scispace - formally typeset
Search or ask a question

Showing papers in "Journal of The Geological Society of India in 2009"


Journal ArticleDOI
TL;DR: An attempt has been made to study drainage morphometry and its influence on hydrology of Wailapalli watershed, South India as mentioned in this paper, which used Shuttle Radar Topographic Mission (SRTM) data for preparing Digital Elevation Model (DEM), aspect grid and slope maps, Geographical information system (GIS) was used in evaluation of linear, areal and relief aspects of morphometric parameters.
Abstract: An attempt has been made to study drainage morphometry and its influence on hydrology of Wailapalli watershed, South India. For detailed study we used Shuttle Radar Topographic Mission (SRTM) data for preparing Digital Elevation Model (DEM), aspect grid and slope maps, Geographical information system (GIS) was used in evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the elongated shape of the basin is mainly due to the guiding effect of thrusting and faulting. The lower order streams are mostly dominating the basin. The development of stream segments in the basin area is more or less affected by rainfall. The mean Rb of the entire basin is 3.89 which indicate that the drainage pattern is not much influenced by geological structures. Relief ratio indicates that the discharge capability of these watersheds is very high and the groundwater potential is meager. These studies are very useful for planning rainwater harvesting and watershed management.

229 citations


Journal ArticleDOI
TL;DR: In this article, the authors conducted a study on the lower Varuna River basin in Varanasi district in India, where they collected 75 groundwater samples from dug wells and hand pumps covering the entire basin in order to understand the sources of dissolved ions, and to assess the chemical quality of the groundwater through analysis of major ions.
Abstract: The lower Varuna River basin in Varanasi district situated in the central Ganga plain is a highly productive agricultural area, and is also one of the fast growing urban areas in India. The agricultural and urbanization activities have a lot of impact on the groundwater quality of the study area. The river basin is underlain by Quaternary alluvial sediments consisting of clay, silt, sand and gravel of various grades. The hydrogeochemical study was undertaken by randomly collecting 75 groundwater samples from dug wells and hand pumps covering the entire basin in order to understand the sources of dissolved ions, and to assess the chemical quality of the groundwater through analysis of major ions. Based on the total dissolved solids, two groundwater samples are considered unsuitable for drinking purpose, but all samples are useful for irrigation. Graphical treatment of major ion chemistry by Piper diagram helps in identifying hydro-geochemical facies of groundwaters and the dominant hydrochemical facies is Ca-Mg-HCO3 with appreciable percentage of the water having mixed facies. As per Wilcox’s diagram and US Salinity laboratory classification, most of the groundwater samples are suitable for irrigation except two samples (No’s 30 and 68) which are unsuitable due to the presence of high salinity and medium sodium hazard. Irrigation waters classified based on residual sodium carbonate, have revealed that all groundwaters are in general safe for irrigation except one sample (No. 27), which needs treatment before use. Permeability index indicates that the groundwater samples are suitable for irrigation purpose. Although the general quality of groundwater of the lower Varuna River basin is suitable for irrigation purpose, fifty seven percent of the samples are found having nitrate content more than permissible limit (>45 mg/l) which is not good for human consumption. Application of N-Fertilizers on agricultural land as crop nutrients along the Varuna River course may be responsible for nitrate pollution in the groundwater due to leaching by applied irrigation water. The other potential sources of high nitrate concentration in extreme northern, southern and southwestern parts of study area are poor sewerage and drainage facilities, leakage of human excreta from very old septic tanks, and sanitary landfills. The high fluoride contamination (>1.5 mg/l) in some of the samples may be due to the dissolution of micaceous content in the alluvium. Nitrate and fluoride contamination of groundwater is a serious problem for its domestic use. Hence an immediate protective measure must be put into action in the study area.

149 citations


Journal ArticleDOI
TL;DR: The Eastern Ghats belt is a polycyclic granulite terrain along the east coast of India whose western boundary is marked by a shear zone along which the granulites are thrusted over the cratonic units of the Indian shield as mentioned in this paper.
Abstract: The Eastern Ghats Belt is a polycyclic granulite terrain along the east coast of India whose western boundary is marked by a shear zone along which the granulites are thrusted over the cratonic units of the Indian shield, and its northern margin is marked by the presence of a number of fault-bounded blocks. Recent work has convincingly brought out that there are domains within the belt having different evolutionary histories. The segment south of the Godavari Rift went through a high grade thermo-tectonic event at ∼1.6-1.7 Ga. North of the Godavari Rift in a narrow zone along the western boundary the last high-grade metamorphic event is of late Archaean age. A series of alkaline plutons along the western boundary zone testifies to a rifting episode at ∼1.3-1.5 Ga. In the major part of the EGB the metamorphism is broadly of Grenvillian age, with two major thermo-tectonic pulses at ∼1.1-1.2 Ga and ∼0.95-1.0 Ga. But high grade conditions persisted for a long period and younger thermal events of ∼0.65 Ga to ∼0.80 Ga are locally recorded. There are differences in the tectonometamorphic histories of different domains, but the tectonic significance of these differences remains uncertain. Pan-African (0.50-0.55) thermal overprints are common and become conspicuous along the western boundary zone. The thrusting of the Eastern Ghats granulites in a hot state over the cratons to the west is of Pan-African age. In the Rodinia assembly (∼0.9 Ga) the Eastern Ghats and the Rayner-Napier Complexes of Antarctica were contiguous, but the pre-Rodinia configuration of these terrains remains unclear. At ∼0.8 Ga during the Rodinia break up Greater India rifted apart from East Antarctica, and only later it docked with Australia-East Antarctica at 530-550 Ma. The continuation of the East Antarctic Pan-African orogenic belts into the Eastern Ghats is yet to be ascertained.

