scispace - formally typeset
Search or ask a question

Showing papers in "Journal of The Mathematical Society of Japan in 1985"






Journal ArticleDOI
TL;DR: On etudie la condition sous laquelle les attracteurs de Lorenz geometriques ont la propriete de tracage de pseudo-orbite.
Abstract: On etudie la condition sous laquelle les attracteurs de Lorenz geometriques ont la propriete de tracage de pseudo-orbite

38 citations



Journal ArticleDOI
TL;DR: On montre l'existence, l'unicite et des estimations L p des solutions globales de certaines equations de diffusion non lineaires degenerees.
Abstract: On montre l'existence, l'unicite et des estimations L p des solutions globales de certaines equations de diffusion non lineaires degenerees

32 citations


Journal ArticleDOI
TL;DR: In this paper, a C 0 ―semi-groupe d'operateurs lineaires bornes H t λ(L) associes a L(γ,γ˙) et son generateur infinitesimal Aλ(L), sur l'espace de Hilbert intrinseque #7B-H(M), ou t∈R + et λ est un parametre positif
Abstract: Soit M une variete de dimension finie et soit L(γ,γ˙) une fonction sur le fibre tangent TM. On construit un C 0 ―semi-groupe d'operateurs lineaires bornes H t λ(L) associes a L(γ,γ˙) et son generateur infinitesimal Aλ(L) sur l'espace de Hilbert intrinseque #7B-H(M), ou t∈R + et λ est un parametre positif

31 citations



Journal ArticleDOI
Osamu Kobayashi1
TL;DR: In this paper, it was shown that the standard Einstein metric go is a candidate at which v takes a minimum, if v : 5I(S2 x S2)--R has a minimum.
Abstract: main subject in this paper is to determine inf {v(g) ; g E 1} , which will be denoted by v(M). A little consideration shows that v(M) > 0 if some Pontrjagin number of M is not zero. Thus, in general, v(M) is a nontrivial invariant of a manifold. In § 2, we shall show two general properties of v(M). One is that v(M)=0 for the total space M of a principal circle bundle (Theorem 2.1). This provides examples of M for which v(M)=0 but which has no conformally flat metric. The other is an inequality for connected sum ; v(M1#M2) <_ v(Ml)+v(M2) (Theorem 2.2). This is useful for computing v(M) for certain M. However, to determine v(M) for general M seems to be not so easy. Even for S2 X S2, (S2 x S2) is not known (to the author). We want to show that the standard Einstein metric go of S2 x S2 is a candidate at which v takes a minimum, if v : 5I(S2 x S2)--R has a minimum. In fact, go is a minimum point of v restricted to Kahler metrics (Proposition 1.4). Moreover, we shall prove that go is a strictly stable critical point of the functional v (cf. Definition 4.1 and Theorem4.2). In the course of proof of stability of go 51(S2 x S2), we establish the first and the second variational formulas of v : 5t (M) --*R for 4 dimensional M (Propositions 3.1 and 3.7; The first variational formula has already appeared in [2]). From these formulas, we can also see that other than conformally flat metrics, Einstein metrics are critical points of the functional v, and Ricci flat metrics are stable critical points of v.

28 citations


Journal ArticleDOI
TL;DR: In this paper, the resolution numerique de problemes aux valeurs limites is considered, i.e., on considere the resolution of probleme numerique, and on donne deux conditions.
Abstract: On considere la resolution numerique de problemes aux valeurs limites. On donne deux conditions. Si, pour un probleme donne elles sont satisfaites ensembles, alors la methode de plus grande pente continue contrainte converge vers une solution


Journal ArticleDOI
Takehiko Morita1
TL;DR: In this article, a transformation conservant la mesure τ and a variable aleatoire a valeur dans S: ζ sur un espace de probabilite (Ω, #7B-F, P, P) is considered.
Abstract: Soit S un espace mesurable et soit {τ s } s∈S une famille de transformations de l'intervalle unite I dans lui-meme non singulieres par rapport a la mesure de Lebesque m sur I. Etant donnee une transformation conservant la mesure τ et une variable aleatoire a valeur dans S: ζ sur un espace de probabilite (Ω, #7B-F, P), on considere un modele de systeme dynamique aleatoire dont l'evolution dans le temps est donnee par x n+1 =τζ nd + d 1 (a) (x n ), pour n≥1 ou ζ n =ζoτ n−1

Journal ArticleDOI
TL;DR: On etablit la propagation du chaos pour des processus de diffusion lies aux solutions de l'equation de Burgers as discussed by the authors, and on etablated la propagation de chaos for des processes de diffusion lie aux solutions of l'Equation of Burgers.
Abstract: On etablit la propagation du chaos pour des processus de diffusion lies aux solutions de l'equation de Burgers



Journal ArticleDOI
TL;DR: In this article, the notion de transitivite topologique forte for des systemes dynamiques C * was studied. And a comparison of the transitivitite topology with the notion of transitivité topology for dynamique C was made.
Abstract: On etudie la notion de transitivite topologique forte pour des systemes dynamiques C*. On compare a la transitivite topologique





Journal ArticleDOI
TL;DR: On etend la methode geometrique de Enss a classe d'operateurs differentiels dans [L 2 (R n )] m, m ≥ 2 as mentioned in this paper.
Abstract: On etend la methode geometrique de Enss a une classe d'operateurs differentiels dans [L 2 (R n )] m , m≥2. Cette classe inclut l'operateur de Dirac avec un champ electrique dans [L 2 (R 3 )] 4




Journal ArticleDOI
TL;DR: In this paper, a general procedure to find fundamental units of a cyclotomic number field is presented. But the problem is restricted to either of the following cases: case 1.1.
Abstract: 0.1. Any number field we consider is a finite extension of the rational number field $Q$ in the complex number field $C$ . Let $L/F$ be an abelian extension of number fields. For $L$ , denote its class number by $h$ and its group of units by $E$ . We restrict our study to either of the following cases: CASE 1. $F=Q$ and $L$ is contained in the real number field $R$ . CASE 2. $F$ is an imaginary quadratic number field. In this paper, we give a general procedure to calculate $h$ and to find together fundamental units of $L$ . We first connect $h$ to a finite index subgroup $E$ of $E$ by an index formula of the form $h=c(E:E)$ (Theorem 2 below). Hence $c(\\in Q)$ is rather easy to know and $E$ is generated by cyclotomic (Case 1) or so called elliptic (Case 2) units. The process to decide $(E:E)$ starts from the generators of $E$ , and ends at a free basis of $E$ (Algorithm 4 below). Thus $h$ and, at a time, fundamental units are obtained. To make the process effective, an upper bound of $(E:E)$ should be known beforehand. So we majorize $(E:E)$ by using the generators of $E$ (Theorem 3). Our method will be computer implementable, though we do not discuss it in detail. What we emphasize is that the classical (explicit) theory of cyclotomic fields or complex multiplication offers us a new general way of calculating $h$ and



Journal ArticleDOI
TL;DR: On construit une famille a parametre de surfaces rotationnelles complete dans S 3 a courbure moyenne constante as discussed by the authors, a Courbure constante.
Abstract: On construit une famille a un parametre de surfaces rotationnelles completes dans S 3 a courbure moyenne constante