scispace - formally typeset
Search or ask a question

Showing papers in "Journal of the American Chemical Society in 2020"


Journal ArticleDOI
TL;DR: Insight is provided into the defect mechanism in Co3O4 for OER in a dynamic way by observing the surface dynamic evolution process of defective electrocatalysts and identifying the real active sites during the electrocatalysis process.
Abstract: The exact role of a defect structure on transition metal compounds for electrocatalytic oxygen evolution reaction (OER), which is a very dynamic process, remains unclear. Studying the structure-activity relationship of defective electrocatalysts under operando conditions is crucial for understanding their intrinsic reaction mechanism and dynamic behavior of defect sites. Co3O4 with rich oxygen vacancy (VO) has been reported to efficiently catalyze OER. Herein, we constructed pure spinel Co3O4 and VO-rich Co3O4 as catalyst models to study the defect mechanism and investigate the dynamic behavior of defect sites during the electrocatalytic OER process by various operando characterizations. Operando electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) implied that the VO could facilitate the pre-oxidation of the low-valence Co (Co2+, part of which was induced by the VO to balance the charge) at a relatively lower applied potential. This observation confirmed that the VO could initialize the surface reconstruction of VO-Co3O4 prior to the occurrence of the OER process. The quasi-operando X-ray photoelectron spectroscopy (XPS) and operando X-ray absorption fine structure (XAFS) results further demonstrated the oxygen vacancies were filled with OH• first for VO-Co3O4 and facilitated pre-oxidation of low-valence Co and promoted reconstruction/deprotonation of intermediate Co-OOH•. This work provides insight into the defect mechanism in Co3O4 for OER in a dynamic way by observing the surface dynamic evolution process of defective electrocatalysts and identifying the real active sites during the electrocatalysis process. The current finding would motivate the community to focus more on the dynamic behavior of defect electrocatalysts.

556 citations


Journal ArticleDOI
TL;DR: This work developed and determined carbon nanosheets embedded with nitrogen and phosphorus dual-coordinated iron active sites that were favorable for oxygen intermediate adsorption/desorption, resulting in accelerated reaction kinetics and promising catalytic oxygen reduction activity.
Abstract: Atomically dispersed transition metal active sites have emerged as one of the most important fields of study because they display promising performance in catalysis and have the potential to serve as ideal models for fundamental understanding. However, both the preparation and determination of such active sites remain a challenge. The structural engineering of carbon- and nitrogen-coordinated metal sites (M-N-C, M = Fe, Co, Ni, Mn, Cu, etc.) via employing new heteroatoms, e.g., P and S, remains challenging. In this study, carbon nanosheets embedded with nitrogen and phosphorus dual-coordinated iron active sites (denoted as Fe-N/P-C) were developed and determined using cutting edge techniques. Both experimental and theoretical results suggested that the N and P dual-coordinated iron sites were favorable for oxygen intermediate adsorption/desorption, resulting in accelerated reaction kinetics and promising catalytic oxygen reduction activity. This work not only provides efficient way to prepare well-defined single-atom active sites to boost catalytic performance but also paves the way to identify the dual-coordinated single metal atom sites.

548 citations


Journal ArticleDOI
TL;DR: By means of large-scale density functional theory (DFT) computations, a descriptor-based design principle is reported to explore the large composition space of two-dimensional (2D) bi-atom catalysts (BACs) and identify three homonuclear and 28 heteronuclear BACs which could break the metal-based activity benchmark towards efficient NRR.
Abstract: Developing efficient catalysts for nitrogen fixation is becoming increasingly important but is still challenging due to the lack of robust design criteria for tackling the activity and selectivity problems, especially for electrochemical nitrogen reduction reaction (NRR). Herein, by means of large-scale density functional theory (DFT) computations, we reported a descriptor-based design principle to explore the large composition space of two-dimensional (2D) biatom catalysts (BACs), namely, metal dimers supported on 2D expanded phthalocyanine (M2-Pc or MM'-Pc), toward the NRR at the acid conditions. We sampled both homonuclear (M2-Pc) and heteronuclear (MM'-Pc) BACs and constructed the activity map of BACs by using N2H* adsorption energy as the activity descriptor, which reduces the number of promising catalyst candidates from over 900 to less than 100. This strategy allowed us to readily identify 3 homonuclear and 28 heteronuclear BACs, which could break the metal-based activity benchmark toward the efficient NRR. Particularly, using the free energy difference of H* and N2H* as a selectivity descriptor, we screened out five systems, including Ti2-Pc, V2-Pc, TiV-Pc, VCr-Pc, and VTa-Pc, which exhibit a strong capability of suppressing the competitive hydrogen evolution reaction (HER) with favorable limiting potential of -0.75, -0.39, -0.74, -0.85, and -0.47 V, respectively. This work not only broadens the possibility of discovering more efficient BACs toward N2 fixation but also provides a feasible strategy for rational design of NRR electrocatalysts and helps pave the way to fast screening and design of efficient BACs for the NRR and other electrochemical reactions.