85 citations


Journal ArticleDOI
TL;DR: The Singhbhum craton has a chequered history of mafic magmatism spanning from early Archaean to Proterozoic as discussed by the authors, but lack of adequate isotopic age data put constraints on accurately establishing the history of spatial growth of the craton in which mafics played a very significant role.
Abstract: The Singhbhum craton has a chequred history of mafic magmatism spanning from early Archaean to Proterozoic. However, lack of adequate isotopic age data put constraints on accurately establishing the history of spatial growth of the craton in which mafic magmatism played a very significant role. Mafic magmatism in the craton spreads from ca.3.3 Ga (oldest “enclaves” of orthoamphibolites) to about 0.1 Ga (‘Newer dolerite’ dyke swarms). Nearly contemporaneous amphibolite and intimately associated tonalitic orthogneiss may represent Archaean bimodal magmatism. The metabasic enclaves are appreciably enriched and do not fulfill the geochemical characteristics of worldwide known early Archaean (>3.0 Ga) mafic magmatism. The enclaves reveal compositional spectrum from siliceous high-magnesian basalt (SHMB) to andesite. However, the occurrence of minor depleted boninitic type within the assemblage has so far been overlooked. High magnesian basalt with boninitic character of Mesoarchaean age is also reported in association with supracrustals from southern fringe of the granitoid cratonic nucleus. The subcontinental lithospheric mantle (SCLM) below the craton is conjectured to have initiated during the early Archaean. Significantly, recurrence of depleted magma types in the craton is observed during the whole span of mafic igneous activity which has been vaguely related to “mantle heterogeneity”, although the alternative model of sequential mantle melting is also being explored.

79 citations


Journal ArticleDOI
TL;DR: A detailed hydrogeological and hydrochemical study was carried out in Yamuna-Krishni sub-basin which is a part of the vast central Ganga plain this paper.
Abstract: A detailed hydrogeological and hydrochemical study was carried out in Yamuna-Krishni sub-basin which is a part of the vast central Ganga plain. Groundwater is the major source of water supply for agricultural, domestic and industrial uses. The excess use of groundwater has resulted in depletion of water levels. The groundwater quality, too, has deteriorated in areas dominated by industrial activity. This has led to the preparation of a groundwater vulnerability map in relation to contamination. Groundwater vulnerability maps are valuable derivative maps that show, quantitatively or qualitatively, certain characteristics of the sub-surface environment that determine vulnerability of groundwater to contamination. The modified DRASTIC method was used to prepare vulnerability map. The parameters like depth to water, net recharge, aquifer media, soil media, impact of vadose zone, hydraulic conductivity and land use pattern, owing to its bearing on groundwater regime, were considered to prepare vulnerability map. The vulnerability index is computed as the sum of the products of weight and rating assigned to each of the input considered as above. The vulnerability index ranges from 140 to 180, and is classified into four classes i.e. 140–150, 150–160, 160–170 and 170–180 corresponding to low, medium, high and very high vulnerability zones respectively. Using this index, a groundwater vulnerability potential map was generated which shows that 7%, 40% and 53% of the study area falls in low, medium and high to very high vulnerability zones respectively. The map, thus generated, can be used as a tool for protection and management of aquifers from contamination.

76 citations


Journal ArticleDOI
TL;DR: The evolution of east coast of India is discussed within the ambit of clearly identifiable four major tectonic stages which had a profound effect in shaping the Tectonic grain of the east coast basins as mentioned in this paper.
Abstract: The evolution of east coast of India sis discussed within the ambit of clearly identifiable four major tectonic stages which had a profound effect in shaping the tectonic grain of the east coast basins. The evolutionary process began with rift related crustal extension between India and Sri Lanka as a consequence of Africa-Antarctica rifting and development of Natal Basin. An arm of this rift led to initial extension in the Cauvery Basin and failed. Later, the India-West Australia rift propagated further in southwesterly direction initiating Mahanadi and Krishna-Godavari Basins. This extension was an oblique one with Nayudupeta high acting as pivot. The oblique extension followed by asymmetric seafloor spreading developed transpression along India-Sri Lanka and Antarctica junction, resulting in a NNW-SSE trending transcurrent fault along which Antarctica moved southward. Subsequently, entire east coast evolved through a more or less uniform post rift stage.

68 citations


Journal ArticleDOI
TL;DR: In this article, the authors used IRS-1D LISS III Geocoded FCC data in conjunction with Survey of India toposheet (1:50000 scale) and field inputs for thematic mapping.
Abstract: The remotely sensed data provides synoptic viewing and repetitive coverage for thematic mapping of natural resources. In the present study hydrogeomorphological mapping has been carried out in Kakund watershed, Eastern Rajasthan for delineating groundwater potential zones. IRS-1D LISS III Geocoded FCC data in conjunction with Survey of India toposheet (1:50000 scale) and field inputs were used for thematic mapping. Geomorphic units identified through visual interpretation of FCC include: alluvial plain, plateau, valley fills, intermontane valleys, burried pediment, residual hills, and linear ridges. In addition, lineaments were mapped since they act as conduit for groundwater recharge. Majority of the lineaments trends NE-SW and a few along NW-SE directions and are confined to the southern and southeastern parts of the watershed. Based on hydrogeomorphological, geological and lineament mapping the Kakund watershed has qualitatively been categorized into four groundwater potential zones, viz. good to very good, moderate to good, poor to moderate and very poor to poor. The study reveals that only 10.97% of the area has good to very good, 35.41% area with moderate to good, 49.04 % of the area has poor to moderatel, while remaining 4.57% has poor to very poor groundwater potential.

