scispace - formally typeset
Search or ask a question
JournalISSN: 0162-1459

Journal of the American Statistical Association 

American Statistical Association
About: Journal of the American Statistical Association is an academic journal published by American Statistical Association. The journal publishes majorly in the area(s): Estimator & Population. It has an ISSN identifier of 0162-1459. Over the lifetime, 13542 publications have been published receiving 1752282 citations. The journal is also known as: American Statistical Association. Journal.


Papers
More filters
Book ChapterDOI
TL;DR: In this article, the product-limit (PL) estimator was proposed to estimate the proportion of items in the population whose lifetimes would exceed t (in the absence of such losses), without making any assumption about the form of the function P(t).
Abstract: In lifetesting, medical follow-up, and other fields the observation of the time of occurrence of the event of interest (called a death) may be prevented for some of the items of the sample by the previous occurrence of some other event (called a loss). Losses may be either accidental or controlled, the latter resulting from a decision to terminate certain observations. In either case it is usually assumed in this paper that the lifetime (age at death) is independent of the potential loss time; in practice this assumption deserves careful scrutiny. Despite the resulting incompleteness of the data, it is desired to estimate the proportion P(t) of items in the population whose lifetimes would exceed t (in the absence of such losses), without making any assumption about the form of the function P(t). The observation for each item of a suitable initial event, marking the beginning of its lifetime, is presupposed. For random samples of size N the product-limit (PL) estimate can be defined as follows: L...

52,450 citations

Journal ArticleDOI
TL;DR: In this article, the limit distributions of the estimator of p and of the regression t test are derived under the assumption that p = ± 1, where p is a fixed constant and t is a sequence of independent normal random variables.
Abstract: Let n observations Y 1, Y 2, ···, Y n be generated by the model Y t = pY t−1 + e t , where Y 0 is a fixed constant and {e t } t-1 n is a sequence of independent normal random variables with mean 0 and variance σ2. Properties of the regression estimator of p are obtained under the assumption that p = ±1. Representations for the limit distributions of the estimator of p and of the regression t test are derived. The estimator of p and the regression t test furnish methods of testing the hypothesis that p = 1.

23,509 citations

Journal ArticleDOI
TL;DR: In this paper, a procedure for forming hierarchical groups of mutually exclusive subsets, each of which has members that are maximally similar with respect to specified characteristics, is suggested for use in large-scale (n > 100) studies when a precise optimal solution for a specified number of groups is not practical.
Abstract: A procedure for forming hierarchical groups of mutually exclusive subsets, each of which has members that are maximally similar with respect to specified characteristics, is suggested for use in large-scale (n > 100) studies when a precise optimal solution for a specified number of groups is not practical. Given n sets, this procedure permits their reduction to n − 1 mutually exclusive sets by considering the union of all possible n(n − 1)/2 pairs and selecting a union having a maximal value for the functional relation, or objective function, that reflects the criterion chosen by the investigator. By repeating this process until only one group remains, the complete hierarchical structure and a quantitative estimate of the loss associated with each stage in the grouping can be obtained. A general flowchart helpful in computer programming and a numerical example are included.

17,405 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202395
2022190
2021333
2020238
2019164
2018138