513 citations


Journal ArticleDOI
TL;DR: This work suppresses water reduction and Zn dendrite growth in dilute aqueous electrolyte by adding dimethyl sulfoxide (DMSO) into ZnCl2-H2O, in which DMSO replaces the H2O in Zn2+ solvation sheath due to a higher Gutmann donor number.
Abstract: Aqueous Zn batteries are promising energy storage devices for large-scale energy-storage due to low cost and high energy density. However, their lifespan is limited by the water decomposition and Zn dendrite growth. Here, we suppress water reduction and Zn dendrite growth in dilute aqueous electrolyte by adding dimethyl sulfoxide (DMSO) into ZnCl2-H2O, in which DMSO replaces the H2O in Zn2+ solvation sheath due to a higher Gutmann donor number (29.8) of DMSO than that (18) of H2O. The preferential solvation of DMSO with Zn2+ and strong H2O-DMSO interaction inhibit the decomposition of solvated H2O. In addition, the decomposition of solvated DMSO forms Zn12(SO4)3Cl3(OH)15·5H2O, ZnSO3, and ZnS enriched-solid electrolyte interphase (SEI) preventing Zn dendrite and further suppressing water decomposition. The ZnCl2-H2O-DMSO electrolyte enables Zn anodes in Zn||Ti half-cell to achieve a high average Coulombic efficiency of 99.5% for 400 cycles (400 h), and the Zn||MnO2 full cell with a low capacity ratio of Zn:MnO2 at 2:1 to deliver a high energy density of 212 Wh/kg (based on both cathode and anode) and maitain 95.3% of the capacity over 500 cycles at 8 C.

485 citations


Journal ArticleDOI
TL;DR: Bridging the gap, to some extent, between precise design from theory and practical modulation in experiments, the proposed strategy extends defect engineering to a more sophisticated level for further unlocking the potential of catalytic performance enhancement.
Abstract: Defect engineering is widely applied in transition metal dichalcogenides (TMDs) to achieve electrical, optical, magnetic, and catalytic regulation. Vacancies, regarded as a type of extremely delica...

481 citations


Journal ArticleDOI
TL;DR: Why this photochemical synthetic approach was overlooked for so long is explained and the historical context, scientific reasons, serendipitous observations, and landmark discoveries that were essential for progress in the field are critically discussed.
Abstract: The association of an electron-rich substrate with an electron-accepting molecule can generate a new molecular aggregate in the ground state, called an electron donor–acceptor (EDA) complex. Even w...

455 citations


Journal ArticleDOI
TL;DR: Enhanced nitrate reduction reaction (NO3-RR) performance on Cu50Ni50 alloy catalysts is demonstrated, including a 0.12 V upshift in the half-wave potential and a 6-fold increase in activity compared to pure Cu at 0 V vs. reversible hydrogen electrode (RHE).
Abstract: Electrochemical conversion of nitrate (NO3-) into ammonia (NH3) recycles nitrogen and offers a route to the production of NH3, which is more valuable than dinitrogen gas. However, today's development of NO3- electroreduction remains hindered by the lack of a mechanistic picture of how catalyst structure may be tuned to enhance catalytic activity. Here we demonstrate enhanced NO3- reduction reaction (NO3-RR) performance on Cu50Ni50 alloy catalysts, including a 0.12 V upshift in the half-wave potential and a 6-fold increase in activity compared to those obtained with pure Cu at 0 V vs reversible hydrogen electrode (RHE). Ni alloying enables tuning of the Cu d-band center and modulates the adsorption energies of intermediates such as *NO3-, *NO2, and *NH2. Using density functional theory calculations, we identify a NO3-RR-to-NH3 pathway and offer an adsorption energy-activity relationship for the CuNi alloy system. This correlation between catalyst electronic structure and NO3-RR activity offers a design platform for further development of NO3-RR catalysts.

437 citations


Journal ArticleDOI
TL;DR: It is reported that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate than the Haber-Bosch process, highlighting the potential of nitrate Electroreduction in real-world, low-tem temperature ammonia synthesis.
Abstract: The limitations of the Haber–Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N2 electroreduction is a com...

393 citations


Journal ArticleDOI
TL;DR: This Perspective examines recent discoveries and challenges in the development of novel NIR-II fluorophores and compatible imaging apparatuses and highlights the recent advances in bioimaging, biosensing, and therapy using such a cutting-edge imaging technique.
Abstract: Fluorescence imaging has become a fundamental tool for biomedical applications; nevertheless, its intravital imaging capacity in the conventional wavelength range (400-950 nm) has been restricted by its extremely limited tissue penetration. To tackle this challenge, a novel imaging approach using the fluorescence in the second near-infrared window (NIR-II, 1000-1700 nm) has been developed in the past decade to achieve deep penetration and high-fidelity imaging, and thus significant biomedical applications have begun to emerge. In this Perspective, we first examine recent discoveries and challenges in the development of novel NIR-II fluorophores and compatible imaging apparatuses. Subsequently, the recent advances in bioimaging, biosensing, and therapy using such a cutting-edge imaging technique are highlighted. Finally, based on the achievement in the representative studies, we elucidate the main concerns regarding this imaging technique and give some advice and prospects for the development of NIR-II imaging for future biomedical applications.

