growth of elongated CdSe nanocrystals.
Abstract: The nucleation and growth of colloidal CdSe nanocrystals with a variety of elongated shapes were explored in detail. The critical size nuclei for the system were magic sized nanoclusters, which possessed a sharp and dominated absorption peak at 349 nm. The formation of the unique magic sized nuclei in a broad monomer concentration range was not expected by the classic nucleation theory. We propose that this was a result of the extremely high chemical potential environment, that is, very high monomer concentrations in the solution, required for the growth of those elongated nanocrystals. The shape, size, and size/shape distributions of the resulting nanocrystals were all determined by two related factors, the magic sized nuclei and the concentration of the remaining monomers after the initial nucleation stage. Without any size sorting, nearly monodisperse CdSe quantum structures with different shapes were reproducibly synthesized by using the alternative cadmium precursors, cadmium-phosphonic acid complexe...

1,443 citations


Journal ArticleDOI
TL;DR: Novel palladium hollow spheres were synthesized using silica spheres as a template, and they were successfully applied as recyclable heterogeneous catalysts for Suzuki cross coupling reactions.
Abstract: Novel palladium hollow spheres were synthesized using silica spheres as a template, and they were successfully applied as recyclable heterogeneous catalysts for Suzuki cross coupling reactions.

1,317 citations


Journal ArticleDOI
TL;DR: In this article, the binding energies of the benzene dimer were investigated at the second-order Moller−Plesset perturbation theory (MP2) level, and it was shown that more modest basis sets such as aug-cc-pVDZ are sufficient for geometry optimizations of intermolecular parameters.
Abstract: State-of-the-art electronic structure methods have been applied to the simplest prototype of aromatic π−π interactions, the benzene dimer. By comparison to results with a large aug-cc-pVTZ basis set, we demonstrate that more modest basis sets such as aug-cc-pVDZ are sufficient for geometry optimizations of intermolecular parameters at the second-order Moller−Plesset perturbation theory (MP2) level. However, basis sets even larger than aug-cc-pVTZ are important for accurate binding energies. The complete basis set MP2 binding energies, estimated by explicitly correlated MP2−R12/A techniques, are significantly larger in magnitude than previous estimates. When corrected for higher-order correlation effects via coupled cluster with singles, doubles, and perturbative triples [CCSD(T)], the binding energies De (D0) for the sandwich, T-shaped, and parallel-displaced configurations are found to be 1.8 (2.0), 2.7 (2.4), and 2.8 (2.7) kcal mol-1, respectively.

Journal ArticleDOI
TL;DR: The solubilization of the nanotubes generates a novel, interesting class of materials, which combines the properties of thenanotubes and the organic moiety, thus offering new opportunities for applications in materials science, including the preparation of nanocomposites.
Abstract: A very general and versatile method for functionalizing different types of carbon nanotubes is described, using the 1,3-dipolar cycloaddition of azomethine ylides. Approximately one organic group per 100 carbon atoms of the nanotube is introduced, to yield remakably soluble bundles of nanotubes, as seen in transmission electron micrographs. The solubilization of the nanotubes generates a novel, interesting class of materials, which combines the properties of the nanotubes and the organic moiety, thus offering new opportunities for applications in materials science, including the preparation of nanocomposites.

Journal ArticleDOI
TL;DR: The new ionic liquids combine the low volatility and ease of separation from product normally associated with solid acid catalysts, with the higher activity and yields normally found using conventional liquid acids.
Abstract: The reaction of triphenylphosphine or N-butylimidazole with cyclic sultones gives zwitterions that are subsequently converted into ionic liquids by reaction with trifluoromethane sulfonic acid or p-toluenesulfonic acid. The resulting ionic liquids have cations to which are tethered alkane sulfonic acid groups. These Bronsted acidic ionic liquids are useful solvent/catalysts for several organic reactions, including Fischer esterification, alcohol dehydrodimerization and the pinacol rearrangement. The new ionic liquids combine the low volatility and ease of separation from product normally associated with solid acid catalysts, with the higher activity and yields normally found using conventional liquid acids.

Journal ArticleDOI
TL;DR: A linear free energy approach is used to characterize 17 RTILs on the basis of their distinct multiple solvation interactions with probe solute molecules and provides data that can be used to help identify the interactions and properties that are important for specific chemical applications.
Abstract: Room-temperature ionic liquids (RTILs) are useful in many chemical applications. Recent publications have attempted to determine the polarity of RTILs using empirical solvent polarity scales. The results have indicated that most RTILs have similar polarities. Nevertheless, RTILs are capable of behaving quite differently when used as solvents in organic synthesis, matrixes in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, liquid−liquid extraction, and as stationary phases in gas chromatography. The work presented in this study uses a linear free energy approach to characterize 17 RTILs on the basis of their distinct multiple solvation interactions with probe solute molecules. This model provides data that can be used to help identify the interactions and properties that are important for specific chemical applications.

