scispace - formally typeset
Search or ask a question

Showing papers in "Journal of the American Chemical Society in 2021"


Journal ArticleDOI
TL;DR: In this article, the authors used single-atom catalysts (SACs) in acidic oxygen reduction reaction (ORR) and reported the structure-property relationship of catalysts and showed for the first time that molecular level local structure, including first and second coordination spheres (CSs), rather than individual active atoms, synergistically determines the electrocatalytic response.
Abstract: Product selectivity in multielectron electrocatalytic reactions is crucial to energy conversion efficiency and chemical production. However, a present practical drawback is the limited understanding of actual catalytic active sites. Here, using as a prototype single-atom catalysts (SACs) in acidic oxygen reduction reaction (ORR), we report the structure-property relationship of catalysts and show for the first time that molecular-level local structure, including first and second coordination spheres (CSs), rather than individual active atoms, synergistically determines the electrocatalytic response. ORR selectivity on Co-SACs can be tailored from a four-electron to a two-electron pathway by modifying first (N or/and O coordination) and second (C-O-C groups) CSs. Using combined theoretical predictions and experiments, including X-ray absorption fine structure analyses and in situ infrared spectroscopy, we confirm that the unique selectivity change originates from the structure-dependent shift of active sites from the center Co atom to the O-adjacent C atom. We show this optimizes the electronic structure and *OOH adsorption behavior on active sites to give the present "best" activity and selectivity of >95% for acidic H2O2 electrosynthesis.

310 citations


Journal ArticleDOI
TL;DR: In this article, a synthetic route was devised to enable in situ reaction between metallic Sn and I2 in dimethyl sulfoxide (DMSO), a reaction that generated a highly coordinated SnI2·(DMSo)x adduct that is well-dispersed in the precursor solution.
Abstract: Contemporary thin-film photovoltaic (PV) materials contain elements that are scarce (CIGS) or regulated (CdTe and lead-based perovskites), a fact that may limit the widespread impact of these emerging PV technologies. Tin halide perovskites utilize materials less stringently regulated than the lead (Pb) employed in mainstream perovskite solar cells; however, even today's best tin-halide perovskite thin films suffer from limited carrier diffusion length and poor film morphology. We devised a synthetic route to enable in situ reaction between metallic Sn and I2 in dimethyl sulfoxide (DMSO), a reaction that generates a highly coordinated SnI2·(DMSO)x adduct that is well-dispersed in the precursor solution. The adduct directs out-of-plane crystal orientation and achieves a more homogeneous structure in polycrystalline perovskite thin films. This approach improves the electron diffusion length of tin-halide perovskite to 290 ± 20 nm compared to 210 ± 20 nm in reference films. We fabricate tin-halide perovskite solar cells with a power conversion efficiency of 14.6% as certified in an independent lab. This represents a ∼20% increase compared to the previous best-performing certified tin-halide perovskite solar cells. The cells outperform prior earth-abundant and heavy-metal-free inorganic-active-layer-based thin-film solar cells such as those based on amorphous silicon, Cu2ZnSn(S/Se)4 , and Sb2(S/Se)3.

206 citations


Journal ArticleDOI
TL;DR: In this paper, a new class of narrow-bandgap polymer acceptors incorporating a benzotriazole (BTz)-core fused-ring segment, named the PZT series, was developed for all-polymer solar cells.
Abstract: Despite the significant progresses made in all-polymer solar cells (all-PSCs) recently, the relatively low short-circuit current density (Jsc) and large energy loss are still quite difficult to overcome for further development. To address these challenges, we developed a new class of narrow-bandgap polymer acceptors incorporating a benzotriazole (BTz)-core fused-ring segment, named the PZT series. Compared to the commonly used benzothiadiazole (BT)-containing polymer PYT, the less electron-deficient BTz renders PZT derivatives with significantly red-shifted optical absorption and up-shifted energy levels, leading to simultaneously improved Jsc and open-circuit voltage in the resultant all-PSCs. More importantly, a regioregular PZT (PZT-γ) has been developed to achieve higher regiospecificity for avoiding the formation of isomers during polymerization. Benefiting from the more extended absorption, better backbone ordering, and more optimal blend morphology with donor component, PZT-γ-based all-PSCs exhibit a record-high power conversion efficiency of 15.8% with a greatly enhanced Jsc of 24.7 mA/cm2 and a low energy loss of 0.51 eV.

201 citations


Journal ArticleDOI
TL;DR: Y.H.Z. as mentioned in this paper used services offered from the National Computational Infrastructure (NCI) and Phoenix High Performance Computing, which are supported by the Australian Government and the University of Adelaide.
Abstract: This work was financially supported by the Australian Research Council (FL170100154, DP160104866, and DP190103472). Y.H.Z. acknowledges financial support from Zhejiang Provincial Natural Science Foundation of China (LR18B030003), National Natural Science Foundation of China (51701181, 21771161), and the Thousand Talents Program for Distinguished Young Scholars. J.S. was supported by the Chinese CSC Scholarship Program. DFT computations were performed by using services offered from the National Computational Infrastructure (NCI) and Phoenix High Performance Computing, which are supported by the Australian Government and the University of Adelaide. XAS measurements were conducted at the Beijing Synchrotron Radiation Facility (1W1B, BSRF)

