scispace - formally typeset
Search or ask a question

Showing papers in "Journal of The Brazilian Society of Mechanical Sciences and Engineering in 2005"


Journal ArticleDOI
TL;DR: In this paper, the behavior of the minimum quantity lubricant (MQL) machining technique in the grinding process has been evaluated using aluminum oxide and superabrasive CBN (cubic boron nitride) wheels.
Abstract: Energy consumption, air pollution and industrial waste have received special attention from public authorities in recent years. The environment has become one of the most important subjects in the context of modern life, for its deterioration impacts the quality of life populations. Driven by pressure from environmental agencies, politicians have drawn up ever stricter laws aimed at protecting the environment and preserving energy resources. All these factors have led industry, research centers and universities to focus their efforts on researching alternative production processes, creating technologies to minimize or avoid the production of environmentally aggressive residues. Up to a few years ago, the main objective of manufacturing plants was to produce goods aimed at satisfying technological and economic aspects. Green, or "dry" machining and Minimum Quantity Lubricant (MQL) machining have caught the attention of researchers and technicians in the area of machining as an alternative to traditional fluids. Thus, this work proposes to explore the MQL concept in the grinding operation. Although its advantages allow one to predict a growing range of applications for MQL, the variables of influence to be considered and the effects on the results of the process have so far been little studied. Grinding involves several input parameters but, to date, little attention has been focused on the form and quantity of cutting fluid applied to the process. The condition and rate of cutting fluid applied directly influences some of the process's output variables. This work, therefore, analyzes the behavior of the MQL technique under different lubrication and cooling conditions, developing an optimized fluid application methodology based on the creation of a special nozzle through which a minimum amount of oil is pulverized in a compressed air stream. The evaluation of the technical performance of MQL in grinding, using aluminum oxide and superabrasive CBN (cubic boron nitride) grinding wheels, consisted of an experimental analysis of the behavior of the tangential cutting force, G ratio, roughness and residual stress. The results presented herein allowed us to evaluate the behavior of the MQL technique in the grinding process, thus contributing toward an environmentally friendly technology.

111 citations


Journal ArticleDOI
TL;DR: In this article, the principles of TMM for predicting the transmission loss (TL) of a muffler are summarized and the method is applied to different muffler configurations and the numerical predictions are compared with the results obtained by means of an experimental set up.
Abstract: Mufflers are widely used for exhaust noise attenuation in vehicles and machinery. Recent advances in modeling procedures for accurate performance prediction have led to the development of modeling methods for practical muffler components in commercial design. Muffler designers need simple and fast modeling tools, especially in the preliminary design evaluation stages. Finite Element and Boundary Element methods are often used to provide valid results in a wide range of frequencies. However, these methods are time-consuming, its use needs highly trained personnel and the commercial software is usually quite expensive. Therefore, plane wave based models such as the transfer matrix method (TMM) can offer fast initial prototype solutions for muffler designers. In this paper, the principles of TMM for predicting the transmission loss (TL) of a muffler are summarized. The method is applied to different muffler configurations and the numerical predictions are compared with the results obtained by means of an experimental set up. Only stationary, non-dissipative mufflers are considered. The limitation of both the experimental method and the plane wave approach are discussed. The predicted results agreed reasonably well with the measured results in the low frequency range where the firing engine frequency and its first few harmonics are the main sources of noise.

58 citations


Journal ArticleDOI
TL;DR: In this paper, the fundamentals of non-boiling heat transfer in two-phase two-component gas-liquid flow in pipes are presented, and the validity and limitations of the numerous heat transfer correlations that have been published in the literature over the past 50 years are discussed.
Abstract: In this tutorial the fundamentals of non-boiling heat transfer in two-phase two-component gas-liquid flow in pipes are presented. The techniques used for the determination of the different gas-liquid flow patterns (flow regimes) in vertical, horizontal, and inclined pipes are reviewed. The validity and limitations of the numerous heat transfer correlations that have been published in the literature over the past 50 years are discussed. The extensive results of the recent developments in the non-boiling two-phase heat transfer in air-water flow in horizontal and inclined pipes conducted at Oklahoma State University's Heat Transfer Laboratory are presented. Practical heat transfer correlations for a variety of gas-liquid flow patterns and pipe inclination angles are recommended.