66 citations


Journal ArticleDOI
TL;DR: The Bastar craton has experienced many episodes of mafic magmatism during the Precambrian as discussed by the authors, and this is evidenced from a variety of precambrian volcanic and dyke formations exposed in all parts of the Bastar basin in the form of volcanics and dykes.
Abstract: The Bastar craton has experienced many episodes of mafic magmatism during the Precambrian. This is evidenced from a variety of Precambrian mafic rocks exposed in all parts of the Bastar craton in the form of volcanics and dykes. They include (i) three distinct mafic dyke swarms and a variety of mafic volcanic rocks of Precambrian age in the southern Bastar region; two sets of mafic dyke swarms are sub-alkaline tholeiitic in nature, whereas the third dyke swarm is high-Si, low-Ti and high-Mg in nature and documented as boninite-norite mafic rocks, (ii) mafic dykes of varying composition exposed in Bhanupratappur-Keskal area having dominantly high-Mg and high-Fe quartz tholeiitic compositions and rarely olivine and nepheline normative nature, (iii) four suites of Paleoproterozoic mafic dykes are recognized in and around the Chattisgarh basin comprising metadolerite, metagabbro, and metapyroxenite, Neoarchaean amphibolite dykes, Neoproterozoic younger fine-grained dolerite dykes, and Early Precambrian boninite dykes, and (iv) Dongargarh mafic volcanics, which are classified into three groups, viz. early Pitepani mafic volcanic rocks, later Sitagota and Mangikhuta mafic volcanics, and Pitepani siliceous high-magnesium basalts (SHMB). Available petrological and geochemical data on these distinct mafic rocks of the Bastar craton are summarized in this paper. Recently high precision U-Pb dates of 1891.1±0.9 Ma and 1883.0±1.4 Ma for two SE-trending mafic dykes from the BD2 (subalkaline) dyke swarm, from the southern Bastar craton have been reported. But more precise radiometric age determinations for a number of litho-units are required to establish discrete mafic magmatic episodes experienced by the craton. It is also important to note that very close geochemical similarity exist between boninite-norite suite exposed in the Bastar craton and many parts of the world. Spatial and temporal correlation suggests that such magmatism occurred globally during the Neoarchaean-Paleoproterozoic boundary. Many Archaean terrains were united as a supercontinent as Expanded Ur and Arctica at that time, and its rifting gave rise to numerous mafic dyke swarms, including boninitenorite, world-wide.

55 citations


Journal ArticleDOI
TL;DR: In this article, the authors derived ultrabasic and eclogite xenoliths from Dharwar and Bastar craton from depths of 100-180 km and 75-150 km respectively.
Abstract: Mantle derived xenoliths in India are known to occur in the Proterozoic ultrapotassic rocks like kimberlites from Dharwar and Bastar craton and Mesozoic alkali igneous rocks like lamrophyres, nephelinites and basanites. The xenoliths in kimberlites are represented by garnet harzburgites, lherzolites, wehrlite, olivine clinopyroxenites and kyaniteeclogite varieties. The PT conditions estimated for xenoliths from the Dharwar craton suggest that the lithosphere was at least 185 km thick during the Mid-Proterozoic period. The ultrabasic and eclogite xenoliths have been derived from depths of 100–180 km and 75–150 km respectively. The Kalyandurg and Brahmanpalle clusters have sampled the typical Archaean subcontinental lithospheric mantle (SCLM) with a low geotherm (35 mW/m2) and harzburgitic to lherzolitic rocks with median Xmgolivine > 0.93. The base of the depleted lithosphere at 185–195 km depth is marked by a 10–15 km layer of strongly metasomatised peridotites (Xmgolivine > ∼0.88). The Anampalle and Wajrakarur clusters 60 km to the NW show a distinctly different SCLM; it has a higher geotherm (37.5 to 40 mW/m2) and contains few subcalcic harzburgites, and has a median Xmgolivine = 0.925. In contrast, the kimberlites of the Uravakonda and WK-7 clusters sampled quite fertile (median Xmgolivine ∼0.915) SCLM with an elevated geotherm (> 40 mW/m2).

49 citations


Journal ArticleDOI
TL;DR: In this article, the seismic hazard in the province of Kerala, a part of the •stable continental interior•, based on an improved historical and instrumental database is reassessed, which suggests that the central midland region is more prone to seismic activity compared to other parts of Kerala.
Abstract: Given the lack of proper constraints in understanding earthquake mechanisms in the cratonic interiors and the general absence of good quality database, here we reassess the seismic hazard in the province of Kerala, a part of the •stable continental interior•, based on an improved historical and instrumental database. The temporal pattern of the current seismicity suggests that >60% of the microtremors in Kerala occurs with a time lag after the peak rainfall, indicating that hydroseismicity may be a plausible model to explain the low-level seismicity in this region. Further, an increment in overall seismicity rate in the region in the recent years is explained as due to increased anthropogenic activities, which includes changes in hydrological pathways as a consequence of rapid landscape changes. Our analyses of the historical database eliminate a few events that are ascribed to this region; this exercise has also led to identification of a few events, not previously noted. The improved historical database essentially suggests that the central midland region is more prone to seismic activity compared to other parts of Kerala. This region appears to have generated larger number of significant earthquakes; the most prominent being the multiple events (doublets) of 1856 and 1953, whose magnitudes are comparable to that of the 2000/2001 (central Kerala) events. Occurrences of these historical events and the recent earthquakes, and the local geology indicative of pervasive faulting as shown by widely distributed pseudotachylite veins suggest that the NNW-SSE trending faults in central midland Kerala may host discrete potentially active sources that may be capable of generating light to moderate size earthquakes. The frequency of earthquakes in central Kerala evident from the historical database requires that the seismic codes stipulated for this region are made mandatory.

45 citations


Journal ArticleDOI
TL;DR: In this article, the authors reported glauconitic minerals from subtidal green shale facies in the lower part of the Late Paleocene-Early Eocene Naredi Formation of western Kutch.
Abstract: Glauconitic minerals are considered as one of the valuable input parameters in sequence stratigraphic analysis of a basin. In the present study glauconitic minerals are reported from subtidal green shale facies in the lower part of the Late Paleocene-Early Eocene Naredi Formation of western Kutch. On the basis of the foraminiferal assemblage the glauconite bearing beds are interpreted to have formed in a mid shelf depositional settings of an unstable marine conditions. XRD studies confirm the glauconite mineralogy of the green pellets and provide an estimation of glauconite maturity. Textural attributes of the glauconites confirm their derivation by different degrees of alteration of precursor feldspar grains. Because of the authigenic origin and autochthonous nature, these glauconites hold promise for understanding sequence stratigraphy of the Palaeogene succession of the western Kutch.