200 citations


Journal ArticleDOI
TL;DR: In this article, a novel Fe1-Ni1-N-C catalyst with neighboring Fe and Ni single-atom pairs decorated on nitrogen-doped carbon support has been precisely constructed.
Abstract: Single-atom catalysts (SACs), featuring high atom utilization, have captured widespread interests in diverse applications. However, the single-atom sites in SACs are generally recognized as independent units and the interplay of adjacent sites is largely overlooked. Herein, by the direct pyrolysis of MOFs assembled with Fe and Ni-doped ZnO nanoparticles, a novel Fe1-Ni1-N-C catalyst, with neighboring Fe and Ni single-atom pairs decorated on nitrogen-doped carbon support, has been precisely constructed. Thanks to the synergism of neighboring Fe and Ni single-atom pairs, Fe1-Ni1-N-C presents significantly boosted performances for electrocatalytic reduction of CO2, far surpassing Fe1-N-C and Ni1-N-C with separate Fe or Ni single atoms. Additionally, the Fe1-Ni1-N-C also exhibits superior performance with excellent CO selectivity and durability in Zn-CO2 battery. Theoretical simulations reveal that, in Fe1-Ni1-N-C, single Fe atoms can be highly activated by adjacent single-atom Ni via non-bonding interaction, significantly facilitating the formation of COOH* intermediate and thereby accelerating the overall CO2 reduction. This work supplies a general strategy to construct single-atom catalysts containing multiple metal species and reveals the vital importance of the communitive effect between adjacent single atoms toward improved catalysis.

191 citations


Journal ArticleDOI
TL;DR: Proton-coupled electron transfer (PCET) reactions are fundamental to energy transformation reactions in natural and artificial systems and are increasingly recognized in areas such as catalysis and as discussed by the authors.
Abstract: Proton-coupled electron transfer (PCET) reactions are fundamental to energy transformation reactions in natural and artificial systems and are increasingly recognized in areas such as catalysis and...

174 citations


Journal ArticleDOI
TL;DR: In this article, isolated cobalt atoms have been successfully decorated onto the surface of W18O49 ultrathin nanowires, which greatly accelerate the charge carrier separability.
Abstract: Isolated cobalt atoms have been successfully decorated onto the surface of W18O49 ultrathin nanowires. The Co-atom-decorated W18O49 nanowires (W18O49@Co) greatly accelerate the charge carrier separ...

156 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used self-luminescent europium metal-organic frameworks (LMOFs) as ECL signal emitters in the ECL immunoassay.
Abstract: The successful use of electrochemiluminescence (ECL) in immunoassay for clinical diagnosis requires development of novel ECL signal probes. Herein, we report lanthanide (Ln) metal-organic frameworks (LMOFs) as ECL signal emitters in the ECL immunoassay. The LMOFs were prepared from precursors containing Eu (III) ions and 5-boronoisophthalic acid (5-bop), which could be utilized to adjust optical properties. Investigations of ECL emission mechanisms revealed that 5-bop was excited with ultraviolet photons to generate a triplet-state, which then triggered Eu (III) ions for red emission. The electron-deficient boric acid decreased the energy-transfer efficiency from the triplet-state of 5-bop to Eu (III) ions; consequently, both were excited with high-efficiency at single excitation. In addition, by progressively tailoring the atomic ratios of Ni/Fe, NiFe composites (Ni/Fe 1:1) were synthesized with more available active sites, enhanced stability, and excellent conductivity. As a result, the self-luminescent europium LMOFs displayed excellent performance characteristics in an ECL immunoassay with a minimum detectable limit of 0.126 pg mL-1, using Cytokeratins21-1 (cyfra21-1) as the target detection model. The probability of false positive/false negative was reduced dramatically by using LMOFs as signal probes. This proposed strategy provides more possibilities for the application of lanthanide metals in analytical chemistry, especially in the detection of other disease markers.

153 citations


Journal ArticleDOI
TL;DR: In this paper, a metal-organic framework composed of 2,3,9,10,16,17,23,24-octahydroxyphthalo-cyaninato)copper(II) (PcCu-(OH)8) ligands and the square-planar CuO4 nodes was proposed as the electrocatalyst for CO2 to C2H4.
Abstract: Conversion from CO2 to C2H4 is important for the development of energy and the environment, but the high energy barrier of hydrogenation of the *CO intermediate and C-C coupling step tend to result in C1 compounds as the main product and thus restrict the generation of C2H4. Here, we report a metal-organic framework (denoted as PcCu-Cu-O), composed of 2,3,9,10,16,17,23,24-octahydroxyphthalo-cyaninato)copper(II) (PcCu-(OH)8) ligands and the square-planar CuO4 nodes, as the electrocatalyst for CO2 to C2H4. Compared with the discrete molecular copper-phthalocyanine (Faradaic efficiency (FE) of C2H4 = 25%), PcCu-Cu-O exhibits much higher performance for electrocatalytic reduction of CO2 to C2H4 with a FE of 50(1)% and a current density of 7.3 mA cm-2 at the potential of -1.2 V vs RHE in 0.1 M KHCO3 solution, representing the best performance reported to date. In-situ infrared spectroscopy and control experiments suggested that the enhanced electrochemical performance may be ascribed to the synergistic effect between the CuPc unit and the CuO4 unit, namely the CO on the CO-producing site (CuO4 site) can efficiently migrate and dimerize with the *CO intermediate adsorbed on the C2H4-producing site (CuPc), giving a lower C-C dimerization energy barrier.