55 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a system that can be used in humid climates coupling desiccant dehumidification equipment to evaporative coolers, which can provide thermal comfort in places where air humidity is low.
Abstract: Evaporative cooling operates using water and air as working fluids. It consists in water evaporation, through the passage of an air flow, thus decreasing the air temperature. This system has a great potential to provide thermal comfort in places where air humidity is low, being, however, less efficient where air humidity is high. A way to solve this problem is to use dehumidifiers to pre-conditioning the process air. This paper presents a system that can be used in humid climates coupling desiccant dehumidification equipment to evaporative coolers. The paper shows, initially, the main characteristics of the evaporative cooling and of the adsorption dehumidification systems. Later on the coupled systems, in which occurs a dehumidification by adsorption in a counter flow rotary heat exchanger following the evaporate cooling of the air in evaporative coolers, are analyzed. The thermodynamic equations of state are also presented. Following, this paper analyzes some operation parameters such as: reactivation temperature, R/P relationship (reactivation air flow/ process air flow) and the thermodynamic conditions of the entering air flow. The paper shows the conditions for the best operation point, with regard to thermal comfort conditions and to the energy used in the process. In addition this paper presents an application of the system in different climate characteristics of several tropical and equatorial cities.

55 citations


Journal ArticleDOI
TL;DR: In this article, the cold drawing of tubes with fixed plug was simulated by FEM with the commercial software MSC to find the best geometry of die and plug to reduce the drawing force.
Abstract: Numerical simulation of manufacturing processes has become in the last years an important tool to improve these processes reducing lead times and try out, and providing products free of defects and with controlled mechanical properties. Finite Element Method (FEM) is one of the most important methods to simulate metal forming. In tube drawing with fixed plug both the outer diameter and the inner diameter of the tube are properly defined if correct process conditions are chosen for the die angle, drawing speed, lubrication and area reduction per pass. These conditions have great influence on drawing loads and residual stresses present in the product. In this work, the cold drawing of tubes with fixed plug was simulated by FEM with the commercial software MSC.Superform to find the best geometry of die and plug to reduce the drawing force. The numerical analysis supplied results for the reactions of the die and plug and the stresses in the tube, the drawing force and the final dimensions of the product. Those results are compared with results obtained from analytic models, and used tooling design. Experimental tests with a laboratory drawing bench were carried out with three different lubricants and two different lubrication conditions. Keywords: Cold tube drawing, finite element analysis, die design, upper bound solution

52 citations


Journal ArticleDOI
TL;DR: An overview of nonlinear dynamics and chaos concepts useful for the analysis of biomedical system and some characteristics of normal and pathological responses are discussed.
Abstract: Nature is full of nonlinearities, responsible for a great variety of responses in natural systems. Physiological rhythms constitute a central characteristic of life, which is motivating the analysis of dynamical aspects related to natural systems. Natural rhythms could be either periodic or irregular over time and space and, each kind of dynamical behavior may be related to both normal and pathological physiological functioning. This review article presents an overview of nonlinear dynamics and chaos concepts useful for the analysis of biomedical system. After that, it is presented an overview of dynamical aspects related to different biomedical systems. Cardiovascular rhythms, brain rhythms, cellular and molecular rhythms are discussed from a dynamical approach pointing some characteristics of normal and pathological responses.

52 citations


Journal ArticleDOI
TL;DR: In this article, the use of artificial neural networks to predict the flexural resistance and initial stiffness of beam-to-column steel joints using the back propagation supervised learning algorithm was proposed.
Abstract: This paper proposes the use of artificial neural networks to predict the flexural resistance and initial stiffness of beam-to-column steel joints using the back propagation supervised learning algorithm. Three types of steel beam-to-column joints were investigated: welded, endplate and bolted with top, seat and double web angles, respectively. The neural networks results proved to be consistent with experimental and design code reference values.