Journal ArticleDOI
TL;DR: The mafic-ultramafic rocks occur in supracrustal/greenstone belts and in numerous enclaves and slivers in the WDC as discussed by the authors.
Abstract: Evidence of mafic and ultramafic magmatism exists in many parts of the Dharwar craton which is divided into two blocks, the West Dharwar Craton (WDC) and the East Dharwar Craton (EDC). The mafic-ultramafic rocks occur in supracrustal/greenstone belts and in numerous enclaves and slivers in the WDC. The oldest recorded maficultramafic rocks, which are mainly komatiitic in nature, are preserved in the Sargur Group which is more than 3.3–3.4 Ga old, the youngest being manifested by 63–76 Ma old mafic dyke magmatism, possibly related to Deccan volcanism.

Journal ArticleDOI
TL;DR: In this article, an attempt to assess hydrogeochemistry of groundwater in Ajmer district in Rajasthan to understand the fluoride abundance in groundwater and to deduce the chemical parameters responsible for the dissolution activity of fluoride.
Abstract: High fluoride in groundwater has been reported from many parts of India. However, a systematic study is required to understand the behaviour of fluoride in natural water in terms of local hydrogeological setting, climatic conditions and agricultural practices. Present study is an attempt to assess hydrogeochemistry of groundwater in Ajmer district in Rajasthan to understand the fluoride abundance in groundwater and to deduce the chemical parameters responsible for the dissolution activity of fluoride. Ajmer district falls in the semi-arid tract of central Rajasthan and is geologically occupied by Precambrian rocks (granites, pegmatites, gneisses, schists etc) where groundwater occurs under unconfined condition. A total of 153 well-water samples, representing an area of 8481 km 2 (further subdivided into eight blocks), were collected and chemically analyzed. The results of chemical analyses (pre-monsoon 2004) show fluoride abundance in the range of 0.12 to 16.9 mg/l with 66% of the samples in excess of permissible limit of 1.5 mg/l. Presence of fluoride bearing minerals in the host rock, the chemical properties like decomposition, dissociation and dissolution and their interaction with water is considered to be the main cause for fluoride in groundwater. Chemical weathering under arid to semi-arid conditions with relatively high alkalinity favours high concentration of fluoride in groundwater. Dental and skeletal fluorosis are prevalent in the study area which can be related to the usage of high fluoride groundwater for drinking. The suggested remedial measures to reduce fluoride pollution in groundwater include dilution by blending, artificial recharge, efficient irrigation practices and well construction.

Journal ArticleDOI
TL;DR: In this paper, animal-sediment relationships of two benthic communities (Crustaceans and Polychaetes) were studied around Mandvi coast in the Gulf of Kachchh, Western India.
Abstract: Animal-sediment relationships of two benthic communities (Crustaceans and Polychaetes) were studied around Mandvi coast in the Gulf of Kachchh, Western India. This coast consists of many micro-geomorphic landforms in which benthic communities are inhabited and select their niches and produce endemic biogenic structures. Five intertidal subfacies have been described and four types of grounds are identified, based on substrate consistency. 18 species of crustaceans, 15 species of polychaetes and unsegmented worm nemertea have been identified. Crustacean behavioural activities were observed in dunes, beaches and ridge-runnel in the form of burrowing, pellet making, feeding and crawling traces. Pelleted wall lining burrows of the suspension feeder stomatopodean species of Oratosquilla striata are also abundant in runnels. Motile, deposit feeder polychaetes are abundant on the ridges and are occasionally found on the lower reaches of the beaches, while suspension and filter feeders are found in the runnels. Lagoons consist of mainly grouped funnel branched burrows of Oniphus eremita which is identical to ichnogenus Balanoglossites. Nemertea, which are opportunistic algal grazers, have exploited restricted niches for dwelling-feeding purposes and constructed vertical burrow with pentamerous conical mound. The shore platform consists of cemented, calcareous tubes of filter feeder Serpula along with symbiotic encrusters like Ostrea and barnacles. Ichnocoenoses are discussed and three-dimensional ichno-sedimentologic models are reconstructed for Beach, Ridge, Runnel and Lagoon of the Mandvi intertidal zone.

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the effectiveness of the existing BIS method in Darjeeling Himalaya through a quantitative method adapting weights of evidence (WofE) modeling.
Abstract: In India, the Bureau of Indian Standards (BIS) recommends a heuristic method for medium-scale (1:25,000/1:50,000) landslide susceptibility mapping. This is based on fixed ratings of geofactors, without the inclusion of landslide inventory information. In BIS method, the pre-defined ratings of geofactors are applied over diverse areas, irrespective of the terrain-specific spatial inter-dependence of geofactors and landslide types, which leads to rather moderate prediction. In this paper, we evaluate the effectiveness of the existing BIS method in Darjeeling Himalaya through a quantitative method adapting weights of evidence (WofE) modeling. The quantified spatial associations between specific geofactors for different landslide types and failure mechanisms that were generated, using this method showed improved prediction rates as compared to the BIS method of fixed ratings of geofactors. We therefore recommend adjusting the existing BIS guidelines by inclusions of weights, derived locally through quantitative spatial analysis of landslide inventories and geofactor maps.

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the lithostratigraphy, depositional environment and age of the Marwar Supergroup and reported that the δ13C depletion observed in Bilara carbonates is not a result of glaciation rather due to rapid burial and poor water circulation in the low energy water of the protected basin.
Abstract: The lithostratigraphy, depositional environment and age of the Marwar Supergroup have been reviewed in the light of report of δ13C depletion recorded in the carbonates of the Bilara Group (middle part of Marwar Supergroup) and discovery of trilobite-like trace fossils from the ·Red bedsŽ of Nagaur Group (upper part of Marwar Supergroup). The δ13C depletion observed in Bilara carbonates is not a result of glaciation rather due to rapid burial and poor water circulation in the low energy water of the protected basin. Secondly, the trace fossils are, in fact, traces of notostracan crustaceans found in shallow fluvial and shallow lacustrine environment. The present paper also records a spiral, burrowing trace-fossil, possibly Gyrolithes, from a cross-bedded sandstone of the Jodhpur Group.