152 citations


Journal ArticleDOI
TL;DR: In this article, a hybrid photocatalyst (CuOX@p-ZnO) with CuOX uniformly dispersed among polycrystalline ZnO was synthesized upon illumination, the catalyst exhibited the ability to reduce CO2 to C2H4 with a 329% selectivity, and the evolution rate was 27 μmol·g-1·h-1 with water as a hole scavenger.
Abstract: To realize the evolution of C2+ hydrocarbons like C2H4 from CO2 reduction in photocatalytic systems remains a great challenge, owing to the gap between the relatively lower efficiency of multielectron transfer in photocatalysis and the sluggish kinetics of C-C coupling Herein, with Cu-doped zeolitic imidazolate framework-8 (ZIF-8) as a precursor, a hybrid photocatalyst (CuOX@p-ZnO) with CuOX uniformly dispersed among polycrystalline ZnO was synthesized Upon illumination, the catalyst exhibited the ability to reduce CO2 to C2H4 with a 329% selectivity, and the evolution rate was 27 μmol·g-1·h-1 with water as a hole scavenger and as high as 223 μmol·g-1·h-1 in the presence of triethylamine as a sacrificial agent, all of which have rarely been achieved in photocatalytic systems The X-ray absorption fine structure spectra coupled with in situ FT-IR studies reveal that, in the original catalyst, Cu mainly existed in the form of CuO, while a unique Cu+ surface layer upon the CuO matrix was formed during the photocatalytic reaction, and this surface Cu+ site is the active site to anchor the in situ generated CO and further perform C-C coupling to form C2H4 The C-C coupling intermediate *OC-COH was experimentally identified by in situ FT-IR studies for the first time during photocatalytic CO2 reduction Moreover, theoretical calculations further showed the critical role of such Cu+ sites in strengthening the binding of *CO and stabilizing the C-C coupling intermediate This work uncovers a new paradigm to achieve the reduction of CO2 to C2+ hydrocarbons in a photocatalytic system

148 citations


Journal ArticleDOI
TL;DR: In this paper, a general and facile strategy for the construction of highloading (>4 wt %) single-atom catalysts with a tunable coordination microenvironment has been developed on the basis of metal-organic frameworks (MOFs).
Abstract: Well-organized photosensitive units and catalytic sites in proximity are crucial for improving charge separation efficiency and boosting photocatalysis. Herein, a general and facile strategy for the construction of high-loading (>4 wt %) single-atom catalysts (SACs) with a tunable coordination microenvironment has been developed on the basis of metal-organic frameworks (MOFs). The neighboring -O/OHx groups from a Zr6-oxo cluster in the MOFs provide lone-pair electrons and charge balance to immobilize the extraneous single metal atoms. The well-accessible and atomically dispersed metal sites possess close proximity to the photosensitive units (i.e., linkers), which greatly accelerates charge transfer and thereby promotes the redox reaction. The coordination environment of the representative single-atom Ni sites significantly modulates the electronic state and the proton activation barrier toward hydrogen production. As a result, the optimized Ni1-S/MOF with a unique Ni(I) microenvironment presents excellent photocatalytic H2 production activity, up to 270 fold of the pristine MOF and far surpassing the other Ni1-X/MOF counterparts. This work unambiguously demonstrates the great advantage of MOFs in the fabrication of high-content SACs with variable microenvironments that are in close proximity to photosensitive linkers, thereby facilitating the electron transfer and promoting photocatalysis.

Journal ArticleDOI
TL;DR: In this article, a two-step approach was developed to fabricate single-atom catalysts with a uniform and well-defined Cu2+-N4 structure that exhibits comparable activity and superior durability in comparison to Pt/C.
Abstract: Atomically dispersed M-N-C (M refers to transition metals) materials represent the most promising catalyst alternatives to the precious metal Pt for the electrochemical reduction of oxygen (ORR), yet the genuine active sites in M-N-C remain elusive. Here, we develop a two-step approach to fabricate Cu-N-C single-atom catalysts with a uniform and well-defined Cu2+-N4 structure that exhibits comparable activity and superior durability in comparison to Pt/C. By combining operando X-ray absorption spectroscopy with theoretical calculations, we unambiguously identify the dynamic evolution of Cu-N4 to Cu-N3 and further to HO-Cu-N2 under ORR working conditions, which concurrently occurs with reduction of Cu2+ to Cu+ and is driven by the applied potential. The increase in the Cu+/Cu2+ ratio with the reduced potential indicates that the low-coordinated Cu+-N3 is the real active site, which is further supported by DFT calculations showing the lower free energy in each elemental step of the ORR on Cu+-N3 than on Cu2+-N4. These findings provide a new understanding of the dynamic electrochemistry on M-N-C catalysts and may guide the design of more efficient low-cost catalysts.