32 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluated the application of artificial neural networks for pattern recognition of ultrasonic signals using pulse-echo and TOFD (Time of Flight Diffraction) techniques in weld beads.
Abstract: The present work evaluates the application of artificial neural networks for pattern recognition of ultrasonic signals using pulse-echo and TOFD (Time of Flight Diffraction) techniques in weld beads. In this study pattern classifiers are implemented by artificial neural network of backpropagation type using MATLAB®. The ultrasonic signals acquired from pulse-echo and TOFD were introduced, separately, in the artificial neural network with and without preprocessing. The preprocessing was only used to smoothen the signal improving the classification. Four conditions of weld bead were evaluated: lack of fusion (LF), lack of penetration (LP), porosity (PO) and non-defect (ND). The defects were intentionally inserted in a weld bead of AISI 1020 steel plates of 20 mm thickness and were confirmed using radiographic tests. The results obtained show that it is possible to classify ultrasonic signals of weld joints by the pulse-echo and TOFD techniques using artificial neural networks. The results showed a performance superior a 72% of success for test. Although the preprocessing of the signal improved the classification performance of the signals acquired by the TOFD technique considerably, the same didn't happen with the signals acquired by the pulse-echo technique.

30 citations


Journal ArticleDOI
TL;DR: A survey of results found by the author and his team during recent years can be found in this article. But the results are limited to the case when the system is clean and even minimal deposits on the surface change the heat transfer characteristic and shift the boiling curve with each test run.
Abstract: The lecture presents a survey of results found by the author and his team during recent years. An experimental technique for precise and systematic measurements of entire boiling curves under steady-state and transient conditions has been developed. Pool boiling experiments for well wettingfluids and fluids with a larger contact angle (FC-72, isopropanol, water) yield single and reproducible boiling curves if the system is clean. However, even minimal deposits on the surface change the heat transfer characteristic and shift the boiling curve with each test run. The situation is different under transient conditions: heating and cooling transiens yield different curves even on clean surfaces. Measurements with microsensors give an insight in the two-phase dynamics above the heating surface and the temperature field dynamics above and beneath the surface. Microthermocouples (38 µm diameter) enbedded in the heater (distance to the surface 3.6 µm), a micro optical probe (tip diameter ~ 1.5 µm) and a microthermocouple probe (tip diameter ~ 16 µm), both moveable above the heater surface, are used for these studies. In nucleate boiling, very localized and rapid temperature drops are observed indicating high heat fluxes at the bottom of the bubbles. Already before reaching the critical heat flux (CHF), hot spots occur the size of which increases towards the Leidenfrost point. In the entire transition boiling regime wetting events are observed, but no ones in film boiling. In low heat flux nucleate boiling very small vapor superheats exist in the bubbles and strong superheats in the surrounding liquid. This characteristic change continuously with increasing wall superheat: the liquid surrounding the vapor approaches saturation whereas the vapor becomes more and more superheated. In film boiling the bubbles leaving the vapor film can reach superheats of 30 K or more near the surface (e.g. for isopropanol). The optical probes confirm a liquid rich layer near the surface between nucleate boiling and high heat flux transition boiling. The void fraction in the layer increases continuously with the distance to the surface until a maximum value which seems to be linked to the bubble departure diameter. Via the microsensor-data new approaches for heat transfer models on a mechanistic basis are proposed. An interfacial-area-density model enables the prediction of entire boiling curves. Furthermore the concept of a reaction-diffusion model is presented to predict CHF. Here the triggering of CHF is due to an instability of dry spots on the heating surface. Many aspects of the extremely complex mechanisms of boiling are, however, still not sufficiently understood. The problems should be tackled from both the experimental and the theoretical end and both approaches should be closely linked.

28 citations


Journal ArticleDOI
TL;DR: In this article, two-dimensional numerical simulations were made of pure iron solidification in industrial AI 50/60 AFS greensand and mullite molds, using the finite element technique and the ANSYS software program.
Abstract: Many complex phenomena favoring the solidification of metal that occur during the casting process, such as cast metal flow, thermal gradient and heat transfer between the cast metal and the mold. The grain size and mechanical properties of cast metal are defined by both these phenomena, and by the geometrical characteristics and thermo-physical properties of the metal and the mold. Heat loss from the mold to the environment through convection can also affect the mechanical properties of cast metal. In this study reported, two-dimensional numerical simulations were made of pure iron solidification in industrial AI 50/60 AFS greensand and mullite molds, using the finite element technique and the ANSYS software program. For this purpose, the iron’s thermo-physical properties were considered dependent with temperature, while for sand and mullite these properties were considered constant, and the convection phenomenon was also considered on the mold’s external surface. Metallurgical characteristics, such as the attack zone in the feed head and hot top were not taken into account in this study, since they are irrelevant the behavior of heat transfer of the metal to the mold. Owing to the iron’s temperature-dependent thermo-physical properties, this type of problem is of nonlinear characteristic. The results of the heat transfer are shown in 2D, as well as, the thermal flux, the thermal gradient and the convergence curves that control the feasibility of the Newton-Raphson algorithm calculation process. The cooling curves at various points of the solidified specimen, and the heating and cooling curves in the mold were also shown. These results were considered relevant. Keywords :Numerical simulation, finite elements, solidification of iron, sand and mullite mold