Journal ArticleDOI
TL;DR: In this paper, the water samples (n=36) were analyzed for various physico-chemical attributes like temperature, pH, electrical conductivity (EC), dissolved oxygen (DO), Na, K, Ca, Mg, alkalinity, hardness, silica, chloride, salinity, total dissolved solids (TDS) and sulphate (SO4 2−).
Abstract: Groundwater qualities of coastal aquifers in the Chennam-Pallippuram Panchayath of Alappuzha district, Kerala have been extensively monitored in summer from January to May, 2007 to assess its suitability in relation to domestic and agricultural uses. The water samples (n=36) were analyzed for various physico-chemical attributes like temperature, pH, electrical conductivity (EC), dissolved oxygen (DO), Na, K, Ca, Mg, alkalinity, hardness, silica, chloride, salinity, total dissolved solids (TDS) and sulphate (SO4 2−). Values of most of these parameters fall within permissible limits. Major ionic relationships indicate that weathering reactions have insignificant role in the hydrochemical processes of the shallow groundwater system. Hydrogeochemical processes controlling the water chemistry are precipitation rather than rock-water interaction. Various determinants such as Sodium Absorption Ratio (SAR), Percent Sodium (Na %), Residual Sodium Carbonate (RSC), and Kelley’s Ratio revealed that most of the samples are suitable for irrigation.

Journal ArticleDOI
TL;DR: Pollen analysis of a 33.21 m deep sediment core from Surinsar lake in Jammu region has revealed that between 9,500 and 7,700 yr BP (Pollen zone SL-I), the mixed oak-broad-leaved/chirpine forest occurred in the region under a warm and humid climate, attributed to decrease in monsoon rainfall as discussed by the authors.
Abstract: Pollen analysis of a 33.21 m deep sediment core from Surinsar lake in Jammu region has revealed that between 9,500 and 7,700 yr BP (Pollen zone SL-I), the mixed oak-broad-leaved/chirpine forest occurred in the region under a warm and humid climate. The record of aquatic plants viz. Potamogeton, Typha and freshwater alga Botryococcus in appreciable numbers denotes the existence of the lake since the Early Holocene. Subsequently, mixed chirpine/oak-broad-leaved forests appeared in the area around 7,700 to 6,125 yr BP (Pollen zone SL-II) with the dominance of chirpine (Pinus cf. roxburghii) by the onset of cool and dry climate, attributed to decrease in monsoon rainfall. The expansion of oak and its broad-leaved associates between 6,125 and 4,330 yr BP (Pollen zone SL-III) suggests that the climate turned moderately humid and warm, presumably due to enhanced monsoonal effect. The region has witnessed a brief spell of pluvial environment between 4,330 and 4,000 yr BP (Pollen zone SL-IV) as evidenced by the presence of sandy layer at 15.4–14 m depths. The period of 4,000 to 2,100 yr BP (Pollen zone SL-V) is marked by the prevalence of cool and dry climate as depicted by a sharp decline in oak (Quercus cf. incana) and other broad-leaved taxa and a concurrent increase in chirpine. From 2,100 to 800 yr BP (Pollen zone SL-VI) no palaeofloristic inferences could be drawn due to paucity of pollen, however, the presence of sandy deposit at the corresponding level in lithocolumn implies a pluvial episode by this time. Since 800 yr BP to Present (Pollen zone SL-VII) the slight advance in the oak reflects the ameliorating trend of climate, despite the existing cool and dry climate.

Journal ArticleDOI
TL;DR: In this article, the chemical distinction between Sargur and Dharwar mafic suites has been made for the purpose of distinguishing two greenstone cycles in the craton, i.e., 3.1-3.3 Ga and 2.6-2.8 Ga.
Abstract: Mafic rocks of Western Dharwar Craton (WDC) belong to two greenstone cycles of Sargur Group (3.1-3.3 Ga) and Dharwar Supergroup (2.6-2.8 Ga), belonging to different depositional environments. Proterozoic mafic dyke swarms (2.4, 2.0-2.2 and 1.6 Ga) constitute the third important cycle. Mafic rocks of Sargur Group mainly constitute a komatiitic-tholeiite suite, closely associated with layered basic-ultrabasic complexes. They form linear ultramaficmafic belts, and scattered enclaves associated with orthoquartzite-carbonate-pelite-BIF suite. Since the country rocks of Peninsular Gneiss intrude these rocks and dismember them, stratigraphy of Sargur Group is largely conceptual and its tectonic environment speculative. It is believed that the Sargur tholeiites are not fractionated from komatiites, but might have been generated and evolved from a similar mantle source at shallower depths. The layered basic-ultrabasic complexes are believed to be products of fractionation from tholeiitic parent magma. The Dharwar mafic rocks are essentially a bimodal basalt-rhyolite association that is dominated by Fe-rich and normal tholeiites. Calc-alkaline basalts and andesites are nearly absent, but reference to their presence in literature pertains mainly to carbonated, spilitized and altered tholeiitic suites. Geochemical discrimination diagrams of Dharwar lavas favour island arc settings that include fore-, intra- and back-arcs. The Dharwar mafic rocks are possibly derived by partial melting of a lherzolite mantle source and involved in fractionation of olivine and pyroxene followed by plagioclase. Distinctive differences in the petrography and geochemistry of mafic rocks across regional unconformities between Sargur Group and Dharwar Supergroup provide clinching evidences in favour of distinguishing two greenstone cycles in the craton. This has also negated the earlier preliminary attempts to lump together all mafic volcanics into a single contemporaneous suite, leading to erroneous interpretations. After giving allowances for differences in depositional and tectonic settings, the chemical distinction between Sargur and Dharwar mafic suites throws light on secular variations and crustal evolution. Proterozoic mafic dyke swarms of three major periods (2.4, 2.0-2.2 and 1.6 Ga) occur around Tiptur and Hunsur. The dykes also conform to the regional metamorphic gradient, with greenschist facies in the north and granulite facies in the south, resulting from the tilt of the craton towards north, exposing progressively deeper crustal levels towards the south. The low-grade terrain in the north does not have recognizable swarms, but the Tiptur swarm consists essentially of amphibolites and Hunsur swarm mainly of basic granulites, all of them preserving cross-cutting relations with host rocks, chilled margins and relict igneous textures. There are also younger dolerite dykes scattered throughout the craton that are unaffected by this metamorphic zonation. Large-scale geochemical, geochronological and palaeomagnetic data acquisition through state-of-the-art instrumentation is urgently needed in the Dharwar craton to catch up with contemporary advancements in the classical greenstone terrains of the world.