392 citations


Journal ArticleDOI
TL;DR: This work re-port CRISPR-Cas12a sensors that are regulated by functional DNA (fDNA) molecules such as aptamers and DNAzymes that are selective for small organic molecule and metal ion detections that are suitable for field tests or point-of-care diagnostics.
Abstract: Beyond its extraordinary genome editing ability, the CRISPR-Cas systems have opened a new era of biosensing applications due to its high base resolution and isothermal signal amplification. However, the reported CRISPR-Cas sensors are largely only used for the detection of nucleic acids with limited application for non-nucleic-acid targets. To realize the full potential of the CRISPR-Cas sensors and broaden their applications for detection and quantitation of non-nucleic-acid targets, we herein report CRISPR-Cas12a sensors that are regulated by functional DNA (fDNA) molecules such as aptamers and DNAzymes that are selective for small organic molecule and metal ion detection. The sensors are based on the Cas12a-dependent reporter system consisting of Cas12a, CRISPR RNA (crRNA), and its single-stranded DNA substrate labeled with a fluorophore and quencher at each end (ssDNA-FQ), and fDNA molecules that can lock a DNA activator for Cas12a-crRNA, preventing the ssDNA cleavage function of Cas12a in the absence of the fDNA targets. The presence of fDNA targets can trigger the unlocking of the DNA activator, which can then activate the cleavage of ssDNA-FQ by Cas12a, resulting in an increase of the fluorescent signal detectable by commercially available portable fluorimeters. Using this method, ATP and Na+ have been detected quantitatively under ambient temperature (25 °C) using a simple and fast detection workflow (two steps and <15 min), making the fDNA-regulated CRISPR system suitable for field tests or point-of-care diagnostics. Since fDNAs can be obtained to recognize a wide range of targets, the methods demonstrated here can expand this powerful CRISPR-Cas sensor system significantly to many other targets and thus provide a new toolbox to significantly expand the CRISPR-Cas system into many areas of bioanalytical and biomedical applications.

347 citations


Journal ArticleDOI
TL;DR: Density functional theory calculations reveal that the substituted single Ir atom not only serves as the active site for OER but also activates the surface reactivity of NiO, which thus leads to the dramatically improved OER performance.
Abstract: Engineering single-atom electrocatalysts with high-loading amount holds great promise in energy conversion and storage application. Herein, we report a facile and economical approach to achieve an unprecedented high loading of single Ir atoms, up to ∼18wt%, on the nickel oxide (NiO) matrix as the electrocatalyst for oxygen evolution reaction (OER). It exhibits an overpotential of 215 mV at 10 mA cm-2 and a remarkable OER current density in alkaline electrolyte, surpassing NiO and IrO2 by 57 times and 46 times at 1.49 V vs RHE, respectively. Systematic characterizations, including X-ray absorption spectroscopy and aberration-corrected Z-contrast imaging, demonstrate that the Ir atoms are atomically dispersed at the outermost surface of NiO and are stabilized by covalent Ir-O bonding, which induces the isolated Ir atoms to form a favorable ∼4+ oxidation state. Density functional theory calculations reveal that the substituted single Ir atom not only serves as the active site for OER but also activates the surface reactivity of NiO, which thus leads to the dramatically improved OER performance. This synthesis method of developing high-loading single-atom catalysts can be extended to other single-atom catalysts and paves the way for industrial applications of single-atom catalysts.

Journal ArticleDOI
TL;DR: This work paves a way to engineer alternative CDT agents with a H2O2 supplying ability for intensive CDT but also provides new insights into the construction of bioinspired materials.
Abstract: The insufficient intracellular H2O2 level in tumor cells is closely associated with the limited efficacy of chemodynamic therapy (CDT). Despite tremendous efforts, engineering CDT agents with a straightforward and secure H2O2 supplying ability remains a great challenge. Inspired by the balance of H2O2 generation and elimination in cancer cells, herein, a nanozyme-based H2O2 homeostasis disruptor is fabricated to elevate the intracellular H2O2 level through facilitating H2O2 production and restraining H2O2 elimination for enhanced CDT. In the formulation, the disruptor with superoxide dismutase-mimicking activity can convert O2•- to H2O2, promoting the production of H2O2. Simultaneously, the suppression of catalase activity and depletion of glutathione by the disruptor weaken the transformation of H2O2 to H2O. Thus, the well-defined system could perturb the H2O2 balance and give rise to the accumulation of H2O2 in cancer cells. The raised H2O2 level would ultimately amplify the Fenton-like reaction-based CDT efficiency. Our work not only paves a way to engineer alternative CDT agents with a H2O2 supplying ability for intensive CDT but also provides new insights into the construction of bioinspired materials.