27 citations


Journal ArticleDOI
TL;DR: In this paper, an axisymmetric non-premixed piloted jet burner with well-defined initial and boundary conditions, known as the Delft burner, was constructed to assess turbulence-chemistry interaction in nonpremixed turbulent flames.
Abstract: This paper reports the construction of an axisymmetric nonpremixed piloted jet burner, with well-defined initial and boundary conditions, known as the Delft burner, to assess turbulence-chemistry interaction in non-premixed turbulent flames. Detailed experimental information is described, involving hot-wire anemometry, thin-wire thermocouples and chemiluminescence visualization measurements. Radial profile of the axial mean velocity indicates excellent agreement between flow patterns developed within Delft installation and the one described herein. Chemiluminescence emissions from CH and C2 free-radicals were acquired with a CCD camera. Tomography reconstruction analysis was utilised to compare radical emissions and temperature spatial distributions. There was a strong dependence between temperature and CH/C2 emissions. This is an indication that these radicals can be used in flame front studies.

Journal ArticleDOI
TL;DR: In this article, the authors present an approach to calculate the direct and inverse differential kinematics for serial manipulators, which is an extension of the Davies method for open kinematic chains.
Abstract: This paper presents a new approach to calculate the direct and inverse differential kinematics for serial manipulators. The approach is an extension of the Davies method for open kinematic chains based on a virtual kinematic chain concept introduced in this paper. It is a systematic method that unifies the kinematics of serial manipulators considering the type of kinematics and the coordinate system of the operational space and constitutes an alternative way to solve the differential kinematics for manipulators. The usefulness of the method is illustrated by applying it to an industrial robot.

Journal ArticleDOI
TL;DR: In this article, a two-phase flow pattern map for condensing conditions was proposed, which has been partially verified by flow pattern observations, and a new condensation heat transfer model for pure fluids and azeotropic mixtures has been developed including not only flow pattern effects but also interfacial roughness effects.
Abstract: Recent work on improving general thermal design methods for condensation inside plain, horizontal tubes is presented, summarizing primarily the advances proposed at the Laboratory of Heat and Mass Transfer at the EPFL in collaboration with the University of Padova and the University of Pretoria. This work has focused on the development of a unified flow pattern, two-phase flow structure model for describing local heat transfer coefficients for pure fluids, azeotropic mixtures and zeotropic mixtures. Such methods promise to be much more accurate and reliable than the old-style statistically-derived empirical design methods that completely ignore flow regime effects or simply treated flows as stratified (gravity-controlled) or non-stratified (shear-controlled) flows. To achieve these goals, first a new two-phase flow pattern map for condensing conditions was proposed, which has been partially verified by flow pattern observations. Secondly, a new condensation heat transfer model for pure fluids and azeotropic mixtures has been developed including not only flow pattern effects but also interfacial roughness effects. Finally, the widely used Silver-Bell-Ghaly condensation model for miscible vapor mixtures has been improved by including the effects of interfacial flow structure and roughness on vapor phase heat transfer and a new non-equilibrium effect added.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the time evolution of the dynamic and thermal boundary layers, as well as the heat transfer coefficients in a laminar mixed convection regime, where the entry conditions (mass flow rate, temperature) are timedependent.
Abstract: In nature, as well as within the human-made thermal systems, the time-variable regimes are more commonly encountered, if not always, than the permanent regimes. Nevertheless, studies in convection are still more frequent in the permanent regimes, undoubtedly due to the related difficulties in calculation in terms of time and cost of computation. One may distinguish two categories of time-dependent transfers: those which are due to external causes (variable boundary conditions) and those that are due to internal causes (sources of variable power, instabilities, turbulence), and the combination of these two types may also be encountered. In this presentation, we shall analyze some situations which belong to the first category. These are concerned with: - a group of boundary layer flows in forced, natural or mixed convection, where the wall is subjected to time-variable conditions in temperature or flux. - another group of fluid flows within ducts, in laminar mixed convection regime, where the entry conditions (mass flow rate, temperature) are time-dependent. The techniques of analysis are mainly extensions to the differential method and to the integral method of Karman-Polhausen in boundary layer flows, and the finite differences solution of the vorticity and energy equations for internal flows. The results presented in the transient state are caused by steps of temperature, heat flux or velocity, and in particular show the time evolution of the dynamic and thermal boundary layers, as well of the heat transfer coefficients. Three examples of applications will then be treated: the active control of convective transfers, the measurement of heat transfer coefficients, and the analysis of heat exchangers. The main idea in the active control is that of managing the temperatures or heat fluxes by employing a variable regime. Under certain conditions, this procedure may reveal itself quite interesting. The measurement of transfer coefficients by the photothermal impulse method possesses a great interest since it is performed in a non-intrusive way without contact. However, in order to be precise, it needs to account for the thermal boundary layer perturbation due to the radiative flux sent over the surface, which means to know the evolution of the transfer coefficient during the measurement. Previous studies therefore provide essential information. Within the domain of heat exchangers, we shall present a different global method, which allows for the evaluation of the time constant of an equipment in response to sample variations of temperature or mass flow rates at the entrance. In conclusion, a brief balance of the ICHMT Symposium "Transient heat and mass transfer", Cesme, Turkey, August 2003, will be presented.