Journal ArticleDOI
TL;DR: In this paper, the Os isotopic and platinum group element (PGE) geochemical studies of chromites from the two mining districts indicate presence of a subchondritic source mantle domain beneath and within the Singhbhum craton similar to the Zimbabwean craton of southern African continent.
Abstract: The Archaean cratonic nuclei of the continents are important as they contain the most significant evidences for the evolution of Earth e.g. the greenstone sequences. In the Indian Shield, one of the important cratons is the Singhbhum craton, where nearly 95% of the Indian chromite deposits and only PGE deposits are located which are hosted within Mesoarchaean ultramafic-mafic rock sequences. The ultramafic units occur as sill like intrusions within the Iron Ore Group (IOG) greenstone belts and often associated with gabbroic intrusions. In the Nuasahi and Sukinda mining districts of these occurrences, detailed petrological, geochemical and isotopic studies have been carried out in the last decades. Petrological and geochemical studies indicate a supra-subduction zone (SSZ) tectonic settings in Archaean for the origin of these ultramafic-mafic sequences. The Os isotopic and platinum group element (PGE) geochemical studies of chromites from the two mining districts indicate presence of a subchondritic source mantle domain beneath and within the Singhbhum craton similar to the Zimbabwean craton of southern African continent. The Os model age calculation indicates melt extraction from a subcontinental lithospheric mantle (SCLM) before 3.7 Ga which is similar to the other ancient cratons. As a whole the study supports the premise that India was part of the African continent in pre-Gondwana times and even in early Archaean and suggest possible amalgamation and building up of a supercontinent during late Archaean. However, in comparison with other occurrences, the Singhbhum craton of the Indian Shield and the Zimbabwean craton in southern Africa are characterized by the presence of subchondritic lithospheric mantle domains within the SCLM, which were developed prior to 3.7 Ga.

Journal ArticleDOI
TL;DR: A detailed study on the status of the Saraswati Nadi of northern Haryana has been carried out using multi date and multi resolution satellite images, GIS techniques and ground data as discussed by the authors.
Abstract: Detailed studies on the status of Saraswati Nadi of northern Haryana have been carried out using multi date and multi resolution satellite images, GIS techniques and ground data. Palaeochannels have been delineated using remote sensing techniques and validated using discovered archaeological sites, sedimentological data from drilled wells and water quality data. Detailed analysis of hydrological data (rainfall and stream discharge), catchment area and petrographic analysis of rock samples have been done to decipher the dwindling state of Saraswati Nadi. Likelihood of Adi Badri as the place of origin of Saraswati Nadi and its possible linkage with the Vedic Saraswati River is discussed. Suggestions have been given for safeguarding and revival of Saraswati Nadi as a national heritage.

Journal ArticleDOI
TL;DR: In this article, the existence of five thrust bound tectonostratigraphic units (Sewak Group, Lalpani Group, Mayodiya Group, Tidding Formation and Lohit plutonic complex) is revealed.
Abstract: Geological mapping between Lohit and Dibang valleys of eastern Arunachal Pradesh reveals the existence of five thrust bound tectonostratigraphic units. In ascending structural order from SW to NE these are: (1) Sewak Group, (2) Lalpani Group, (3) Mayodiya Group, (4) Tidding Formation and (5) Lohit plutonic complex. This differs from previous mapping, because the three tectonostratigraphic units (Sewak, Lalpani and Mayodiya) were grouped under a single unit, referred as the Mishmi crystallines. The low-grade metamorphics of the Sewak Group occur at two different tectonic levels, one as persistent belt in the foothills and the other in the tectonic window beneath the high-grade metamorphics of the Mayodiya thrust sheet in the Higher Himalaya. The Tidding suture is the southeastern extension of the Indus-Tsangpo suture zone.

Journal ArticleDOI
TL;DR: Chloro-alkaline indices (CAI) are positive at Miriyala, Adigopula, Mutukuru, Macherla and Durgi suggesting replacement of Na+ and K+ ions from water by Mg++ and Ca++ ions from country rock through base exchange reactions as discussed by the authors.
Abstract: Groundwater in Palnad sub-basin is alkaline in nature and Na+-Cl−-HCO3− type around Macherla-Karempudi area in Guntur district, Andhra Pradesh. Total dissolved solids (TDS) show strong positive correlation with Cl−, Na+, Ca2+ and Mg2+, and positive correlation with SO42−, K+ and HCO3−. Calcareous Narji Formation is the dominant aquifer lithology, and water-rock interaction controls the groundwater chemistry of the area. Chloro-alkaline indices (CAI) are positive at Miriyala, Adigopula, Mutukuru, Macherla and Durgi suggesting replacement of Na+ and K+ ions from water by Mg++ and Ca++ ions from country rock through base exchange reactions. Negative CAI values are recorded at Terala, Rayavaram and Nehrunagar, which indicate exchange of Na+ and K+ from the rock as cation-anion exchange reaction (chloro-alkaline disequilibrium).