Journal ArticleDOI
TL;DR: This process reported here is highly promising for producing uniform nanorods, and more importantly it will be useful in resolving the growth mechanism of anisotropic metal nanoparticles due to its simplicity and the relatively slow growth rate of the nanorod.
Abstract: Gold nanorods have been synthesized by photochemically reducing gold ions within a micellar solution. The aspect ratio of the rods can be controlled with the addition of silver ions. This process reported here is highly promising for producing uniform nanorods, and more importantly it will be useful in resolving the growth mechanism of anisotropic metal nanoparticles due to its simplicity and the relatively slow growth rate of the nanorods.

Journal ArticleDOI
Xun Wang1, Yadong Li1
TL;DR: In this article, a selective control hydrothermal method has been developed in the preparation of α- and β-MnO2 single-crystal nanowires, which can be influenced by the concentration of NH4+ and SO42-.
Abstract: A selective-control hydrothermal method has been developed in the preparation of α- and β-MnO2 single-crystal nanowires. The crystal structure and morphology of the final products can be influenced by the concentration of NH4+ and SO42-.

Journal ArticleDOI
TL;DR: The dispersion interaction is found to be the major source of attraction in the benzene dimer and the orientation dependence of the dimer interaction is mainly controlled by long-range interactions.
Abstract: A model chemistry for the evaluation of intermolecular interaction between aromatic molecules (AIMI Model) has been developed. The CCSD(T) interaction energy at the basis set limit has been estimated from the MP2 interaction energy near the basis set limit and the CCSD(T) correction term obtained by using a medium size basis set. The calculated interaction energies of the parallel, T-shaped,and slipped-parallel benzene dimers are -1.48, -2.46, and -2.48 kcal/mol, respectively. The substantial attractive interaction in benzene dimer, even where the molecules are well separated, shows that the major source of attraction is not short-range interactions such as charge-transfer but long-range interactions such as electrostatic and dispersion. The inclusion of electron correlation increases attraction significantly. The dispersion interaction is found to be the major source of attraction in the benzene dimer. The orientation dependence of the dimer interaction is mainly controlled by long-range interactions. Although electrostatic interaction is considerably weaker than dispersion interaction, it is highly orientation dependent. Dispersion and electrostatic interactions are both important for the directionality of the benzene dimer interaction.

Journal ArticleDOI
TL;DR: It is reported that Ir(I) precursors in conjunction with bipyridine ligands catalyze in high yields the borylation of arenes under mild conditions, and that the reactions involve uncommon, Ir(II) tris-boryl complexes.
Abstract: The borylation of arenes leads to the formation of synthetically versatile products from unactivated arene reagents. We report that Ir(I) precursors in conjunction with bipyridine ligands catalyze in high yields the borylation of arenes under mild conditions. These reactions encompase arenes bearing both electron-withdrawing and electron-donating substituents. The temperatures required for the transformation are much lower than those previously reported for direct arene borylation. The combination of [Ir(COE)2Cl]2 and (4,4-di-t-butyl)bipyridine even allows for reaction at room temperature. The same catalyst system at 100 °C provides remarkably high turnover numbers for a hydrocarbon functionalization process. Mechanistic studies show that the reactions involve uncommon, Ir(II) tris-boryl complexes. An example of this type of complex ligated by di-t-butylbipyridine was isolated and structurally characterized. It reacted rapidly at room temperature to produce aryl boronate esters in high yields.

Journal ArticleDOI
TL;DR: Affinities in vitro and detection limits in living cells are optimized with Xaa-Xaa = Pro-Gly, suggesting that the preferred peptide conformation is a hairpin rather than the previously proposed alpha-helix.
Abstract: We recently introduced a method (Griffin, B. A.; Adams, S. R.; Tsien, R. Y. Science 1998, 281, 269−272 and Griffin, B. A.; Adams, S. R.; Jones, J.; Tsien, R. Y. Methods Enzymol. 2000, 327, 565−578) for site-specific fluorescent labeling of recombinant proteins in living cells. The sequence Cys-Cys-Xaa-Xaa-Cys-Cys, where Xaa is an noncysteine amino acid, is genetically fused to or inserted within the protein, where it can be specifically recognized by a membrane-permeant fluorescein derivative with two As(III) substituents, FlAsH, which fluoresces only after the arsenics bind to the cysteine thiols. We now report kinetics and dissociation constants (∼10-11 M) for FlAsH binding to model tetracysteine peptides. Affinities in vitro and detection limits in living cells are optimized with Xaa-Xaa = Pro-Gly, suggesting that the preferred peptide conformation is a hairpin rather than the previously proposed α-helix. Many analogues of FlAsH have been synthesized, including ReAsH, a resorufin derivative excitable a...

