scispace - formally typeset
Search or ask a question

Showing papers in "Journal of the American Chemical Society in 2013"


Journal ArticleDOI
TL;DR: New strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively.
Abstract: Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid–solution range. The solid–solution range, which is...

6,950 citations


Journal ArticleDOI
TL;DR: In this paper, the authors report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts for water oxidation.
Abstract: Objective evaluation of the activity of electrocatalysts for water oxidation is of fundamental importance for the development of promising energy conversion technologies including integrated solar water-splitting devices, water electrolyzers, and Li-air batteries. However, current methods employed to evaluate oxygen-evolving catalysts are not standardized, making it difficult to compare the activity and stability of these materials. We report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts. In particular, we focus on methods for determining electrochemically active surface area and measuring electrocatalytic activity and stability under conditions relevant to an integrated solar water-splitting device. Our primary figure of merit is the overpotential required to achieve a current density of 10 mA cm–2 per geometric area, approximately the current density expected for a 10% efficient solar-to-fuels conversion device. Utilizing ...

4,808 citations


Journal ArticleDOI
TL;DR: Structural characterization and electrochemical studies confirmed that the nanosheets of the metallic MoS2 polymorph exhibit facile electrode kinetics and low-loss electrical transport and possess a proliferated density of catalytic active sites, which make these metallic nanOSheets a highly competitive earth-abundant HER catalyst.
Abstract: Promising catalytic activity from molybdenum disulfide (MoS2) in the hydrogen evolution reaction (HER) is attributed to active sites located along the edges of its two-dimensional layered crystal structure, but its performance is currently limited by the density and reactivity of active sites, poor electrical transport, and inefficient electrical contact to the catalyst. Here we report dramatically enhanced HER catalysis (an electrocatalytic current density of 10 mA/cm2 at a low overpotential of −187 mV vs RHE and a Tafel slope of 43 mV/decade) from metallic nanosheets of 1T-MoS2 chemically exfoliated via lithium intercalation from semiconducting 2H-MoS2 nanostructures grown directly on graphite. Structural characterization and electrochemical studies confirmed that the nanosheets of the metallic MoS2 polymorph exhibit facile electrode kinetics and low-loss electrical transport and possess a proliferated density of catalytic active sites. These distinct and previously unexploited features of 1T-MoS2 make ...

2,899 citations


Journal ArticleDOI
TL;DR: The catalytically active Ni2P nanoparticles had among the highest HER activity of any non-noble metal electrocatalyst reported to date, producing H2(g) with nearly quantitative faradaic yield, while also affording stability in aqueous acidic media.
Abstract: Nanoparticles of nickel phosphide (Ni2P) have been investigated for electrocatalytic activity and stability for the hydrogen evolution reaction (HER) in acidic solutions, under which proton exchange membrane-based electrolysis is operational. The catalytically active Ni2P nanoparticles were hollow and faceted to expose a high density of the Ni2P(001) surface, which has previously been predicted based on theory to be an active HER catalyst. The Ni2P nanoparticles had among the highest HER activity of any non-noble metal electrocatalyst reported to date, producing H2(g) with nearly quantitative faradaic yield, while also affording stability in aqueous acidic media.

2,441 citations


Journal ArticleDOI
TL;DR: The synthesis of ultrathin nickel-iron layered double hydroxide nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs) induced the formation of NiFe-LDH, which exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.
Abstract: Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal–air batteries. Here, we report the synthesis of ultrathin nickel–iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.

2,320 citations


Journal ArticleDOI
TL;DR: This work demonstrates the successfully synergistic regulations of both structural and electronic benefits by controllable disorder engineering and simultaneous oxygen incorporation in MoS2 catalysts, leading to the dramatically enhanced HER activity.
Abstract: Molybdenum disulfide (MoS2) has emerged as a promising electrocatalyst for catalyzing protons to hydrogen via the so-called hydrogen evolution reaction (HER). In order to enhance the HER activity, tremendous effort has been made to engineer MoS2 catalysts with either more active sites or higher conductivity. However, at present, synergistically structural and electronic modulations for HER still remain challenging. In this work, we demonstrate the successfully synergistic regulations of both structural and electronic benefits by controllable disorder engineering and simultaneous oxygen incorporation in MoS2 catalysts, leading to the dramatically enhanced HER activity. The disordered structure can offer abundant unsaturated sulfur atoms as active sites for HER, while the oxygen incorporation can effectively regulate the electronic structure and further improve the intrinsic conductivity. By means of controllable disorder engineering and oxygen incorporation, an optimized catalyst with a moderate degree of ...