Journal ArticleDOI
TL;DR: AbTACs as discussed by the authors are a new archetype within the PROTAC field to target cell-surface proteins with fully recombinant biological molecules, which can induce the lysosomal degradation of programmed death-ligand 1 by recruitment of the membrane-bound E3 ligase RNF43.
Abstract: Targeted protein degradation has emerged as a new paradigm to manipulate cellular proteostasis. Proteolysis-targeting chimeras (PROTACs) are bifunctional small molecules that recruit an E3 ligase to a target protein of interest, promoting its ubiquitination and subsequent degradation. Here, we report the development of antibody-based PROTACs (AbTACs), fully recombinant bispecific antibodies that recruit membrane-bound E3 ligases for the degradation of cell-surface proteins. We show that an AbTAC can induce the lysosomal degradation of programmed death-ligand 1 by recruitment of the membrane-bound E3 ligase RNF43. AbTACs represent a new archetype within the PROTAC field to target cell-surface proteins with fully recombinant biological molecules.

Journal ArticleDOI
TL;DR: In this paper, two stable copper(I)-based coordination polymer (NNU-32 and NNU-33(S)) catalysts are synthesized and integrated into a CO2 flow cell electrolyzer, which exhibited very high selectivity for electrocatalytic CO2-to-CH4 conversion due to clearly inherent intramolecular cuprophilic interactions.
Abstract: Cu(I)-based catalysts have proven to play an important role in the formation of specific hydrocarbon products from electrochemical carbon dioxide reduction reaction (CO2RR). However, it is difficult to understand the effect of intrinsic cuprophilic interactions inside the Cu(I) catalysts on the electrocatalytic mechanism and performance. Herein, two stable copper(I)-based coordination polymer (NNU-32 and NNU-33(S)) catalysts are synthesized and integrated into a CO2 flow cell electrolyzer, which exhibited very high selectivity for electrocatalytic CO2-to-CH4 conversion due to clearly inherent intramolecular cuprophilic interactions. Substitution of hydroxyl radicals for sulfate radicals during the electrocatalytic process results in an in situ dynamic crystal structure transition from NNU-33(S) to NNU-33(H), which further strengthens the cuprophilic interactions inside the catalyst structure. Consequently, NNU-33(H) with enhanced cuprophilic interactions shows an outstanding product (CH4) selectivity of 82% at -0.9 V (vs reversible hydrogen electrode, j = 391 mA cm-2), which represents the best crystalline catalyst for electrocatalytic CO2-to-CH4 conversion to date. Moreover, the detailed DFT calculations also prove that the cuprophilic interactions can effectively facilitate the electroreduction of CO2 to CH4 by decreasing the Gibbs free energy change of potential determining step (*H2COOH → *OCH2). Significantly, this work first explored the effect of intrinsic cuprophilic interactions of Cu(I)-based catalysts on the electrocatalytic performance of CO2RR and provides an important case study for designing more stable and efficient crystalline catalysts to reduce CO2 to high-value carbon products.

Journal ArticleDOI
TL;DR: In this article, a reagent-free method for direct detection of SARS-CoV-2 was proposed using an analyte-binding antibody displayed on a negatively charged DNA linker that also features a tethered redox probe.
Abstract: The development of new methods for direct viral detection using streamlined and ideally reagent-free assays is a timely and important, but challenging, problem. The challenge of combatting the COVID-19 pandemic has been exacerbated by the lack of rapid and effective methods to identify viral pathogens like SARS-CoV-2 on-demand. Existing gold standard nucleic acid-based approaches require enzymatic amplification to achieve clinically relevant levels of sensitivity and are not typically used outside of a laboratory setting. Here, we report reagent-free viral sensing that directly reads out the presence of viral particles in 5 minutes using only a sensor-modified electrode chip. The approach relies on a class of electrode-tethered sensors bearing an analyte-binding antibody displayed on a negatively charged DNA linker that also features a tethered redox probe. When a positive potential is applied, the sensor is transported to the electrode surface. Using chronoamperometry, the presence of viral particles and proteins can be detected as these species increase the hydrodynamic drag on the sensor. This report is the first virus-detecting assay that uses the kinetic response of a probe/virus complex to analyze the complexation state of the antibody. We demonstrate the performance of this sensing approach as a means to detect, within 5 min, the presence of the SARS-CoV-2 virus and its associated spike protein in test samples and in unprocessed patient saliva.

Journal ArticleDOI
TL;DR: In this article, a large-area, flexible, transparent, and long-lived polyvinyl alcohol (PVA)-based room-temperature phosphorescence (RTP) materials with high flexibility and large area producibility were realized through a hydrogen-bonding and coassembly strategy.
Abstract: Polymer-based room-temperature phosphorescence (RTP) materials with high flexibility and large-area producibility are highly promising for applications in organic electronics. However, achieving such photophysical materials is challenging because of difficulties in populating and stabilizing susceptible triplet excited states at room temperature. Herein large-area, flexible, transparent, and long-lived RTP systems prepared by doping rationally selected organic chromophores in a poly(vinyl alcohol) (PVA) matrix were realized through a hydrogen-bonding and coassembly strategy. In particular, the 3,6-diphenyl-9H-carbazole (DPCz)-doped PVA film shows long-lived phosphorescence emission (up to 2044.86 ms) and a remarkable duration of afterglow (over 20 s) under ambient conditions. Meanwhile, the 7H-dibenzo[c,g]carbazole (DBCz)-doped PVA film exhibits high absolute luminance of 158.4 mcd m2 after the ultraviolet excitation source is removed. The RTP results not only from suppressing the nonradiative decay by abundant hydrogen-bonding interactions in the PVA matrix but also from minimizing the energy gap (ΔEST) between the singlet state and the triplet state through the coassembly effect. On account of the outstanding mechanical properties and the afterglow performance of these RTP materials, they were applied in the fabrication of flexible 3D objects with repeatable folding and curling properties. Importantly, the multichannel afterglow light-emitting diode arrays were established under ambient conditions. The present long-lived phosphorescent systems demonstrate a bright opportunity for the production of large-area, flexible, and transparent emitting materials.