Journal ArticleDOI
TL;DR: A rationally designed bifunctional molecule, piperazinium iodide (PI), containing both R2NH and R2 NH2+ groups on the same six-membered ring, behaving both as an electron donor and an electron acceptor to react with different surface-terminating ends on perovskite films is reported.
Abstract: Passivating surface and bulk defects of perovskite films has been proven to be an effective way to minimize nonradiative recombination losses in perovskite solar cells (PVSCs). The lattice interference and perturbation of atomic periodicity at the perovskite surfaces often significantly affect the material properties and device efficiencies. By tailoring the terminal groups on the perovskite surface and modifying the surface chemical environment, the defects can be reduced to enhance the photovoltaic performance and stability of derived PVSCs. Here, we report a rationally designed bifunctional molecule, piperazinium iodide (PI), containing both R2NH and R2NH2+ groups on the same six-membered ring, behaving both as an electron donor and an electron acceptor to react with different surface-terminating ends on perovskite films. The resulting perovskite films after defect passivation show released surface residual stress, suppressed nonradiative recombination loss, and more n-type characteristics for sufficient energy transfer. Consequently, charge recombination is significantly suppressed to result in a high open-circuit voltage (VOC) of 1.17 V and a reduced VOC loss of 0.33 V. A very high power conversion efficiency (PCE) of 23.37% (with 22.75% certified) could be achieved, which is the highest value reported for inverted PVSCs. Our work reveals a very effective way of using rationally designed bifunctional molecules to simultaneously enhance the device performance and stability.

Journal ArticleDOI
TL;DR: Electrochemical and in-situ spectroscopic methods are combined to study the mechanism of OER on cobalt oxyhydroxide (CoOOH), an archetypi-cal unary OER catalyst and find the dominating resting state of the catalyst as a Co(IV) species CoO2.
Abstract: The oxygen evolution reaction (OER) is the performance-limiting half reaction of water splitting, which can be used to produce hydrogen fuel using renewable energies. Whereas a number of transition metal oxides and oxyhydroxides have been developed as promising OER catalysts in alkaline medium, the mechanisms of OER on these catalysts are not well understood. Here we combine electrochemical and in situ spectroscopic methods, particularly operando X-ray absorption and Raman spectroscopy, to study the mechanism of OER on cobalt oxyhydroxide (CoOOH), an archetypical unary OER catalyst. We find the dominating resting state of the catalyst as a Co(IV) species CoO2. Through oxygen isotope exchange experiments, we discover a cobalt superoxide species as an active intermediate in the OER. This intermediate is formed concurrently to the oxidation of CoOOH to CoO2. Combing spectroscopic and electrokinetic data, we identify the rate-determining step of the OER as the release of dioxygen from the superoxide intermediate. The work provides important experimental fingerprints and new mechanistic perspectives for OER catalysts.

Journal ArticleDOI
TL;DR: It is demonstrated that the strategic implementation of electron-accepting tricoordinate boron and electron-donating carbazole subunits into polycyclic aromatic hydrocarbons produces a family of attractive full-color luminophores that can emit narrowband and efficient thermally activated delayed fluorescence (TADF).
Abstract: Herein, we demonstrate that the strategic implementation of electron-accepting tricoordinate boron and electron-donating carbazole subunits into polycyclic aromatic hydrocarbons (PAHs) produces a family of attractive full-color luminophores that can emit narrowband and efficient thermally activated delayed fluorescence (TADF). A versatile modular design for these boron- and carbazole-embedded PAHs can facilitate the systematic modulation of their photophysical and optoelectronic properties. Organic light-emitting diodes that utilize these PAHs as TADF emitters demonstrate narrowband electroluminescence from blue to red, achieving high maximum external quantum efficiencies of 29.3%, 31.8%, and 22.0% for blue, green, and red, respectively.

Journal ArticleDOI
TL;DR: An electrocatalyst consisting of single Zn atoms supported on microporous N-doped carbon is designed to enable multielectron transfer for catalyzing ERC to CH4 in 1 M KHCO3 solution, indicating a far superior performance than that of dominant Cu-based catalysts.
Abstract: The development of highly active and durable catalysts for electrochemical reduction of CO2 (ERC) to CH4 in aqueous media is an efficient and environmentally friendly solution to address global pro...