Journal ArticleDOI
TL;DR: The hydrolytic kinetic resolution (HKR) of terminal epoxides catalyzed by chiral (salen)Co(III) complex 1 x OAc affords both recovered unreacted epoxide and 1,2-diol product in highly enantioenriched form, which provides general access to useful, highly enanteenriched chiral building blocks that are otherwise difficult to access, from inexpensive racemic materials.
Abstract: The hydrolytic kinetic resolution (HKR) of terminal epoxides catalyzed by chiral (salen)CoIII complex 1·OAc affords both recovered unreacted epoxide and 1,2-diol product in highly enantioenriched form. As such, the HKR provides general access to useful, highly enantioenriched chiral building blocks that are otherwise difficult to access, from inexpensive racemic materials. The reaction has several appealing features from a practical standpoint, including the use of H2O as a reactant and low loadings (0.2−2.0 mol %) of a recyclable, commercially available catalyst. In addition, the HKR displays extraordinary scope, as a wide assortment of sterically and electronically varied epoxides can be resolved to ≥99% ee. The corresponding 1,2-diols were produced in good-to-high enantiomeric excess using 0.45 equiv of H2O. Useful and general protocols are provided for the isolation of highly enantioenriched epoxides and diols, as well as for catalyst recovery and recycling. Selectivity factors (krel) were determined ...

Journal ArticleDOI
TL;DR: Metal nanoparticles have unique structural and optical properties for new applications in biosensing and molecular engineering and are found to spontaneously assemble into a constrained arch-like conformation on the particle surface.
Abstract: Colloidal gold nanocrystals have been used to develop a new class of nanobiosensors that is able to recognize and detect specific DNA sequences and single-base mutations in a homogeneous format At the core of this biosensor is a 25-nm gold nanoparticle that functions as both a nano-scaffold and a nano-quencher (efficient energy acceptor) Attached to this core are oligonucleotide molecules labeled with a thiol group at one end and a fluorophore at the other This hybrid bio/inorganic construct is found to spontaneously assemble into a constrained arch-like conformation on the particle surface Binding of target molecules results in a conformational change, which restores the fluorescence of the quenched fluorophore Unlike conventional molecular beacons with a stem-and-loop structure, the nanoparticle probes do not require a stem, and their background fluorescence increases little with temperature In comparison with the organic quencher Dabcyl (4,4'-dimethylaminophenyl azo benzoic acid), metal nanoparticles have unique structural and optical properties for new applications in biosensing and molecular engineering

Journal ArticleDOI
TL;DR: In this article, a Ti-based oxysulfide, Sm(2,Ti(2)S(2),O(5), was studied as a visible light-driven photocatalyst.
Abstract: A Ti-based oxysulfide, Sm(2)Ti(2)S(2)O(5), was studied as a visible light-driven photocatalyst. Under visible light (440 nm < or = lambda < or = 650 nm) irradiation, Sm(2)Ti(2)S(2)O(5) with a band gap of approximately 2 eV evolved H(2) or O(2) from aqueous solutions containing a sacrificial electron donor (Na(2)S-Na(2)SO(3) or methanol) or acceptor (Ag(+)) without any noticeable degradation. This oxysulfide is, therefore, a stable photocatalyst with strong reduction and oxidation abilities under visible-light irradiation. The electronic band structure of Sm(2)Ti(2)S(2)O(5) was calculated using the plane-wave-based density functional theory (DFT) program. It was elucidated that the S3p orbitals constitute the upper part of the valence band and these orbitals make an essential contribution to the small band gap energy. The conduction and valence bands' positions of Sm(2)Ti(2)S(2)O(5) were also determined by electrochemical measurements. It indicated that conduction and valence bands were found to have satisfactory potentials for the reduction of H(+) to H(2) and the oxidation of H(2)O to O(2) at pH = 8. This is consistent with the results of the photocatalytic reactions.