Journal ArticleDOI
TL;DR: In this article, Mg(ClO4)2 is demonstrated to be an effective additive in the poly(ethylene oxide) (PEO)-based composite electrolyte to regulate Li+ ion transport and manipulate the Li metal/electrolyte interfacial performance.
Abstract: The application of flexible, robust, and low-cost solid polymer electrolytes in next-generation all-solid-state lithium metal batteries has been hindered by the low room-temperature ionic conductivity of these electrolytes and the small critical current density of the batteries. Both issues stem from the low mobility of Li+ ions in the polymer and the fast lithium dendrite growth at the Li metal/electrolyte interface. Herein, Mg(ClO4)2 is demonstrated to be an effective additive in the poly(ethylene oxide) (PEO)-based composite electrolyte to regulate Li+ ion transport and manipulate the Li metal/electrolyte interfacial performance. By combining experimental and computational studies, we show that Mg2+ ions are immobile in a PEO host due to coordination with ether oxygen and anions of lithium salts, which enhances the mobility of Li+ ions; more importantly, an in-situ formed Li+-conducting Li2MgCl4/LiF interfacial layer homogenizes the Li+ flux during plating and increases the critical current density up to a record 2 mA cm-2. Each of these factors contributes to the assembly of competitive all-solid-state Li/Li, LiFePO4/Li, and LiNi0.8Mn0.1Co0.1O2/Li cells, demonstrating the importance of surface chemistry and interfacial engineering in the design of all-solid-state Li metal batteries for high-current-density applications.

Journal ArticleDOI
TL;DR: In this article, the synthesis of melanin materials with a special focus beyond polydopamine has been discussed, with a focus beyond the conventional form of synthetic eumelanin, which has dominated the literature on melanin-based materials.
Abstract: Melanin is ubiquitous in living organisms across different biological kingdoms of life, making it an important, natural biomaterial Its presence in nature from microorganisms to higher animals and plants is attributed to the many functions of melanin, including pigmentation, radical scavenging, radiation protection, and thermal regulation Generally, melanin is classified into five types-eumelanin, pheomelanin, neuromelanin, allomelanin, and pyomelanin-based on the various chemical precursors used in their biosynthesis Despite its long history of study, the exact chemical makeup of melanin remains unclear, and it moreover has an inherent diversity and complexity of chemical structure, likely including many functions and properties that remain to be identified Synthetic mimics have begun to play a broader role in unraveling structure and function relationships of natural melanins In the past decade, polydopamine, which has served as the conventional form of synthetic eumelanin, has dominated the literature on melanin-based materials, while the synthetic analogues of other melanins have received far less attention In this perspective, we will discuss the synthesis of melanin materials with a special focus beyond polydopamine We will emphasize efforts to elucidate biosynthetic pathways and structural characterization approaches that can be harnessed to interrogate specific structure-function relationships, including electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy We believe that this timely Perspective will introduce this class of biopolymer to the broader chemistry community, where we hope to stimulate new opportunities in novel, melanin-based poly-functional synthetic materials

Journal ArticleDOI
TL;DR: In this article, two-dimensional polyimide-linked phthalocyanine COFs with a four-connected sql net exhibit AA stacking configurations according to powder X-ray diffraction studies, showing permanent porosity, thermal stability above 300 °C and excellent resistance to a 12 M HCl aqueous solution for 20 days.
Abstract: The rapid development in synthesis methodology and applications for covalent organic frameworks (COFs) has been witnessed in recent years. However, the synthesis of highly stable functional COFs still remains a great challenge. Herein two-dimensional polyimide-linked phthalocyanine COFs (denoted as CoPc-PI-COF-1 and CoPc-PI-COF-2) have been devised and prepared through the solvothermal reaction of the tetraanhydrides of 2,3,9,10,16,17,23,24-octacarboxyphthalocyaninato cobalt(II) with 1,4-phenylenediamine and 4,4'-biphenyldiamine, respectively. The resultant CoPc-PI-COFs with a four-connected sql net exhibit AA stacking configurations according to powder X-ray diffraction studies, showing permanent porosity, thermal stability above 300 °C, and excellent resistance to a 12 M HCl aqueous solution for 20 days. Current-voltage curves reveal the conductivity of CoPc-PI-COF-1 and CoPc-PI-COF-2 with the value of 3.7 × 10-3 and 1.6 × 10-3 S m-1, respectively. Due to the same Co(II) electroactive sites together with similar permanent porosity and CO2 adsorption capacity for CoPc-PI-COFs, the cathodes made up of COFs and carbon black display a similar CO2-to-CO Faradaic efficiency of 87-97% at applied potentials between -0.60 and -0.90 V (vs RHE) in 0.5 M KHCO3 solution. However, in comparison with the CoPc-PI-COF-2&carbon black electrode, the CoPc-PI-COF-1 counterpart provides a larger current density (jCO) of -21.2 mA cm-2 at -0.90 V associated with its higher conductivity. This cathode also has a high turnover number and turnover frequency, amounting to 277 000 and 2.2 s-1 at -0.70 V during 40 h of measurement. The present result clearly discloses the great potential of 2D porous crystalline solids in electrocatalysis.