Journal ArticleDOI
TL;DR: The results prove the feasibility of efficient hole transfer and high efficiency for the PSCs with zero ∆EHOMO(D-A), which is greatly valuable for understanding the charge transfer process and achieving high PCE of the P SCs.
Abstract: Achieving efficient charge transfer at small frontier molecular orbital offsets between donor and acceptor is crucial for high performance polymer solar cells (PSCs). Here we synthesize a new wide band gap polymer donor, PTQ11, and a new low band gap acceptor, TPT10, and report a high power conversion efficiency (PCE) PSC (PCE = 16.32%) based on PTQ11-TPT10 with zero HOMO (the highest occupied molecular orbital) offset (ΔEHOMO(D-A)). TPT10 is a derivative of Y6 with monobromine instead of bifluorine substitution, and possesses upshifted lowest unoccupied molecular orbital energy level (ELUMO) of -3.99 eV and EHOMO of -5.52 eV than Y6. PTQ11 is a derivative of low cost polymer donor PTQ10 with methyl substituent on its quinoxaline unit and shows upshifted EHOMO of -5.52 eV, stronger molecular crystallization, and better hole transport capability in comparison with PTQ10. The PSC based on PTQ11-TPT10 shows highly efficient exciton dissociation and hole transfer, so that it demonstrates a high PCE of 16.32% with a higher Voc of 0.88 V, a large Jsc of 24.79 mA cm-2, and a high FF of 74.8%, despite the zero ΔEHOMO(D-A) value between donor PTQ11 and acceptor TPT10. The PCE of 16.32% is one of the highest efficiencies in the PSCs. The results prove the feasibility of efficient hole transfer and high efficiency for the PSCs with zero ΔEHOMO(D-A), which is highly valuable for understanding the charge transfer process and achieving high PCE of PSCs.

Journal ArticleDOI
TL;DR: Theoretical calculations revealed that the introduction of the Cu SAs on the UiO-66-NH2 greatly facilitates the conversion of CO2 to CHO* and CO* intermediates, leading to excellent selectivity toward methanol and ethanol.
Abstract: Photocatalytic reduction of CO2 to value-added fuels is a promising route to reduce global warming and enhance energy supply. However, poor selectivity and low efficiency of catalysts are usually the limiting factor of their applicability. Herein, a photoinduction method was developed to achieve the formation of Cu single atoms on a UiO-66-NH2 support (Cu SAs/UiO-66-NH2) that could significantly boost the photoreduction of CO2 to liquid fuels. Notably, the developed Cu SAs/UiO-66-NH2 achieved the solar-driven conversion of CO2 to methanol and ethanol with an evolution rate of 5.33 and 4.22 μmol h-1 g-1, respectively. These yields were much higher than those of pristine UiO-66-NH2 and Cu nanoparticles/UiO-66-NH2 composites. Theoretical calculations revealed that the introduction of the Cu SAs on the UiO-66-NH2 greatly facilitates the conversion of CO2 to CHO* and CO* intermediates, leading to excellent selectivity toward methanol and ethanol. This study provides new insights for designing high-performance catalyst for photocatalytic reduction of CO2 at the atomic scale.

Journal ArticleDOI
TL;DR: The H-bonding motifs used for constructing porous HOFs are reviewed and some of their applications are highlighted, including gas separation and storage, chiral separation and structure determi-nation, fluorescent sensing, heterogeneous catalysis, biological applications, proton conduction, photoluminescent materials, and membrane-based applications.
Abstract: As a novel class of porous crystalline materials, hydrogen-bonded organic frameworks (HOFs), self-assembled from organic or metal-organic building blocks through intermolecular hydrogen-bonding interactions, have attracted more and more attention. Over the past decade, a number of porous HOFs have been constructed through judicious selection of H-bonding motifs, which are further enforced by other weak intermolecular interactions such as π-π stacking and van der Waals forces and framework interpenetration. Since the H-bonds are weaker than coordinate and covalent bonds used for the construction of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), HOFs have some unique features such as mild synthesis condition, solution processability, easy healing, and regeneration. These features enable HOFs to be a tunable platform for the construction of functional materials. Here, we review the H-bonding motifs used for constructing porous HOFs and highlight some of their applications, including gas separation and storage, chiral separation and structure determination, fluorescent sensing, heterogeneous catalysis, biological applications, proton conduction, photoluminescent materials, and membrane-based applications.

Journal ArticleDOI
TL;DR: It is reported that catalysts with nanocavities can confine carbon intermediates formed in situ, which in turn covers the local catalyst surface and thereby stabilizes Cu+ species, which leads to the marked C2+ selectivity at large conversion rate.
Abstract: Selective and efficient catalytic conversion of carbon dioxide (CO2) into value-added fuels and feedstocks provides an ideal avenue to high-density renewable energy storage. An impediment to enabling deep CO2 reduction to oxygenates and hydrocarbons (e.g., C2+ compounds) is the difficulty of coupling carbon-carbon bonds efficiently. Copper in the +1 oxidation state has been thought to be active for catalyzing C2+ formation, whereas it is prone to being reduced to Cu0 at cathodic potentials. Here we report that catalysts with nanocavities can confine carbon intermediates formed in situ, which in turn covers the local catalyst surface and thereby stabilizes Cu+ species. Experimental measurements on multihollow cuprous oxide catalyst exhibit a C2+ Faradaic efficiency of 75.2 ± 2.7% at a C2+ partial current density of 267 ± 13 mA cm-2 and a large C2+-to-C1 ratio of ∼7.2. Operando Raman spectra, in conjunction with X-ray absorption studies, confirm that Cu+ species in the as-designed catalyst are well retained during CO2 reduction, which leads to the marked C2+ selectivity at a large conversion rate.