2,001 citations


Journal ArticleDOI
TL;DR: Observations suggest that the OER is catalyzed by Ni in Ni-Fe films and that the presence of Fe alters the redox properties of Ni, causing a positive shift in the potential at which Ni(OH)2/NiOOH redox occurs.
Abstract: A detailed investigation has been carried out of the structure and electrochemical activity of electrodeposited Ni-Fe films for the oxygen evolution reaction (OER) in alkaline electrolytes. Ni-Fe films with a bulk and surface composition of 40% Fe exhibit OER activities that are roughly 2 orders of magnitude higher than that of a freshly deposited Ni film and about 3 orders of magnitude higher than that of an Fe film. The freshly deposited Ni film increases in activity by as much as 20-fold during exposure to the electrolyte (KOH); however, all films containing Fe are stable as deposited. The oxidation of Ni(OH)2 to NiOOH in Ni films occurs at potentials below the onset of the OER. Incorporation of Fe into the film increases the potential at which Ni(OH)2/NiOOH redox occurs and decreases the average oxidation state of Ni in NiOOH. The Tafel slope (40 mV dec(-1)) and reaction order in OH(-) (1) for the mixed Ni-Fe films (containing up to 95% Fe) are the same as those for aged Ni films. In situ Raman spectra acquired in 0.1 M KOH at OER potentials show two bands characteristic of NiOOH. The relative intensities of these bands vary with Fe content, indicating a change in the local environment of Ni-O. Similar changes in the relative intensities of the bands and an increase in OER activity are observed when pure Ni films are aged. These observations suggest that the OER is catalyzed by Ni in Ni-Fe films and that the presence of Fe alters the redox properties of Ni, causing a positive shift in the potential at which Ni(OH)2/NiOOH redox occurs, a decrease in the average oxidation state of the Ni sites, and a concurrent increase in the activity of Ni cations for the OER.

1,951 citations


Journal ArticleDOI
TL;DR: Benefiting from the inherent blue light PL with high quantum yields and high stability, good biocompatibility, and nontoxicity, the water-soluble ultrathin g-C(3)N(4) nanosheet is a brand-new but promising candidate for bioimaging application.
Abstract: Two-dimensional nanosheets have attracted tremendous attention because of their promising practical application and theoretical values. The atomic-thick nanosheets are able to not only enhance the intrinsic properties of their bulk counterparts but also give birth to new promising properties. Herein, we highlight an available pathway to prepare the ultrathin graphitic-phase C3N4 (g-C3N4) nanosheets by a “green” liquid exfoliation route from bulk g-C3N4 in water for the first time. The as-obtained ultrathin g-C3N4 nanosheet solution is very stable in both the acidic and alkaline environment and shows pH-dependent photoluminenscence (PL). Compared to the bulk g-C3N4, ultrathin g-C3N4 nanosheets show enhanced intrinsic photoabsorption and photoresponse, which induce their extremely high PL quantum yield up to 19.6%. Thus, benefiting from the inherent blue light PL with high quantum yields and high stability, good biocompatibility, and nontoxicity, the water-soluble ultrathin g-C3N4 nanosheet is a brand-new b...

1,829 citations


Journal ArticleDOI
TL;DR: This work shows a novel mechanism that can fundamentally alter dendrite formation in lithium-ion batteries as well as other metal batteries and transform the surface uniformity of coatings deposited in many general electrodeposition processes.
Abstract: Rechargeable lithium metal batteries are considered the “Holy Grail” of energy storage systems. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) has prevented their practical application over the past 40 years. We show a novel mechanism that can fundamentally alter dendrite formation. At low concentrations, selected cations (such as cesium or rubidium ions) exhibit an effective reduction potential below the standard reduction potential of lithium ions. During lithium deposition, these additive cations form a positively charged electrostatic shield around the initial growth tip of the protuberances without reduction and deposition of the additives. This forces further deposition of lithium to adjacent regions of the anode and eliminates dendrite formation in lithium metal batteries. This strategy may also prevent dendrite growth in lithium-ion batteries as well as other metal batteries and transform the surface uniformity of coating...