Journal ArticleDOI
TL;DR: In this paper, the authors report the functionalization of numerous feedstock chemicals via the coupling of unactivated C(sp3)-H bonds with electron-deficient olefins.
Abstract: Utilizing catalytic CuCl2 we report the functionalization of numerous feedstock chemicals via the coupling of unactivated C(sp3)-H bonds with electron-deficient olefins The active cuprate catalyst undergoes Ligand-to-Metal Charge Transfer (LMCT) to enable the generation of a chlorine radical which acts as a powerful hydrogen atom transfer reagent capable of abstracting strong electron-rich C(sp3)-H bonds Of note is that the chlorocuprate catalyst is an exceedingly mild oxidant (05 V vs SCE) and that a proposed protodemetalation mechanism offers a broad scope of electron-deficient olefins, offering high diastereoselectivity in the case of endocyclic alkenes The coupling of chlorine radical generation with Cu reduction through LMCT enables the generation of a highly active HAT reagent in an operationally simple and atom economical protocol

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the approaches for the synthesis of atropisomers by transition-metal-catalyzed asymmetric C-H functionalization reactions and gave an outlook on possible future avenues of research.
Abstract: Transition-metal-catalyzed enantioselective C-H functionalization has become a powerful strategy for the formation of C-C or C-X bonds, enabling the highly asymmetric synthesis of a wide range of enantioenriched compounds. Atropisomers are widely found in natural products and pharmaceutically relevant molecules, and have also found applications as privileged frameworks for chiral ligands and catalysts. Thus, research into asymmetric routes for the synthesis of atropisomers has garnered great interest in recent years. In this regard, transition-metal-catalyzed enantioselective C-H functionalization has emerged as an atom-economic and efficient strategy toward their synthesis. In this Perspective, the approaches for the synthesis of atropisomers by transition-metal-catalyzed asymmetric C-H functionalization reactions are summarized. The main focus here is on asymmetric catalysis via Pd, Rh, and Ir complexes, which have been the most frequently utilized catalysts among reported enantioselective C-H functionalization reactions. Finally, we discuss limitations on available protocols and give an outlook on possible future avenues of research.

Journal ArticleDOI
TL;DR: In this paper, a ternary oxide (Ru-O-Ir)-based catalysts were developed to achieve high anodic oxygen evolution reaction (OER) activity and stability in acidic electrolyte.
Abstract: In hydrogen production, the anodic oxygen evolution reaction (OER) limits the energy conversion efficiency and also impacts stability in proton-exchange membrane water electrolyzers. Widely used Ir-based catalysts suffer from insufficient activity, while more active Ru-based catalysts tend to dissolve under OER conditions. This has been associated with the participation of lattice oxygen (lattice oxygen oxidation mechanism (LOM)), which may lead to the collapse of the crystal structure and accelerate the leaching of active Ru species, leading to low operating stability. Here we develop Sr-Ru-Ir ternary oxide electrocatalysts that achieve high OER activity and stability in acidic electrolyte. The catalysts achieve an overpotential of 190 mV at 10 mA cm-2 and the overpotential remains below 225 mV following 1,500 h of operation. X-ray absorption spectroscopy and 18O isotope-labeled online mass spectroscopy studies reveal that the participation of lattice oxygen during OER was suppressed by interactions in the Ru-O-Ir local structure, offering a picture of how stability was improved. The electronic structure of active Ru sites was modulated by Sr and Ir, optimizing the binding energetics of OER oxo-intermediates.