Journal ArticleDOI
TL;DR: This work highlights a new type of titanium-based nanostructure with great performance for tumor SDT, PEG-TiO1+x NRs, which can be used as a sono-sensitizer and CDT agent for highly effective tumor ablation under US treatment.
Abstract: Ultrasound (US)-triggered sonodynamic therapy (SDT) that enables noninvasive treatment of large internal tumors has attracted widespread interest. For improvement in the therapeutic responses to SDT, more effective and stable sonosensitizers are still required. Herein, ultrafine titanium monoxide nanorods (TiO1+x NRs) with greatly improved sono-sensitization and Fenton-like catalytic activity were fabricated and used for enhanced SDT. TiO1+x NRs with an ultrafine rodlike structure were successfully prepared and then modified with polyethylene glycol (PEG). Compared to the conventional sonosensitizer, TiO2 nanoparticles, the PEG-TiO1+x NRs resulted in much more efficient US-induced generation of reactive oxygen species (ROS) because of the oxygen-deficient structure of TiO1+x NR, which predominantly serves as the charge trap to limit the recombination of US-triggered electron-hole pairs. Interestingly, PEG-TiO1+x NRs also exhibit horseradish-peroxidase-like nanozyme activity and can produce hydroxyl radicals (•OH) from endogenous H2O2 in the tumor to enable chemodynamic therapy (CDT). Because of their efficient passive retention in tumors post intravenous injection, PEG-TiO1+x NRs can be used as a sonosensitizer and CDT agent for highly effective tumor ablation under US treatment. In addition, no significant long-term toxicity of PEG-TiO1+x NRs was found for the treated mice. This work highlights a new type of titanium-based nanostructure with great performance for tumor SDT.

Journal ArticleDOI
TL;DR: Density functional theory (DFT) calculations reveal that the prominent OER performance arises from the surface electronic exchange-and-transfer activ-ities contributed by atomic Ir incorporation on the intrinsic VO existed NiCo2O4 surface.
Abstract: Simultaneous realization of improved activity, enhanced stability, and reduced cost remains a desirable yet challenging goal in the search of electrocatalysis oxygen evolution reaction (OER) in acid. Herein, we report a novel strategy to prepare iridium single-atoms (Ir-SAs) on ultrathin NiCo2O4 porous nanosheets (Ir-NiCo2O4 NSs) by the co-electrodeposition method. The surface-exposed Ir-SAs couplings with oxygen vacancies (VO) exhibit boosting the catalysts OER activity and stability in acid media. They display superior OER performance with an ultralow overpotential of 240 mV at j = 10 mA cm-2 and long-term stability of 70 h in acid media. The TOFs of 1.13 and 6.70 s-1 at an overpotential of 300 and 370 mV also confirm their remarkable performance. Density functional theory (DFT) calculations reveal that the prominent OER performance arises from the surface electronic exchange-and-transfer activities contributed by atomic Ir incorporation on the intrinsic VO existed NiCo2O4 surface. The atomic Ir sites substantially elevate the electronic activity of surface lower coordinated Co sites nearby VO, which facilitate the surface electronic exchange-and-transfer capabilities. With this trend, the preferred H2O activation and stabilized *O have been reached toward competitively lower overpotential. This is a generalized key for optimally boosting OER performance.

Journal ArticleDOI
TL;DR: Control the local pH by mass transport conditions can tune the HER rate, in turn regulating the CO2RR and HER competition in the general operating potential window for CO2 RR (−0.4 to −1 V vs RHE).
Abstract: Gold is one of the most selective catalysts for the electrochemical reduction of CO2 (CO2RR) to CO. However, the concomitant hydrogen evolution reaction (HER) remains unavoidable under aqueous conditions. In this work, a rotating ring disk electrode (RRDE) setup has been developed to study quantitatively the role of mass transport in the competition between these two reactions on the Au surface in 0.1 M bicarbonate electrolyte. Interestingly, while the faradaic selectivity for CO formation was found to increase with enhanced mass transport (from 67% to 83%), this effect is not due to an enhancement of the CO2RR rate. Remarkably, the inhibition of the competing HER from water reduction with increasing disk rotation rate is responsible for the enhanced CO2RR selectivity. This can be explained by the observation that, on the Au electrode, water reduction improves with more alkaline pH. As a result, the decrease in the local alkalinity near the electrode surface with enhanced mass transport suppresses HER due to the water reduction. Our study shows that controlling the local pH by mass transport conditions can tune the HER rate, in turn regulating the CO2RR and HER competition in the general operating potential window for CO2RR (-0.4 to -1 V vs RHE).