1,637 citations


Journal ArticleDOI
TL;DR: New two-dimensional niobium and vanadium carbides have been synthesized by selective etching, at room temperature, of Al from Nb2 AlC and V2AlC, demonstrating good capability to handle high charge-discharge rates.
Abstract: New two-dimensional niobium and vanadium carbides have been synthesized by selective etching, at room temperature, of Al from Nb2AlC and V2AlC, respectively. These new matrials are promising electrode materials for Li-ion batteries, demonstrating good capability to handle high charge–discharge rates. Reversible capacities of 170 and 260 mA·h·g–1 at 1 C, and 110 and 125 mA·h·g–1 at 10 C were obtained for Nb2C and V2C-based electrodes, respectively.

1,444 citations


Journal ArticleDOI
Jianguo Mei1, Ying Diao1, Anthony L. Appleton1, Lei Fang1, Zhenan Bao1 
TL;DR: Some of the major milestones along the way are highlighted to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications.
Abstract: The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm2/(V s). In this perspective, we highlight some of the major milestones along the way to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications.

Journal ArticleDOI
TL;DR: This Perspective provides a brief historical introduction to crystal engineering itself and an assessment of the importance and utility of the supramolecular synthon, which is one of the most important concepts in the practical use and implementation of crystal design.
Abstract: How do molecules aggregate in solution, and how do these aggregates consolidate themselves in crystals? What is the relationship between the structure of a molecule and the structure of the crystal it forms? Why do some molecules adopt more than one crystal structure? Why do some crystal structures contain solvent? How does one design a crystal structure with a specified topology of molecules, or a specified coordination of molecules and/or ions, or with a specified property? What are the relationships between crystal structures and properties for molecular crystals? These are some of the questions that are being addressed today by the crystal engineering community, a group that draws from the larger communities of organic, inorganic, and physical chemists, crystallographers, and solid state scientists. This Perspective provides a brief historical introduction to crystal engineering itself and an assessment of the importance and utility of the supramolecular synthon, which is one of the most important concepts in the practical use and implementation of crystal design. It also provides a look to the future from the viewpoint of the author, and indicates some directions in which this field might be moving.

Journal ArticleDOI
TL;DR: Analyzing carbon cathodes, cycled in Li-O(2) cells between 2 and 4 V, using acid treatment and Fenton's reagent, and combined with differential electrochemical mass spectrometry and FTIR demonstrates the following: Carbon is relatively stable below 3.5 V, but is unstable on charging above 3.
Abstract: Carbon has been used widely as the basis of porous cathodes for nonaqueous Li–O2 cells. However, the stability of carbon and the effect of carbon on electrolyte decomposition in such cells are complex and depend on the hydrophobicity/hydrophilicity of the carbon surface. Analyzing carbon cathodes, cycled in Li–O2 cells between 2 and 4 V, using acid treatment and Fenton’s reagent, and combined with differential electrochemical mass spectrometry and FTIR, demonstrates the following: Carbon is relatively stable below 3.5 V (vs Li/Li+) on discharge or charge, especially so for hydrophobic carbon, but is unstable on charging above 3.5 V (in the presence of Li2O2), oxidatively decomposing to form Li2CO3. Direct chemical reaction with Li2O2 accounts for only a small proportion of the total carbon decomposition on cycling. Carbon promotes electrolyte decomposition during discharge and charge in a Li–O2 cell, giving rise to Li2CO3 and Li carboxylates (DMSO and tetraglyme electrolytes). The Li2CO3 and Li carboxylat...

Journal ArticleDOI
TL;DR: The work demonstrates the great potentials of using monodisperse Au NPs to optimize the available reaction intermediate binding sites for efficient and selective electrocatalytic reduction of CO2 to CO.
Abstract: We report selective electrocatalytic reduction of carbon dioxide to carbon monoxide on gold nanoparticles (NPs) in 0.5 M KHCO3 at 25 °C. Among monodisperse 4, 6, 8, and 10 nm NPs tested, the 8 nm Au NPs show the maximum Faradaic efficiency (FE) (up to 90% at −0.67 V vs reversible hydrogen electrode, RHE). Density functional theory calculations suggest that more edge sites (active for CO evolution) than corner sites (active for the competitive H2 evolution reaction) on the Au NP surface facilitates the stabilization of the reduction intermediates, such as COOH*, and the formation of CO. This mechanism is further supported by the fact that Au NPs embedded in a matrix of butyl-3-methylimidazolium hexafluorophosphate for more efficient COOH* stabilization exhibit even higher reaction activity (3 A/g mass activity) and selectivity (97% FE) at −0.52 V (vs RHE). The work demonstrates the great potentials of using monodisperse Au NPs to optimize the available reaction intermediate binding sites for efficient and ...