Journal ArticleDOI
TL;DR: In this article, the authors reported ultrasmall high-entropy alloy (us-HEA) nanoparticles (NPs) with the best-level performance for hydrogen evolution reaction (HER).
Abstract: The development of sufficiently effective catalysts with extremely superior performance for electrocatalytic hydrogen production still remains a formidable challenge, especially in acidic media. Here, we report ultrasmall high-entropy alloy (us-HEA) nanoparticles (NPs) with the best-level performance for hydrogen evolution reaction (HER). The us-HEA (NiCoFePtRh) NPs show an average diameter of 1.68 nm, which is the smallest size in the reported HEAs. The atomic structure, coordinational structure, and electronic structure of the us-HEAs were comprehensively clarified. The us-HEA/C achieves an ultrahigh mass activity of 28.3 A mg-1noble metals at -0.05 V (vs the reversible hydrogen electrode, RHE) for HER in 0.5 M H2SO4 solution, which is 40.4 and 74.5 times higher than those of the commercial Pt/C and Rh/C catalysts, respectively. Moreover, the us-HEA/C demonstrates an ultrahigh turnover frequency of 30.1 s-1 at 50 mV overpotential (41.8 times higher than that of the Pt/C catalyst) and excellent stability with no decay after 10 000 cycles. Operando X-ray absorption spectroscopy and theoretical calculations reveal the actual active sites, tunable electronic structures, and a synergistic effect among five elements, which endow significantly enhanced HER activity. This work not only engineers a general and scalable strategy for synthesizing us-HEA NPs and elucidates the complex structural information and catalytic mechanisms of multielement HEA system in depth, but also highlights HEAs as sufficiently advanced catalysts and accelerates the research of HEAs in energy-related applications.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the trends in HER activity with respect to the binding energies of Ni-based thin film catalysts by incorporating a series of oxophilic transition metal atoms.
Abstract: Developing efficient and inexpensive electrocatalysts for the hydrogen evolution reaction (HER) in alkaline water electrolysis plays a key role for renewable hydrogen energy technology. The slow reaction kinetics of HER in alkaline solutions, however, has hampered advances in high-performance hydrogen production. Herein, we investigated the trends in HER activity with respect to the binding energies of Ni-based thin film catalysts by incorporating a series of oxophilic transition metal atoms. It was found that the doping of oxophilic atoms enables the modulation of binding abilities of hydrogen and hydroxyl ions on the Ni surfaces, leading to the first establishment of a volcano relation between OH-binding energies and alkaline HER activities. In particular, Cr-incorporated Ni catalyst shows optimized OH-binding as well as H-binding energies for facilitating water dissociation and improving HER activity in alkaline media. Further enhancement of catalytic performance was achieved by introducing an array of three-dimensional (3D) Ni nanohelixes (NHs) that provide abundant surface active sites and effective channels for charge transfer and mass transport. The Cr dopants incorporated into the Ni NHs accelerate the dissociative adsorption process of water, resulting in remarkably enhanced catalytic activities in alkaline medium. Our approach can provide a rational design strategy and experimental methodology toward efficient bimetallic electrocatalysts for alkaline HER using earth-abundant elements.

Journal ArticleDOI
TL;DR: In this article, the structural evolution of the near surface region of polycrystalline Cu electrodes under in situ conditions through a combination of grazing incidence X-ray absorption spectroscopy (GIXAS) and Xray diffraction was studied.
Abstract: The electrochemical CO2 reduction reaction (CO2RR) using Cu-based catalysts holds great potential for producing valuable multi-carbon products from renewable energy. However, the chemical and structural state of Cu catalyst surfaces during the CO2RR remains a matter of debate. Here, we show the structural evolution of the near-surface region of polycrystalline Cu electrodes under in situ conditions through a combination of grazing incidence X-ray absorption spectroscopy (GIXAS) and X-ray diffraction (GIXRD). The in situ GIXAS reveals that the surface oxide layer is fully reduced to metallic Cu before the onset potential for CO2RR, and the catalyst maintains the metallic state across the potentials relevant to the CO2RR. We also find a preferential surface reconstruction of the polycrystalline Cu surface toward (100) facets in the presence of CO2. Quantitative analysis of the reconstruction profiles reveals that the degree of reconstruction increases with increasingly negative applied potentials, and it persists when the applied potential returns to more positive values. These findings show that the surface of Cu electrocatalysts is dynamic during the CO2RR, and emphasize the importance of in situ characterization to understand the surface structure and its role in electrocatalysis.

Journal ArticleDOI
TL;DR: In this paper, a trifluoromethylation strategy was introduced to overcome this drawback and to boost the perovskite solar cells' solar to electric power conversion efficiency (PCE).
Abstract: Long-term durability is critically important for the commercialization of perovskite solar cells (PSCs). The ionic character of the perovskite and the hydrophilicity of commonly used additives for the hole-transporting layer (HTL), such as lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) and tert-butylpyridine (tBP), render PSCs prone to moisture attack, compromising their long-term stability. Here we introduce a trifluoromethylation strategy to overcome this drawback and to boost the PSC's solar to electric power conversion efficiency (PCE). We employ 4-(trifluoromethyl)benzylammonium iodide (TFMBAI) as an amphiphilic modifier for interfacial defect mitigation and 4-(trifluoromethyl)pyridine (TFP) as an additive to enhance the HTL's hydrophobicity. Surface treatment of the triple-cation perovskite with TFMBAI largely suppressed the nonradiative charge carrier recombination, boosting the PCE from 20.9% to 23.9% and suppressing hysteresis, while adding TFP to the HTL enhanced the PCS's resistance to moisture while maintaining its high PCE. Taking advantage of the synergistic effects resulting from the combination of both fluoromethylated modifiers, we realize TFMBAI/TFP-based highly efficient PSCs with excellent operational stability and resistance to moisture, retaining over 96% of their initial efficiency after 500 h maximum power point tracking (MPPT) under simulated 1 sun irradiation and 97% of their initial efficiency after 1100 h of exposure under ambient conditions to a relative humidity of 60-70%.