Journal ArticleDOI
TL;DR: In this article, an isotopic analysis of twenty granite samples from the Precambrian Chhotanagpur granite gneiss complex (CGGC) of Raikera-Kunkuri region, Jashpur district, Chhattisgarh, Central India yields two distinct isochrons.
Abstract: The Precambrian Chhotanagpur granite gneiss complex (CGGC) terrain covers more than 80,000 sq km area, and is dominated by granitoid gneisses and migmatites. Recent geochronological data indicate that the CGGC terrain has witnessed five tectonomagmatic thermal events at: (i) 2.5-2.4 Ga, (ii) 2.2-2.0 Ga, (iii) 1.6-1.4 Ga, (iv) 1.2-1.0 Ga, and (v) 0.9-0.8 Ga. Of these, the third and the fourth events are widespread. The whole-rock Rb-Sr isotopic analysis of twenty granite samples from the CGGC of Raikera-Kunkuri region, Jashpur district, Chhattisgarh, Central India, yields two distinct isochrons. The eleven samples of grey granites define an isochron age of 1005±51 Ma with moderate initial 87 Sr/ 86 Sr ratio of 0.7047±0.0065, which corresponds to the fourth tectonomagmatic event. On the other hand, the nine samples of pink granites indicate younger isochron age of 815±47 Ma with a higher initial 87 Sr/ 86 Sr ratio of 0.7539±0.0066 that matches with the fifth phase of the thermal event. The data suggest emplacement of large bodies of grey granite at ∼1005 Ma that evolved possibly from precursors of tonalitic-granodioritic composition. Furthermore, the younger age (∼815 Ma) suggests the age of metasomatism, involving isotopic resetting, that resulted in genesis of pink granite bodies of limited areal extent. By analogy, the age of metasomatism (∼815 Ma) may also be taken to represent the age of Y-mineralisation in the Raikera-Kunkuri region of the CGGC terrain.

Journal ArticleDOI
TL;DR: In this article, the authors present the field, petrographic and mineral chemistry account of various lithounits that constitute the Kandra ophiolite complex in a succinct manner.
Abstract: Extensive field and petrological studies carried out in Kandra ophiolite complex (KOC) in the southern part of Nellore schist belt (NSB) revealed the existence of sheeted dykes in Kandra- Kondakuru-Gollapalli section. The sheeted dykes occur in the northern part of the complex and compositionally vary from medium-grained dolerites showing typical sub-ophitic texture to diabase dykes that are extremely fine grained aphanitic to fine-grained cryptocrystalline parallel basic dykes (varying in width from 4 cm to 1.25 m). These dykes show chilled margins on either side with the host dykes into which these are intruded. Veins of oceanic plagiogranite (0.5 × 5 m) are noticed in a major sheeted dyke. Occurrence of oceanic plagiogranite as ovoid / semicircular patches of 6 cm diameter resembling “immiscible droplets” within basic dykes is also noticed. The southern part of the complex is made of a major NW-SE trending cumulus gabbro that grades into olivine gabbronorite in its eastern part. The southern gabbros represent the plutonic component and form the deeper part of the complex. In this paper an attempt has been made to present the field, petrographic and mineral chemistry account of various lithounits that constitute the Kandra ophiolite complex in a succinct manner.

Journal ArticleDOI
TL;DR: In this paper, a field-scale study of hexavalent chromium plume migration in an industrial city of Kanpur, India is presented, where the authors investigate the source, potential and monitoring the migration of the pollutant plume.
Abstract: With only twenty five percent population living in urban areas, India has cities amongst the biggest in the world. Urban growth in most of Indian cities is concomitant with rise in water demand for community, as well as, for industrial purposes. The complex situation resulting from indiscriminate disposal of waste and its severe impact on groundwater quality is set for continuous worsening mainly for want of sustained effort aimed at site-specific remediation. The study, a prerequisite for actual remediation in an industrial city of Kanpur, India, envisages detailed investigation about pollutant transport, evaluation of concept of Bio-remediation and a range of other options and finally full scale implementation of the best suited. Drilling of piezometers and resistivity survey indicates that the area is constituted of alluvial sands, gravels and their various admixtures. Chemical analysis of water samples collected from piezometers and hand pumps shows the presence of hexavalent chromium rich horizons at various depths. The alarming concentration of this carcinogenic heavy metal of the order of 16.3 mg/l against the permissible concentration (of 0.05 mg/l) for drinking water and high concentration within sediments of the area poses a major threat to the entire ecosystem. The projection of migration contaminant plume of hexavalent chromium as depicted in the paper is indicative of a concentrated extent of core zone existing in shallow alluvial aquifer, which may be targeted for interception by remedial measures. The present work, elaborating on the source, potential and monitoring the migration of the pollutant plume is the first field scale study of its kind in the country. The findings of these studies are of strong relevance in addressing the ground water pollution due to indiscriminate disposal practices of hazardous waste in areas located within the alluvial zones.

Journal ArticleDOI
TL;DR: In this paper, the molecular structure of an Eocene fossil resin (Vastan, Cambay basin, Western India) has been investigated with complimentary spectroscopic techniques, and the FTIR spectrum shows strong aliphatic CH x (3000-2800 and 1460- 1450 cm -1 ) and CH 3 (1377 cm −1 ) absorptions and less intense aromatic C=C (1560-1610 cm − 1 ) absorption.
Abstract: The molecular structure of an Eocene fossil resin (Vastan, Cambay basin, Western India) has been investigated with complimentary spectroscopic techniques. The FTIR spectrum shows strong aliphatic CH x (3000-2800 and 1460- 1450 cm -1 ) and CH 3 (1377 cm -1 ) absorptions and less intense aromatic C=C (1560-1610 cm -1 ) absorptions. The major products from analytical pyrolysis are cadalene based bicyclic sesquiterpenoids including some bicadinenes and bicadinanes. The polycadinane products confirm the fossil material as an Angiosperm dammar resin, associated with inputs of tropical rain forests supported by past climates.