Journal ArticleDOI
Hai-Wei Liang1, Wei Wei1, Zhong-Shuai Wu1, Xinliang Feng1, Klaus Müllen1 
TL;DR: The unprecedented performance of these NPM catalysts in ORR was attributed to their well-defined porous structures with a narrow mesopore size distribution, high Brunauer-Emmett-Teller surface area, and homogeneous distribution of abundant metal-Nx active sites.
Abstract: A family of mesoporous nonprecious metal (NPM) catalysts for oxygen reduction reaction (ORR) in acidic media, including cobalt–nitrogen-doped carbon (C–N–Co) and iron–nitrogen-doped carbon (C–N–Fe), was prepared from vitamin B12 (VB12) and the polyaniline-Fe (PANI-Fe) complex, respectively. Silica nanoparticles, ordered mesoporous silica SBA-15, and montmorillonite were used as templates for achieving mesoporous structures. The most active mesoporous catalyst was fabricated from VB12 and silica nanoparticles and exhibited a remarkable ORR activity in acidic medium (half-wave potential of 0.79 V, only ∼58 mV deviation from Pt/C), high selectivity (electron-transfer number >3.95), and excellent electrochemical stability (only 9 mV negative shift of half-wave potential after 10 000 potential cycles). The unprecedented performance of these NPM catalysts in ORR was attributed to their well-defined porous structures with a narrow mesopore size distribution, high Brunauer–Emmett–Teller surface area (up to 572 m2...

Journal ArticleDOI
TL;DR: Using high-resolution neutron power diffraction technique, the first direct structural evidence is found showing that real UiO-66 material contains significant amount of missing-linker defects, an unusual phenomenon for MOFs.
Abstract: UiO-66 is a highly important prototypical zirconium metal–organic framework (MOF) compound because of its excellent stabilities not typically found in common porous MOFs. In its perfect crystal structure, each Zr metal center is fully coordinated by 12 organic linkers to form a highly connected framework. Using high-resolution neutron power diffraction technique, we found the first direct structural evidence showing that real UiO-66 material contains significant amount of missing-linker defects, an unusual phenomenon for MOFs. The concentration of the missing-linker defects is surprisingly high, ∼10% in our sample, effectively reducing the framework connection from 12 to ∼11. We show that by varying the concentration of the acetic acid modulator and the synthesis time, the linker vacancies can be tuned systematically, leading to dramatically enhanced porosity. We obtained samples with pore volumes ranging from 0.44 to 1.0 cm3/g and Brunauer–Emmett–Teller surface areas ranging from 1000 to 1600 m2/g, the l...

Journal ArticleDOI
TL;DR: High solar photocatalytic activity in ultrathin BiOCl nanosheets with almost fully exposed active {001} facets is achieved and some new and deep-seated insights are provided into how the defects in the exposed active facets affect the solar-driven photoc atalytic property are provided.
Abstract: Crystal facet engineering of semiconductors is of growing interest and an important strategy for fine-tuning solar-driven photocatalytic activity. However, the primary factor in the exposed active facets that determines the photocatalytic property is still elusive. Herein, we have experimentally achieved high solar photocatalytic activity in ultrathin BiOCl nanosheets with almost fully exposed active {001} facets and provide some new and deep-seated insights into how the defects in the exposed active facets affect the solar-driven photocatalytic property. As the thickness of the nanosheets reduces to atomic scale, the predominant defects change from isolated defects VBi‴ to triple vacancy associates VBi‴VO••VBi‴, which is unambiguously confirmed by the positron annihilation spectra. By virtue of the synergic advantages of enhanced adsorption capability, effective separation of electron–hole pairs and more reductive photoexcited electrons benefited from the VBi‴VO••VBi‴ vacancy associates, the ultrathin Bi...