Journal ArticleDOI
TL;DR: The fabrication of ultrathin two-dimensional membranes through Layer-by-Layer assembly of two kinds of ionic covalent organic nanosheets (iCONs) with different pore sizes and opposite charges is reported, providing not only a high-performance H2 separation membrane candidate but also an inspiration for pore engineering of COF or 2D porous polymer membranes.
Abstract: Covalent organic frameworks (COFs) are a promising category of porous materials possessing extensive chemical tunability, high porosity, ordered arrangements at a molecular level, and considerable chemical stability. Despite these advantages, the application of COFs as membrane materials for gas separation is limited by their relatively large pore apertures (typically >0.5 nm), which exceed the sieving requirements for most gases whose kinetic diameters are less than 0.4 nm. Herein, we report the fabrication of ultrathin two-dimensional (2D) membranes through layer-by-layer (LbL) assembly of two kinds of ionic covalent organic nanosheets (iCONs) with different pore sizes and opposite charges. Because of the staggered packing of iCONs with strong electrostatic interactions, the resultant membranes exhibit features of reduced aperture size, optimized stacking pattern, and compact dense structure without sacrificing thickness control, which are suitable for molecular sieving gas separation. One of the hybrid membranes, TpEBr@TpPa-SO3Na with a thickness of 41 nm, shows a H2 permeance of 2566 gas permeation units (GPUs) and a H2/CO2 separation factor of 22.6 at 423 K, surpassing the recent Robeson upper bound along with long-term hydrothermal stability. This strategy provides not only a high-performance H2 separation membrane candidate but also an inspiration for pore engineering of COF or 2D porous polymer membranes.

Journal ArticleDOI
TL;DR: This work has developed a facile strategy to the manipulation of the cobalt spin state over covalent organic frameworks, COF-367-Co, by simply changing the oxidation state of Co centered in the porphyrin to regulate photocatalysis by spin state manipulation in COFs.
Abstract: While catalysis is highly dependent on the electronic structure of the catalyst, the understanding of catalytic performance affected by electron spin regulation remains challenging and rare. Herein, we have developed a facile strategy to the manipulation of the cobalt spin state over covalent organic frameworks (COFs), COF-367-Co, by simply changing the oxidation state of Co centered in the porphyrin. Density functional theory (DFT) calculations together with experimental results confirm that CoII and CoIII are embedded in COF-367 with S = 1/2 and 0 spin ground states, respectively. Remarkably, photocatalytic CO2 reduction results indicate that COF-367-CoIII exhibits favorable activity and significantly enhanced selectivity to HCOOH, accordingly much reduced activity and selectivity to CO and CH4, in sharp contrast to COF-367-CoII. The results highlight that the spin-state transition of cobalt greatly regulates photocatalytic performance. Theoretical calculations further disclose that the presence of CoIII in COF-367-Co is preferable to the formation of HCOOH but detrimental to its further conversion, which clearly accounts for its distinctly different photocatalysis over COF-367-CoII. To the best of our knowledge, this is the first report on regulating photocatalysis by spin state manipulation in COFs.

Journal ArticleDOI
TL;DR: In situ SEIRAS results show the coexistence of COatop and CObridge as the reaction intermediates during CO2 reduction and the selectivity of CO2-to-ethylene conversion is further enhanced in the CV-treated Cu electrode.
Abstract: Understanding the role of the oxidation state of the Cu surface and surface-adsorbed intermediate species in electrochemical CO2 reduction is crucial for the development of selective CO2-to-fuel electrocatalysts. In this study, the electrochemical CO2 reduction mechanism over the Cu catalysts with various oxidation states was studied by using in situ surface-enhanced infrared absorption spectroscopy (SEIRAS), in situ soft X-ray absorption spectroscopy (Cu L-edge), and online gas chromatography measurements. The atop-adsorbed CO (COatop) intermediate is obtained on the electrodeposited Cu surface which primarily has the oxidation state of Cu(I). COatop is further reduced, followed by the formation of C1 product such as CH4. The residual bridge-adsorbed CO (CObridge) is formed on the as-prepared Cu surface with Cu(0) which inhibits hydrocarbon formation. In contrast, the CV-treated Cu electrode prepared by oxidizing the as-prepared Cu surface contains different amounts of Cu(I) and Cu(0) states. The major theme of this work is that in situ SEIRAS results show the coexistence of COatop and CObridge as the reaction intermediates during CO2 reduction and that the selectivity of CO2-to-ethylene conversion is further enhanced in the CV-treated Cu electrode. The Cu catalysts modulated by the electrochemical method exhibit different oxidation states and reaction intermediates as well as electrocatalytic properties.