Journal ArticleDOI
TL;DR: In this paper, a bioinspired copper catalyst on a gas diffusion layer that mimics the unique hierarchical structuring of Setaria's hydrophobic leaves was proposed, which can not only trap more CO close to the active copper surface but also effectively resist electrolyte flooding even under high-rate operation.
Abstract: Copper is currently the material with the most promise as catalyst to drive carbon dioxide (CO₂) electroreduction to produce value-added multicarbon (C₂₊) compounds. However, a copper catalyst on a carbon-based gas diffusion layer electrode often has poor stability—especially when performing at high current densities—owing to electrolyte flooding caused by the hydrophobicity decrease of the gas diffusion layer during operation. Here, we report a bioinspired copper catalyst on a gas diffusion layer that mimics the unique hierarchical structuring of Setaria’s hydrophobic leaves. This hierarchical copper structure endows the CO₂ reduction electrode with sufficient hydrophobicity to build a robust gas–liquid–solid triple-phase boundary, which can not only trap more CO₂ close to the active copper surface but also effectively resist electrolyte flooding even under high-rate operation. We consequently achieved a high C₂₊ production rate of 255 ± 5.7 mA cm–² with a 64 ± 1.4% faradaic efficiency, as well as outstanding operational stability at 300 mA cm–² over 45 h in a flow reactor, largely outperforming its wettable copper counterparts.

Journal ArticleDOI
TL;DR: In this paper, two excited-state intramolecular proton transfer (ESIPT) based SF-probes (PPC and EPC) were used for simultaneous two-color fluorescence imaging of lipid droplets (LDs) and the endoplasmic reticulum (ER) under singlewavelength excitation.
Abstract: In living systems, subcellular organelles mutually cooperate and closely contact to form organelle interaction networks. Thus, the simultaneous and discriminative visualization of different organelles is extremely valuable for elucidating their distribution and interplay. However, such meaningful investigations remain a great challenge due to the lack of advanced single fluorescent probes (SF-probes) capable of simultaneous and two-color imaging of two targets. Herein, for the first time, we present two excited-state intramolecular proton transfer (ESIPT) based SF-probes (PPC and EPC) for simultaneous two-color fluorescence imaging of lipid droplets (LDs) and the endoplasmic reticulum (ER) under single-wavelength excitation. Due to the strong electron-donating ability of the side substituents, the fluorescence spectra and colors of these ESIPT probes are highly sensitive to the nuance of water contents between LDs and ER, leading to orange and green fluorescence in LDs and ER, respectively, in the Lambda imaging mode. Using the probe PPC or EPC, the morphology, size, and distribution of LDs and ER have been investigated in live cells and tissues. With the aid of in situ and real-time fluorescence imaging in Lambda mode, we observed the generation of newborn LDs near the ER regions and their close apposition and shared identical fluorescence colors, probably providing a valuable proof for the mainstream hypothesis that LDs originate from the ER. The remarkable imaging performances render these SF-probes as powerful tools to decipher LD-ER related biological processes.

Journal ArticleDOI
TL;DR: In this paper, a semi-immobilized molecular electrocatalyst is designed to tailor the characters of the sulfur redox reactions in working Li-S batteries, where porphyrin active sites are covalently grafted onto conductive and flexible polypyrrole linkers on graphene current collectors.
Abstract: Lithium-sulfur (Li-S) batteries constitute promising next-generation energy storage devices due to the ultrahigh theoretical energy density of 2600 Wh kg-1. However, the multiphase sulfur redox reactions with sophisticated homogeneous and heterogeneous electrochemical processes are sluggish in kinetics, thus requiring targeted and high-efficient electrocatalysts. Herein, a semi-immobilized molecular electrocatalyst is designed to tailor the characters of the sulfur redox reactions in working Li-S batteries. Specifically, porphyrin active sites are covalently grafted onto conductive and flexible polypyrrole linkers on graphene current collectors. The electrocatalyst with the semi-immobilized active sites exhibits homogeneous and heterogeneous functions simultaneously, performing enhanced redox kinetics and a regulated phase transition mode. The efficiency of the semi-immobilizing strategy is further verified in practical Li-S batteries that realize superior rate performances and long lifespan as well as a 343 Wh kg-1 high-energy-density Li-S pouch cell. This contribution not only proposes an efficient semi-immobilizing electrocatalyst design strategy to promote the Li-S battery performances but also inspires electrocatalyst development facing analogous multiphase electrochemical energy processes.

Journal ArticleDOI
TL;DR: In this paper, a plasmonic photocatalytic nitrogen fixation was achieved by using metal-organic framework (MOF) membranes as the ideal assembly of nanoreactors to disperse and confine gold nanoparticles (AuNPs) under ambient conditions.
Abstract: Photocatalytic nitrogen fixation reaction can harvest the solar energy to convert the abundant but inert N2 into NH3. Here, utilizing metal-organic framework (MOF) membranes as the ideal assembly of nanoreactors to disperse and confine gold nanoparticles (AuNPs), we realize the direct plasmonic photocatalytic nitrogen fixation under ambient conditions. Upon visible irradiation, the hot electrons generated on the AuNPs can be directly injected into the N2 molecules adsorbed on Au surfaces. Such N2 molecules can be additionally activated by the strong but evanescently localized surface plasmon resonance field, resulting in a supralinear intensity dependence of the ammonia evolution rate with much higher apparent quantum efficiency and lower apparent activation energy under stronger irradiation. Moreover, the gas-permeable Au@MOF membranes, consisting of numerous interconnected nanoreactors, can ensure the dispersity and stability of AuNPs, further facilitate the mass transfer of N2 molecules and (hydrated) protons, and boost the plasmonic photocatalytic reactions at the designed gas-membrane-solution interface. As a result, an ammonia evolution rate of 18.9 mmol gAu-1 h-1 was achieved under visible light (>400 nm, 100 mW cm-2) with an apparent quantum efficiency of 1.54% at 520 nm.