Journal ArticleDOI
TL;DR: The synplutonic mafic dykes (mafic injections) from the 2.56-2.52 Ga calcalkaline to potassic plutons in the Eastern Dharwar Craton (EDC) were studied in this article.
Abstract: We present a first overview of the synplutonic mafic dykes (mafic injections) from the 2.56–2.52 Ga calcalkaline to potassic plutons in the Eastern Dharwar Craton (EDC). The host plutons comprise voluminous intrusive facies (dark grey clinopyroxene-amphibole rich monzodiorite and quartz monzonite, pinkish grey porphyritic monzogranite and grey granodiorite) located in the central part of individual pluton, whilst subordinate anatectic facies (light grey and pink granite) confined to the periphery. The enclaves found in the plutons include highly angular screens of xenoliths of the basement, rounded to pillowed mafic magmatic enclaves (MME) and most spectacular synplutonic mafic dykes. The similar textures of MME and adjoining synplutonic mafic dykes together with their spatial association and occasional transition of MME to dismembered synplutonic mafic dykes imply a genetic link between them. The synplutonic dykes occur in varying dimension ranging from a few centimeter width upto 200 meters width and are generally dismembered or disrupted and rarely continuous. Necking of dyke along its length and back veining of more leucocratic variant of the host is common feature. They show lobate as well as sharp contacts with chilled margins suggesting their injection during different stages of crystallization of host plutons in magma chamber. Local interaction, mixing and mingling processes are documented in all the studied crustal corridors in the EDC. The observed mixing, mingling, partial hybridization, MME and emplacement of synplutonic mafic dykes can be explained by four stage processes: (1) Mafic magma injected during very early stage of crystallization of host felsic magma, mixing of mafic and felsic host magma results in hybridization with occasional MME; (2) Mafic magma introduced slightly later, the viscosities of two magmas may be different and permit only mingling where by each component retain their identity; (3) When mafic magma injected into crystallizing granitic host magma with significant crystal content, the mafic magma is channeled into early fractures and form dismembered synplutonic mafic dykes and (4) Mafic injections enter into largely crystallized (>80% crystals) granitic host results in continuous dykes with sharp contacts. The origin of mafic magmas may be related to development of fractures to mantle depth during crystallization of host magmas which results in the decompression melting of mantle source. The resultant hot mafic melts with low viscosity rise rapidly into the crystallizing host magma chamber where they interact depending upon the crystallinity and viscosity of the host. These hot mafic injections locally cause reversal of crystallization of the felsic host and induce melting and resultant melts in turn penetrate the crystallizing mafic body as back veining. Field chronology indicates injection of mafic magmas is synchronous with emplacement of anatectic melts and slightly predates the 2.5 Ga metamorphic event which affected the whole Archaean crust. The injection of mafic magmas into the crystallizing host plutons forms the terminal Archaean magmatic event and spatially associated with reworking and cratonization of Archaean crust in the EDC.

Journal ArticleDOI
TL;DR: The results of field, petrographic and geochemical work of the granitoids of Hutti-Gurgunta area in the northern part of Eastern Dharwar Craton (EDC) is presented in this paper.
Abstract: The results of field, petrographic and geochemical work of the granitoids of Hutti-Gurgunta area in the northern part of Eastern Dharwar Craton (EDC) is presented in this paper. This crustal section comprises polyphase banded to foliated TTG gneisses, middle amphibolite facies Gurgunta schist belt and upper greenschist facies Hutti schist belt and abundant granite plutons. The focus of the present study is mainly on basement TTG gneisses and a granite pluton (∼ 240 sq km areal extent), to discuss crustal accretion processes including changing petrogenetic mechanism and geodynamic setting. The TTGs contain quartz, plagioclase, lesser K-feldspar and hornblende with minor biotite while the granite contain quartz, plagioclase, K-feldspar and hornblende. Late stage alteration (chloritisation, sericitisation and epidotisation) is wide spread in the entire area. A huge synplutonic mafic body which is dioritic to meladioritic in composition injects the granite and displays all stages of progressive mixing and hybridization. The studied TTGs and granite show distinct major and trace element patterns. The TTGs are characterized by higher SiO2, high Al2O3, and Na2O, low TiO2, Mg#, CaO, K2O and LILE, and HFS elements compared to granite. TTGs define strong trondhjemite trend whilst granite shows calc-alkaline trend. However, both TTGs and granite show characteristics of Phanerozoic high-silica adakites. The granite also shows characteristics of transitional TTGs in its high LILE, and progressive increase in K2O with differentiation. Both TTGs and granite define linear to sub-linear trends on variation diagrams. The TTGs show moderate total REE contents with fractionated REE patterns (La/YbN =17.73–61.73) and slight positive or without any significant Eu anomaly implying little amount of amphibole or plagioclase in residual liquid. On the other hand, the granite displays poor to moderate fractionation of REE patterns (La/YbN = 9.06–67.21) without any significant Eu anomaly. The TTGs have been interpreted to be produced by low-K basaltic slab melting at shallow depth, whereas the granite pluton has been formed by slab melting at depth and these melts interacted with peridotite mantle wedge. Such changing petrogenetic mechanisms and geodynamic conditions explain increase in the contents of MgO, CaO, Ni and Cr from 2700 Ma to 2500 Ma granitoids in the EDC.

Journal ArticleDOI
TL;DR: Geochemical analysis for the Mesoproterozoic clastic sedimentary rocks of the basal Gulcheru Formation of the Cuddapah Basin in the Gugudu-Dadithota-Parnapalle-Palkonda region (extending atleast 40 km) have been performed to highlight their provenance and weathering history as discussed by the authors.
Abstract: Geochemical analysis for the Mesoproterozoic clastic sedimentary rocks of the basal Gulcheru Formation of the Cuddapah Basin in the Gugudu-Dadithota-Parnapalle-Palkonda region (extending atleast 40 km) have been performed to highlight their provenance and weathering history. The low K 2 O/Al 2 O 3 ratios of the representative samples points to the recycled nature of sediments and illite clay in the sediments indicate an overall cold climate (low chemical weathering degree). All the provenance diagrams indicate a mixed source of the Gulcheru sediments with felsic dominancy and Upper continental crust (UCC) signature.