Journal ArticleDOI
TL;DR: Characterization of the gelation process, from the molecular level up through the macroscopic properties of the material, suggests that by linking the intramolecular folding of small designed peptides to their ability to self-assemble, responsive materials can be prepared.
Abstract: A general peptide design is presented that links the pH-dependent intramolecular folding of β-hairpin peptides to their propensity to self-assemble, affording hydrogels rich in β-sheet. Chemical responsiveness has been specifically engineered into the material by linking intramolecular folding to changes in solution pH, and mechanical responsiveness, by linking hydrogelation to self-assembly. Circular dichroic and infrared spectroscopies show that at low pH individual peptides are unstructured, affording a low-viscosity aqueous solution. Under basic conditions, intramolecular folding takes place, affording amphiphilic β-hairpins that intermolecularly self-assemble. Rheology shows that the resulting hydrogel is rigid but is shear-thinning. However, quick mechanical strength recovery after cessation of shear is observed due to the inherent self-assembled nature of the scaffold. Characterization of the gelation process, from the molecular level up through the macroscopic properties of the material, suggests ...

Journal ArticleDOI
TL;DR: Catalyst systems based on N,N'-dimethylethylenediamine or trans-N,N'dimethyl-1,2-cyclohexanediamine were found to be the most active even though several other 1, 2-diamine ligands could be used in the easiest cases.
Abstract: An experimentally simple and inexpensive catalyst system was developed for the amidation of aryl halides by using 0.2−10 mol % of CuI, 5−20 mol % of a 1,2-diamine ligand, and K3PO4, K2CO3, or Cs2CO3 as base. Catalyst systems based on N,N‘-dimethylethylenediamine or trans-N,N‘-dimethyl-1,2-cyclohexanediamine were found to be the most active even though several other 1,2-diamine ligands could be used in the easiest cases. Aryl iodides, bromides, and in some cases even aryl chlorides can be efficiently amidated. A variety of functional groups are tolerated in the reaction, including many that are not compatible with Pd-catalyzed amidation or amination methodology.

Journal ArticleDOI
TL;DR: A new route involving the intermediacy of TPrA cation radicals (TPrA(*+)) in the generation of Ru(bpy)(3)(2+) was established, based on results of scanning electrochemical microscopy (SECM)-electrogenerated chemiluminescence (ECL) experiments, as well as cyclic voltammetry simulations.
Abstract: The reaction occurring on electrooxidation of Ru(bpy)32+ (bpy = 2,2‘-bipyridine) and tri-n-propylamine (TPrA) leads to the production of Ru(bpy)32+* and light emission. The accepted mechanism of this widely used reaction involves the reaction of Ru(bpy)33+ and a reduced species derived from the free radical of the TPrA. However, this mechanism does not account for many of the observed features of this reaction. A new route involving the intermediacy of TPrA cation radicals (TPrA•+) in the generation of Ru(bpy)32+* was established, based on results of scanning electrochemical microscopy (SECM)-electrogenerated chemiluminescence (ECL) experiments, as well as cyclic voltammetry simulations. A half-life of ∼0.2 ms was estimated for TPrA•+ in neutral aqueous solution. Direct evidence for TPrA•+ in this medium was obtained via flow cell electron spin resonance (ESR) experiments at ∼20 °C. The ESR spectra of the TPrA•+ species consisted of a relatively intense and sharp septet with a splitting of ∼20 G and a g v...

Journal ArticleDOI
TL;DR: This work reports a new nonwrapping approach to noncovalent engineering of carbon nanotube surfaces by short, rigid functional conjugated polymers, poly(aryleneethynylene)s, which represents the first example of solubilization ofcarbon nanotubes via pi-stacking without polymer wrapping.
Abstract: We report a new nonwrapping approach to noncovalent engineering of carbon nanotube surfaces by short, rigid functional conjugated polymers, poly(aryleneethynylene)s. Our technique not only enables the dissolution of various types of carbon nanotubes in organic solvents, which represents the first example of solubilization of carbon nanotubes via π-stacking without polymer wrapping, but could also introduce numerous neutral and ionic functional groups onto the carbon nanotube surfaces.