Journal ArticleDOI
TL;DR: In this article, a detailed analysis of the debris, five different structural phases of silicon in the same debris was performed using electron diffraction pattern and micro-Raman spectroscopy from the chips left in the cutting tool rake face showed different silicon phases.
Abstract: Continuous chips removed by single point diamond turning of single crystal silicon have been investigated by means of Scanning Electron Microscopy/Transmission Electron Microscopy and micro-Raman Spectroscopy. Three different chip structures were probed with the use of electron diffraction pattern: (i) totally amorphous lamellar structure, (ii) amorphous structure with remnant crystalline material and, (iii) partially amorphous together with amorphous with remnant crystalline material. Furthermore, micro-Raman spectroscopy from the chips left in the cutting tool rake face showed different silicon phases. We have found, from a detailed analysis of the debris, five different structural phases of silicon in the same debris. It is proposed that material removal mechanisms may change along the cutting edge from shearing (yielding lamellar structures) to extrusion. Shearing results from structural changes related to phase transformation induced by pressure and shear deformation. Extrusion, yielding crystalline structures in the chips, may be attributed to a pressure drop (due to an increase in the contact area) from the tool tip towards the region of the cutting edge where brittle-to-ductile transition occurs. From this region upwards, pressure(stress) would be insufficient to trigger phase transformation and therefore amorphous phase would not form integrally along the chip width.

Journal ArticleDOI
TL;DR: This work presents procedures for estimating the error of numerical solutions of multi-dimensional problems and found that, for the situation in which the apparent order of the estimated error is a monotone convergent one, two values of estimated error can be calculated, which bound the true error.
Abstract: This work presents procedures for estimating the error of numerical solutions of multi-dimensional problems. It is considered that: the numerical error is caused only by truncation errors; error estimations are based on the Richardson extrapolation; and numerical approximations are one-dimensional over uniform grids in each dimension. Two cases are analyzed: when grids are simultaneously refined in all four dimensions (x,y,z,t); and when grid refinement in each dimension is separate from the remaining ones. Examples of uses are presented for problems involving heat transfer and fluid mechanics, which are solved by the finite difference and finite volume methods. It was found that, for the situation in which the apparent order of the estimated error is a monotone convergent one, two values of estimated error can be calculated, which bound the true error. Keywords : Discretization error, truncation error, CFD, numerical error, fluid flows