Journal ArticleDOI
TL;DR: The results of theoretical investigations of the relative stability of layered and spinel bulk phases of Co oxides, as well as the stability of selected surfaces as a function of applied potential and pH are reported.
Abstract: The presence of layered cobalt oxides has been identified experimentally in Co-based anodes under oxygen-evolving conditions. In this work, we report the results of theoretical investigations of the relative stability of layered and spinel bulk phases of Co oxides, as well as the stability of selected surfaces as a function of applied potential and pH. We then study the oxygen evolution reaction (OER) on these surfaces and obtain activity trends at experimentally relevant electro-chemical conditions. Our calculated volume Pourbaix diagram shows that β-CoOOH is the active phase where the OER occurs in alkaline media. We calculate relative surface stabilities and adsorbate coverages of the most stable low-index surfaces of β-CoOOH: (0001), (0112), and (1014). We find that at low applied potentials, the (1014) surface is the most stable, while the (0112) surface is the more stable at higher potentials. Next, we compare the theoretical overpotentials for all three surfaces and find that the (1014) surface is the most active one as characterized by an overpotential of η = 0.48 V. The high activity of the (1014) surface can be attributed to the observation that the resting state of Co in the active site is Co(3+) during the OER, whereas Co is in the Co(4+) state in the less active surfaces. Lastly, we demonstrate that the overpotential of the (1014) surface can be lowered further by surface substitution of Co by Ni. This finding could explain the experimentally observed enhancement in the OER activity of Ni(y)Co(1-y)O(x) thin films with increasing Ni content. All energetics in this work were obtained from density functional theory using the Hubbard-U correction.

Journal ArticleDOI
TL;DR: A single-layer MoS2 nanosheet exhibits high fluorescence quenching ability and different affinity toward ssDNA versus dsDNA and has been successfully used as a sensing platform for the detection of DNA and small molecules.
Abstract: A single-layer MoS2 nanosheet exhibits high fluorescence quenching ability and different affinity toward ssDNA versus dsDNA. As a proof of concept, the MoS2 nanosheet has been successfully used as a sensing platform for the detection of DNA and small molecules.

Journal ArticleDOI
TL;DR: A β-ketoenamine-linked 2D COF is described that exhibits reversible electrochemical processes of its anthraquinone subunits, excellent chemical stability to a strongly acidic electrolyte, and one of the highest surface areas of the imine- or enamine- linked 2DCOFs.
Abstract: Two-dimensional covalent organic frameworks (2D COFs) are candidate materials for charge storage devices because of their micro- or mesoporosity, high surface area, and ability to predictably organize redox-active groups. The limited chemical and oxidative stability of established COF linkages, such as boroxines and boronate esters, precludes these applications, and no 2D COF has demonstrated reversible redox behavior. Here we describe a β-ketoenamine-linked 2D COF that exhibits reversible electrochemical processes of its anthraquinone subunits, excellent chemical stability to a strongly acidic electrolyte, and one of the highest surface areas of the imine- or enamine-linked 2D COFs. Electrodes modified with the redox-active COF show higher capacitance than those modified with a similar non-redox-active COF, even after 5000 charge–discharge cycles. These findings demonstrate the promise of using 2D COFs for capacitive storage.

Journal ArticleDOI
TL;DR: A two-step solid-state reaction for preparing cobalt molybdenum nitride with a nanoscale morphology has been used to produce a highly active and stable electrocatalyst for the hydrogen evolution reaction (HER) under acidic conditions that achieves an iR-corrected current density.
Abstract: A two-step solid-state reaction for preparing cobalt molybdenum nitride with a nanoscale morphology has been used to produce a highly active and stable electrocatalyst for the hydrogen evolution reaction (HER) under acidic conditions that achieves an iR-corrected current density of 10 mA cm–2 at −0.20 V vs RHE at low catalyst loadings of 0.24 mg/cm2 in rotating disk experiments under a H2 atmosphere. Neutron powder diffraction and pair distribution function (PDF) studies have been used to overcome the insensitivity of X-ray diffraction data to different transition-metal nitride structural polytypes and show that this cobalt molybdenum nitride crystallizes in space group P63/mmc with lattice parameters of a = 2.85176(2) A and c = 10.9862(3) A and a formula of Co0.6Mo1.4N2. This space group results from the four-layered stacking sequence of a mixed close-packed structure with alternating layers of transition metals in octahedral and trigonal prismatic coordination and is a structure type for which HER activ...