Journal ArticleDOI
TL;DR: This material is the first experimental design of a heterometallic chain with ST = 3 magnetic units showing a "single-chain magnet" behavior predicted in 1963 by R. J. Glauber for an Ising one-dimensional system.
Abstract: We herein present the synthesis, crystal structure, and magnetic properties of a new heterometallic chain of MnIII and NiII ions, [Mn2(saltmen)2Ni(pao)2(py)2](ClO4)2 (1) (saltmen2- = N,N'-(1,1,2,2-tetramethylethylene) bis(salicylideneiminate) and pao- = pyridine-2-aldoximate). The crystal structure of 1 was investigated by X-ray crystallographic analysis: compound 1 crystallized in monoclinic, space group C2/c (No. 15) with a = 21.140(3) A, b = 15.975(1) A, c = 18.6212(4) A, beta = 98.0586(4) degrees , V = 6226.5(7) A3, and Z = 4. This compound consists of two fragments, the out-of-plane dimer [Mn2(saltmen)2]2+ as a coordination acceptor building block and the neutral mononuclear unit [Ni(pao)2(py)2] as a coordination donor building block, forming an alternating chain having the repeating unit [-Mn-(O)2-Mn-ON-Ni-NO-]n. In the crystal structure, each chain is well separated with a minimum intermetallic distance between Mn and Ni ions of 10.39 A and with the absence of interchain pi overlaps between organic ligands. These features ensure a good magnetic isolation of the chains. The dc and ac magnetic measurements were performed on both the polycrystalline sample and the aligned single crystals of 1. Above 30 K, the magnetic susceptibility of this one-dimensional compound was successfully described in a mean field approximation as an assembly of trimers (Mn...Ni...Mn) with a NiII...MnIII antiferromagnetic interaction (J = -21 K) connected through a ferromagnetic MnIII...MnIII interaction (J'). However, the mean field theory fails to describe the magnetic behavior below 30 K emphasizing the one-dimensional magnetic character of the title compound. Between 5 and 15 K, the susceptibility in the chain direction was fitted to a one-dimensional Ising model leading to the same value of J'. Hysteresis loops are observed below 3.5 K, indicating a magnet-type behavior. In the same range of temperature, combined ac and dc measurements show a slow relaxation of the magnetization. This result indicates the presence of a metastable state without magnetic long-range order. This material is the first experimental design of a heterometallic chain with ST = 3 magnetic units showing a "single-chain magnet" behavior predicted in 1963 by R. J. Glauber for an Ising one-dimensional system. This work opens new perspectives for one-dimensional systems to obtain high temperature metastable magnets by combining high spin magnetic units, strong interunit interactions, and uniaxial anisotropy.

Journal ArticleDOI
TL;DR: The selection of a new orthogonal aminoacyl tRNA synthetase/tRNA pair for the in vivo incorporation of a photocrosslinker, p-azido-l-phenylalanine, into proteins in response to the amber codon, TAG, is reported.
Abstract: We report the selection of a new orthogonal aminoacyl tRNA synthetase/tRNA pair for the in vivo incorporation of a photocrosslinker, p-azido-l-phenylalanine, into proteins in response to the amber codon, TAG. The amino acid is incorporated in good yield with high fidelity and can be used to crosslink interacting proteins.

Journal ArticleDOI
TL;DR: The new concept of supported ionic liquid catalysis involves the surface of a support material that is modified with a monolayer of covalently attached ionicLiquid fragments that serves as the reaction phase in which a homogeneous hydroformylation catalyst was dissolved.
Abstract: The new concept of supported ionic liquid catalysis involves the surface of a support material that is modified with a monolayer of covalently attached ionic liquid fragments. Treatment of this surface with additional ionic liquid results in the formation of a multiple layer of free ionic liquid on the support. These layers serve as the reaction phase in which a homogeneous hydroformylation catalyst was dissolved. Supported ionic liquid catalysis combines the advantages of ionic liquid media with solid support materials which enables the application of fixed-bed technology and the usage of significantly reduced amounts of the ionic liquid. The concept of supported ionic liquid catalysis has successfully been used for hydroformylation reactions and can be further expanded into other areas of catalysis.

Journal ArticleDOI
TL;DR: Ir(0) nanoparticles with a mean diameter of 2 nm have been prepared by reduction of Ir(I) dissolved in the ionic liquid with H2 so that this catalytic solution can be reused several times for the biphasic hydrogenation of olefins under mild reaction conditions.
Abstract: 1-n-Butyl-3-methylimidazolium hexafluorophosphate room-temperature ionic liquid is not only suitable as a medium for the preparation and stabilization of iridium nanoparticles but also ideal for the generation of recyclable biphasic catalytic systems for hydrogenation reactions. Thus, Ir(0) nanoparticles with a mean diameter of 2 nm have been prepared by reduction of Ir(I) dissolved in the ionic liquid with H2. This catalytic solution can be reused several times for the biphasic hydrogenation of olefins under mild reaction conditions.