Journal ArticleDOI
TL;DR: A comparative study of the bilinear dynamic identification of a helicopter blade aeroelastic response is carried out using artificial neural networks and two neural networks architectures are considered in this study.
Abstract: System identification consists of the development of techniques for model estimation from experimental data, demanding no previous knowledge of the process. Aeroelastic models are directly influence of the benefits of identification techniques, basically because of the difficulties related to the modelling of the coupled aero- and structural dynamics. In this work a comparative study of the bilinear dynamic identification of a helicopter blade aeroelastic response is carried out using artificial neural networks is presented. Two neural networks architectures are considered in this study. Both are variations of static networks prepared to accomodate the system dynamics. A time delay neural networks (TDNN) for response prediction and a typical recurrent neural networks (RNN) are used for the identification. The neural networks have been trained by Levemberg-Marquardt algorithm. To compare the performance of the neural networks models, generalization tests are produced where the aeroelastic responses of the blade in flapping and torsion motions at its tip due to noisy pitching angle are presented. An analysis in frequency of the signals from simulated and the emulated models are presented. In order to perform a qualitative analysis, return maps with the simulation results generated by the neural networks are presented.

Journal ArticleDOI
TL;DR: In this article, a numerical simulator program in time domain was coded using mathematical models of the floating platform dynamics and the external forces (wind, current, wave and thruster) that act on the platform.
Abstract: The purpose of this paper is the study of fuzzy control applied to a Dynamic Positioning System (DPS) of semi-submersible platforms. A numerical simulator program in time domain was coded using mathematical models of the floating platform dynamics and the external forces (wind, current, wave and thruster) that act on the platform. Subsequently, a fuzzy controller applied to DPS was developed. The Fuzzy controller and the Proportional-Integral-Derivative (PID) controller were then subjected to the same environmental conditions in order to compare their performance.

Journal ArticleDOI
TL;DR: In this article, a theoretical experimental study of an auto-adjustable stroke end cushioning device utilized in hydraulic cylinders is presented, focusing on the characterization of the bush geometry effect on the cushioning achieved.
Abstract: This paper describes the theoretical-experimental study of an auto-adjustable stroke end cushioning device utilized in hydraulic cylinders, focusing the characterization of the bush geometry effect on the cushioning achieved. A nonlinear model is presented which includes the physical phenomena that exert a significant influence on the performance of this hydraulic component, such as: friction, fluid compressibility and pressure energy loss in the cushioning section. The model is validated through the comparison between theoretical and experimental results, under different conditions of load, supply pressure and piston speed. From this point it is possible to obtain a model applicable for the design of stroke end cushioning devices in hydraulic cylinders. Consequent contributions related to proportional directional valves modeling are also presented.

Journal ArticleDOI
TL;DR: In this paper, a numerical study on power law shaped leading edges situated in a rarefied hypersonic flow was performed, where the sensitivity of the heat flux and drag coefficient to shape variations of such leading edges was calculated by using a Direct Simulation Monte Carlo method.
Abstract: A numerical study is reported on power law shaped leading edges situated in a rarefied hypersonic flow. The sensitivity of the heat flux and drag coefficient to shape variations of such leading edges is calculated by using a Direct Simulation Monte Carlo method. Calculations show that the stagnation point heating on power law leading edges with finite radius of curvature follows the same relation for classical blunt body in continuum flow; it scales inversely with the square root of the curvature radius at the nose. Furthermore, for those leading edges with zero or infinity radii of curvature, the heat transfer behavior is in surprising agreement with that for classical blunt body far from the nose of the leading edge.

Journal ArticleDOI
TL;DR: In this paper, a vertex centered finite volume method was used to deal with axisymmetric models of heat conduction applications, which was implemented using an edge-based data structure.
Abstract: In this work, a finite volume formulation developed for two-dimensional models is extended to deal with axisymmetric models of heat conduction applications. This formulation uses a vertex centered finite volume method and it was implemented using an edge-based data structure. The time and domain discretization using triangular meshes is described in details, including the treatment of boundary conditions, source terms, and domains with multiple materials. The proposed formulation is validated and proves to be effective and flexible through the solution of simple model problems.

Journal ArticleDOI
TL;DR: In this article, a new phenomenological model is introduced by applying established conceptual models for direct injection combustion to develop a mathematical description of events, which has the capability to predict particulate mass output, as well as a particle mass history over a single combustion event.
Abstract: A new phenomenological model is introduced by applying established conceptual models for direct injection combustion to develop a mathematical description of events. The model has the capability to predict particulate mass output, as well as a particulate mass history over a single combustion event. The model was developed in a Matlab-Simulink environment to promote modularity. Results of particulate mass output from single cylinder laboratory engine, and six-cylinder vehicular engine were used to determine the validity of the predictions made. Although predicted values do not perfectly match measured values, there is certainly reasonable agreement.