Journal ArticleDOI
TL;DR: The methane uptake properties of six of the most promising metal organic framework (MOF) materials are examined, and it is discovered that HKUST-1, a material that is commercially available in gram scale, exhibits a room-temperature volumetric methane uptake that exceeds any value reported to date.
Abstract: We have examined the methane uptake properties of six of the most promising metal organic framework (MOF) materials: PCN-14, UTSA-20, HKUST-1, Ni-MOF-74 (Ni-CPO-27), NU-111, and NU-125. We discovered that HKUST-1, a material that is commercially available in gram scale, exhibits a room-temperature volumetric methane uptake that exceeds any value reported to date. The total uptake is about 230 cc(STP)/cc at 35 bar and 270 cc(STP)/cc at 65 bar, which meets the new volumetric target recently set by the Department of Energy (DOE) if the packing efficiency loss is ignored. We emphasize that MOFs with high surface areas and pore volumes perform better overall. NU-111, for example, reaches ∼75% of both the gravimetric and the volumetric targets. We find that values for gravimetric uptake, pore volume, and inverse density of the MOFs we studied scale essentially linearly with surface area. From this linear dependence, we estimate that a MOF with surface area 7500 m2/g and pore volume 3.2 cc/g could reach the curr...

Journal ArticleDOI
TL;DR: Experimental and theoretical results indicate that the bonded case cannot, while the separated one can, turn the inert CNTs into ORR electrocatalysts, demonstrating the crucial role of the doping microstructure on ORR performance.
Abstract: Two kinds of boron and nitrogen co-doped carbon nanotubes (CNTs) dominated by bonded or separated B and N are intentionally prepared, which present distinct oxygen reduction reaction (ORR) performances. The experimental and theoretical results indicate that the bonded case cannot, while the separated one can, turn the inert CNTs into ORR electrocatalysts. This progress demonstrates the crucial role of the doping microstructure on ORR performance, which is of significance in exploring the advanced C-based metal-free electrocatalysts.

Journal ArticleDOI
TL;DR: Recent efforts in developing strongly coupled inorganic/nanocarbon hybrid materials to improve the electrocatalytic activities and stability of inorganic metal oxides, hydroxides, sulfides, and metal-nitrogen complexes are presented.
Abstract: Electrochemical systems, such as fuel cell and water splitting devices, represent some of the most efficient and environmentally friendly technologies for energy conversion and storage. Electrocatalysts play key roles in the chemical processes but often limit the performance of the entire systems due to insufficient activity, lifetime, or high cost. It has been a long-standing challenge to develop efficient and durable electrocatalysts at low cost. In this Perspective, we present our recent efforts in developing strongly coupled inorganic/nanocarbon hybrid materials to improve the electrocatalytic activities and stability of inorganic metal oxides, hydroxides, sulfides, and metal–nitrogen complexes. The hybrid materials are synthesized by direct nucleation, growth, and anchoring of inorganic nanomaterials on the functional groups of oxidized nanocarbon substrates including graphene and carbon nanotubes. This approach affords strong chemical attachment and electrical coupling between the electrocatalytic n...

Journal ArticleDOI
TL;DR: The catalytic activity of the zirconium terephthalate UiO-66(Zr) can be drastically increased by using a modulation approach, resulting in a more open framework with a large number of open sites and is a highly active catalyst for several Lewis acid catalyzed reactions.
Abstract: The catalytic activity of the zirconium terephthalate UiO-66(Zr) can be drastically increased by using a modulation approach. The combined use of trifluoroacetic acid and HCl during the synthesis results in a highly crystalline material, with partial substitution of terephthalates by trifluoroacetate. Thermal activation of the material leads not only to dehydroxylation of the hexanuclear Zr cluster but also to post-synthetic removal of the trifluoroacetate groups, resulting in a more open framework with a large number of open sites. Consequently, the material is a highly active catalyst for several Lewis acid catalyzed reactions.

Journal ArticleDOI
TL;DR: A series of highly stable MOFs with 3-D nanochannels, namely PCN-224 (no metal, Ni, Co, Fe), have been assembled with six-connected Zr6 cluster and metalloporphyrins by a linker-elimination strategy.
Abstract: A series of highly stable MOFs with 3-D nanochannels, namely PCN-224 (no metal, Ni, Co, Fe), have been assembled with six-connected Zr6 cluster and metalloporphyrins by a linker-elimination strategy. The PCN-224 series not only exhibits the highest BET surface area (2600m2/g) among all the reported porphyrinic MOFs but also remains intact in pH = 0 to pH = 11 aqueous solution. Remarkably, PCN-224(Co) exhibits high catalytic activity for the CO2/propylene oxide coupling reaction and can be used as a recoverable heterogeneous catalyst.