Journal ArticleDOI
Yu-Juan Ma1, Ji-Xiang Hu1, Song-De Han1, Jie Pan1, Jin-Hua Li1, Guo-Ming Wang1 
TL;DR: This work realized the radicals-actuated on/off SMM behavior via RT light irradiation, providing a new strategy for constructing the light-induced SMMs.
Abstract: Exploitation of room temperature (RT) photochromism and photomagnetism to induce single-molecule magnet (SMM) behavior has potential applications toward optical switches and magnetic memories, and remains a tremendous challenge in the development of new bulk magnets. Herein, a series of chain complexes [Ln3(H-HEDP)3(H2-HEDP)3]·2H3-TPT·H4-HEDP·10H2O (QDU-1; Ln = Dy (QDU-1(Dy)), Gd (QDU-1(Gd)), and Y (QDU-1(Y)); HEDP = hydroxyethylidene diphosphonate; TPT = 2,4,6-tri(4-pyridyl)-1,3,5-triazine) were synthesized by solvothermal reactions. All the compounds exhibited reversible photochromic and photomagnetic behaviors via UV light irradiation at RT, induced by the photogenerated radicals via a photoinduced electron transfer (PET) mechanism. More importantly, the PET process induced significant variations in magnetic interactions for the Dy(III) congener. Strong ferromagnetic coupling with remarkably slow magnetic relaxation without applied dc fields was observed between DyIII ions and photogenerated O• radicals, showing SMM behavior after RT illumination. For the first time, we observed the reversible RT photochromism and photomagnetism in the lanthanide-based materials. This work realized the radicals-actuated on/off SMM behavior via RT light irradiation, providing a new strategy for constructing the light-induced SMMs.

Journal ArticleDOI
TL;DR: It is demonstrated that TPZ/UCSs represent a promising system to achieve improved cancer treatment in vitro and in vivo via the combination of NIR light-induced PDT and hypoxia-activated chemotherapy with immunotherapy to combat the current limitations of tumor treatment.
Abstract: Metal-organic frameworks (MOFs) have shown great potential as nanophotosensitizers (nPSs) for photodynamic therapy (PDT). The use of such MOFs in PDT, however, is limited by the shallow depth of tissue penetration of short-wavelength light and the oxygen-dependent mechanism that renders it inadequate for hypoxic tumors. Here, to combat such limitations, we rationally designed core-shell upconversion nanoparticle@porphyrinic MOFs (UCSs) for combinational therapy against hypoxic tumors. The UCSs were synthesized in high yield through the conditional surface engineering of UCNPs and subsequent seed-mediated growth strategy. The heterostructure allows efficient energy transfer from the UCNP core to the MOF shell, which enables the near-infrared (NIR) light-triggered production of cytotoxic reactive oxygen species. A hypoxia-activated prodrug tirapazamine (TPZ) was encapsulated in nanopores of the MOF shell of the heterostructures to yield the final construct TPZ/UCSs. We demonstrated that TPZ/UCSs represent a promising system for achieving improved cancer treatment in vitro and in vivo via the combination of NIR light-induced PDT and hypoxia-activated chemotherapy. Furthermore, the integration of the nanoplatform with antiprogrammed death-ligand 1 (α-PD-L1) treatment promotes the abscopal effect to completely inhibit the growth of untreated distant tumors by generating specific tumor infiltration of cytotoxic T cells. Collectively, this work highlights a robust nanoplatform for combining NIR light-triggered PDT and hypoxia-activated chemotherapy with immunotherapy to combat the current limitations of tumor treatment.

Journal ArticleDOI
TL;DR: After in situ growth of β-ketoenamine linked COFs onto NH2-Ti3C2Tx (Tx = -O and -OH) MXene via covalent connection, the hetero-hybrid showed an obvious improvement in photocatalytic H2 evolution because of strong covalENT coupling, electrical conductivity and efficient charge transfer.
Abstract: Covalent organic frameworks (COFs) are excellent platforms with tailored functionalities in photocatalysis. There are still challenges in increasing the photochemical performance of COFs. Therefore...

Journal ArticleDOI
TL;DR: This work demonstrates that the rational design of coordination spheres in MOF structures not only reconciles the contradiction between reactivity and stability but also greatly promotes the interfacial charge transfer to achieve optimized kinetics, providing guidance for the design of highly efficient MOF photocatalysts.
Abstract: The recombination of electron-hole pairs severely detracts from the efficiency of photocatalysts. This issue could be addressed in metal-organic frameworks (MOFs) through optimization of the charge-transfer kinetics via rational design of structures at atomic level. Herein, a pyrazolyl porphyrinic Ni-MOF (PCN-601), integrating light harvesters, active catalytic sites, and high surface areas, has been demonstrated as a superior and durable photocatalyst for visible-light-driven overall CO2 reduction with H2O vapor at room temperature. Kinetic studies reveal that the robust coordination spheres of pyrazolyl groups and Ni-oxo clusters endow PCN-601 with proper energy band alignment and ultrafast ligand-to-node electron transfer. Consequently, the CO2-to-CH4 production rate of PCN-601 far exceeds those of the analogous MOFs based on carboxylate porphyrin and the classic Pt/CdS photocatalyst by more than 3- and 20-fold, respectively. The reaction avoids the use of hole scavengers and proceeds in a gaseous phase which can take full advantage of the high gas uptake of MOFs. This work demonstrates that the rational design of coordination spheres in MOF structures not only reconciles the contradiction between reactivity and stability but also greatly promotes the interfacial charge transfer to achieve optimized kinetics, providing guidance for the design of highly efficient MOF photocatalysts.