Journal ArticleDOI
TL;DR: In this paper, the threshold to burning in surface grinding process was found out, where acoustic emission and electric power signals are acquired from an analog-digital converter and processed through algorithms in order to generate a control signal to inform the operator or interrupt the process in case of burning occurrence.
Abstract: This work aims at finding out the threshold to burning in surface grinding process. Acoustic emission and electric power signals are acquired from an analog-digital converter and processed through algorithms in order to generate a control signal to inform the operator or interrupt the process in the case of burning occurrence. The thresholds that dictate the situation of burn and non-burn were studied as well as a comparison between the two parameters was carried out. In the experimental work one type of steel (ABNT-1045 annealed) and one type of grinding wheel referred to as TARGA model 3TG80.3 - NV were employed.

Journal ArticleDOI
TL;DR: In this paper, an experimental study aiming to identify the means to minimize the reduction of the overall performance of a gasoline engine when employing the Exhaust-Gas Recirculation (EGR) technique that reduces NOx emissions was presented.
Abstract: This paper presents an experimental study aiming to identify the means to minimize the reduction of the overall performance of a gasoline engine when employing the Exhaust-Gas Recirculation (EGR) technique that reduces NOx emissions. The increase of the compression ratio and turbocharging was evaluated as a mean to recover the original performance. The formation of pollutants and the engine performance were verified at full and partial loads. The results show that the combination of exhaust gas recirculation with turbocharger or through an increase of the compression ratio enhance the relation between the engine performance and the emission of NO. However, the turbocharger seemed to be more sensitive to the negative effects of the EGR technology.

Journal ArticleDOI
TL;DR: This work concerns to the implementation of techniques to optimize kinematic models for robot calibration through numerical optimization of the mathematical model.
Abstract: Robot Calibration is a term applied to the procedures used in determining actual values that describe the geometric dimensions and mechanical characteristics of a robot or multibody structure. A robot calibration system must consist of appropriate robot modeling techniques, accurate measurement equipment, and reliable model parameter determination methods. For practical improvement of a robot's absolute accuracy, error compensation methods are required that use calibration results. Important to robot calibration methods is an accurate kinematic model that has identifiable parameters. This parameterized kinematic model must be complete, continuous and minimal. This work concerns to the implementation of techniques to optimize kinematic models for robot calibration through numerical optimization of the mathematical model. The optimized model is then used to compensate the model errors in an off-line programming system, enhancing significantly the robot kinematic model accuracy. The optimized model can be constructed in an easy and straight operation, through automatic assignment of joint coordinate systems and geometric parameter to the robot links. Assignment of coordinate systems by this technique avoids model singularities that usually spoil robot calibration results.

Journal ArticleDOI
TL;DR: In this article, a detailed qualitative description of the classical heat transfer coefficient behaviour is presented together with two examples of departure from macroscopic equilibrium largely supported by experimental evidence, as well as successful attempts to model the non-equilibrium phase change phenomena taking place in the two situations.
Abstract: This lecture addresses some recent developments in modelling of macroscopic thermodynamic and hydrodynamic non-equilibrium phenomena in convective phase change (boiling and condensation) of pure fluids and mixtures. Proper accounting of such phenomena may hold the key to explain and predict deviations from the classical (equilibrium) phase change convective heat transfer behaviour reported in the literature and yet not fully understood. In the first part of the paper, a detailed qualitative description of the classical heat transfer coefficient behaviour is presented together with two examples of departure from macroscopic equilibrium largely supported by experimental evidence. The second part of the paper reviews successful attempts to model the non-equilibrium phase change phenomena taking place in the two situations. The first example is a thermodynamic non-equilibrium slug flow model (one in which saturated Taylor bubbles become separated by slugs of subcooled liquid) that predicts the peaks in heat transfer coefficient at near-zero thermodynamic quality observed in forced convective boiling of some pure liquids. The occurrence of such peaks is typical of low latent heat, low thermal conductivity systems and of systems in which the vapour volume formation rate for a given heat flux is large. The second example is a comprehensive annular flow calculation methodology that predicts the decrease in the heat transfer coefficient with increasing quality observed in convective boiling of binary and multicomponent mixtures. In this case, as will be seen, coupled mass transfer resistance and hydrodynamic non-equilibrium effects generate concentration gradients between the liquid film and entrained droplets that are responsible for the heat transfer deterioration. In addition, it will be shown that for condensation of mixtures the methodology predicts a heat transfer intensification which has been subsequently confirmed by independent experimental results.