Journal ArticleDOI
TL;DR: This work represents the first mechanistic study of amorphous phases of binary and ternary metal oxides for use as water oxidation catalysts, and provides the foundation for the broad exploration of other mixed-metal oxide combinations.
Abstract: Photochemical metal–organic deposition (PMOD) was used to prepare amorphous metal oxide films containing specific concentrations of iron, cobalt, and nickel to study how metal composition affects heterogeneous electrocatalytic water oxidation. Characterization of the films by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirmed excellent stoichiometric control of each of the 21 complex metal oxide films investigated. In studying the electrochemical oxidation of water catalyzed by the respective films, it was found that small concentrations of iron produced a significant improvement in Tafel slopes and that cobalt or nickel were critical in lowering the voltage at which catalysis commences. The best catalytic parameters of the series were obtained for the film of composition a-Fe20Ni80. An extrapolation of the electrochemical and XPS data indicates the optimal behavior of this binary film to be a manifestation of iron stabilizing nickel in a higher oxidation level. This work ...

Journal ArticleDOI
TL;DR: The preparation and characterization of Ir single atoms supported on FeO (x) (Ir1/FeO(x)) catalysts are reported, the activity of which is 1 order of magnitude higher than its cluster or nanoparticle counterparts and is even higher than those of the most active Au- or Pt-based catalysts.
Abstract: High specific activity and cost effectiveness of single-atom catalysts hold practical value for water gas shift (WGS) reaction toward hydrogen energy. We reported the preparation and characterization of Ir single atoms supported on FeOx (Ir1/FeOx) catalysts, the activity of which is 1 order of magnitude higher than its cluster or nanoparticle counterparts and is even higher than those of the most active Au- or Pt-based catalysts. Extensive studies reveal that the single atoms accounted for ∼70% of the total activity of catalysts containing single atoms, subnano clusters, and nanoparticles, thus serving as the most important active sites. The Ir single atoms seem to greatly enhance the reducibility of the FeOx support and generation of oxygen vacancies, leading to the excellent performance of the Ir1/FeOx single-atom catalyst. The results have broad implications on designing supported metal catalysts with better performance and lower cost.

Journal ArticleDOI
TL;DR: Through the combination of molecular synthesis and crystal engineering, MOFs present an unprecedented opportunity for the rational and precise design of functional materials.
Abstract: Metal–organic frameworks (MOFs), also known as coordination polymers, represent an interesting class of crystalline molecular materials that are synthesized by combining metal-connecting points and bridging ligands. The modular nature of and mild conditions for MOF synthesis have permitted the rational structural design of numerous MOFs and the incorporation of various functionalities via constituent building blocks. The resulting designer MOFs have shown promise for applications in a number of areas, including gas storage/separation, nonlinear optics/ferroelectricity, catalysis, energy conversion/storage, chemical sensing, biomedical imaging, and drug delivery. The structure–property relationships of MOFs can also be readily established by taking advantage of the knowledge of their detailed atomic structures, which enables fine-tuning of their functionalities for desired applications. Through the combination of molecular synthesis and crystal engineering, MOFs thus present an unprecedented opportunity fo...

Journal ArticleDOI
TL;DR: It is shown that introducing smart side-chain engineering to polymer semiconductors can facilitate intermolecular electronic communication and high hole mobility could be achieved even in devices fabricated using the polymers at room temperature.
Abstract: Charge carrier mobility is still the most challenging issue that should be overcome to realize everyday organic electronics in the near future. In this Communication, we show that introducing smart side-chain engineering to polymer semiconductors can facilitate intermolecular electronic communication. Two new polymers, P-29-DPPDBTE and P-29-DPPDTSE, which consist of a highly conductive diketopyrrolopyrrole backbone and an extended branching-position-adjusted side chain, showed unprecedented record high hole mobility of 12 cm2/(V·s). From photophysical and structural studies, we found that moving the branching position of the side chain away from the backbone of these polymers resulted in increased intermolecular interactions with extremely short π–π stacking distances, without compromising solubility of the polymers. As a result, high hole mobility could be achieved even in devices fabricated using the polymers at room temperature.