Journal ArticleDOI
TL;DR: In this article, a numerical simulation of the microtensile test using a Finite Element Model was performed to determine the associated variations on the stress field imposed by variations in the geometry of the specimen and loading conditions.
Abstract: Recently the bond strength of composite resin to tooth has received attention from researchers of dental materials. Limitations imposed by the biological substrate, such as the size of the specimen, fostered the development of a tensile test with small dimensions. Due to the reduced size of the specimens, the test is called microtensile test. The specialized literature has not presented standards for the test parameters and the relatively large scatter of published bond strength data probably reflects the lack of standards for the test parameters. The objective of this study is to evaluate how specimen geometry and loading conditions affect the estimation of bond strength. A numerical simulation of the test using a Finite Element Model was performed to determine the associated variations on the stress field imposed by variations in the geometry of the specimen and loading conditions. The Finite Element pre-processing and post-processing was performed on Patran® and the Finite Element processing was performed on Marc®. Results from numerical simulations show that geometrical parameters and loading conditions have a significant influence on the stress field. Some suggestions of standards for the microtensile test considering the non-uniform stress field are presented.

Journal ArticleDOI
TL;DR: In this article, an important tool to improve the performance of the definition and management of a production strategy for petroleum fields is presented, called quality map, which is a tool that indicates the production potential of each place of the reservoir, combining several parameters that influence oil recovery efficiency.
Abstract: The definition and management of a production strategy for petroleum fields is one of the most important tasks in reservoir engineering. It is a complex process due to the high number of parameters, operational restrictions and objectives involved, and due to uncertainties in geological and economic scenarios. This work shows an important tool to improve the performance of such a process, called quality map. Quality map is a tool that indicates the production potential of each place of the reservoir, combining several parameters that influence oil recovery efficiency. It serves as a visualisation tool and as a quality index distribution allowing the automation of production strategy definition. The case studies presented in this work involve numerical simulation of horizontal wells in offshore reservoir models. It is observed that quality maps constitute a powerful tool that can be used (1) to locate wells and (2) to speed up the optimisation process by efficiently allowing the analysis and quantification of several parameters and their influence on the reservoir exploitation.

Journal ArticleDOI
TL;DR: In this article, an algorithm based on gradient techniques was proposed for numerical analysis of optimal low-thrust limited-power trajectories for simple transfer (no rendezvous) between coplanar circular orbits in a central Newtonian gravity field.
Abstract: An algorithm based on gradient techniques, proposed in a companion paper, is applied to numerical analysis of optimal low-thrust limited-power trajectories for simple transfer (no rendezvous) between coplanar circular orbits in a central Newtonian gravity field. The proposed algorithm combines the main positive characteristics of two well-known methods in optimization of trajectories: the steepest-descent method and the direct second variation method. The analysis is carried out for various radius ratios and transfer durations. The results are compared to the ones provided by a linear analytical theory. The performance of the proposed algorithm shows that it is a good tool in determining optimal low-thrust limited-power trajectories between close circular coplanar orbits in a Newtonian central gravity field.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the results obtained from the numerical simulation of pure water melting and solidification in the interior of tubes, which are typically present in ice banks of air conditioning systems.
Abstract: Latent energy storage systems find applications in many engineering fields, including industrial refrigeration plants, air conditioning installations, recovery of heat in industrial processes, etc. To tackle the design of such systems, it is necessary to have correlations to account for the heat transfer during the melting and solidification of the phase change material (PCM). This work describes and analyzes the results obtained from the numerical simulation of pure water melting and solidification in the interior of tubes, which are typically present in ice banks of air conditioning systems. The shown results consider natural convection, accounting for the inversion in the water density. In the melting process, the considered initial conditions followed the classical Stefan and Neumann approach. The presented simulation results include the evolution of the phase change interface, and of the temperature, density and streamlines fields. Correlations for the Nusselt number and for the melted material volume as functions of time have been proposed.