scispace - formally typeset
Search or ask a question
JournalISSN: 0887-3593

Journal of The North American Benthological Society 

University of Chicago Press
About: Journal of The North American Benthological Society is an academic journal. The journal publishes majorly in the area(s): Benthic zone & Periphyton. It has an ISSN identifier of 0887-3593. Over the lifetime, 1579 publications have been published receiving 114252 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The term "urban stream syndrome" describes the consistently observed ecological degra- dation of streams draining urban land as mentioned in this paper, which can be attributed to a few major large-scale sources, primarily urban stormwater runoff delivered to streams by hydraulically efficient drainage systems.
Abstract: The term ''urban stream syndrome'' describes the consistently observed ecological degra- dation of streams draining urban land. This paper reviews recent literature to describe symptoms of the syndrome, explores mechanisms driving the syndrome, and identifies appropriate goals and methods for ecological restoration of urban streams. Symptoms of the urban stream syndrome include a flashier hy- drograph, elevated concentrations of nutrients and contaminants, altered channel morphology, and reduced biotic richness, with increased dominance of tolerant species. More research is needed before generaliza- tions can be made about urban effects on stream ecosystem processes, but reduced nutrient uptake has been consistently reported. The mechanisms driving the syndrome are complex and interactive, but most impacts can be ascribed to a few major large-scale sources, primarily urban stormwater runoff delivered to streams by hydraulically efficient drainage systems. Other stressors, such as combined or sanitary sewer overflows, wastewater treatment plant effluents, and legacy pollutants (long-lived pollutants from earlier land uses) can obscure the effects of stormwater runoff. Most research on urban impacts to streams has concentrated on correlations between instream ecological metrics and total catchment imperviousness. Recent research shows that some of the variance in such relationships can be explained by the distance between the stream reach and urban land, or by the hydraulic efficiency of stormwater drainage. The mech- anisms behind such patterns require experimentation at the catchment scale to identify the best management approaches to conservation and restoration of streams in urban catchments. Remediation of stormwater impacts is most likely to be achieved through widespread application of innovative approaches to drainage design. Because humans dominate urban ecosystems, research on urban stream ecology will require a broadening of stream ecological research to integrate with social, behavioral, and economic research.

2,520 citations

Journal ArticleDOI
TL;DR: Multi-scale, mechanistic understanding of species-environment relations will likely contribute to better predictions about large scale problems, such as the establishment and spread of exotic species or alterations in community composition with changing land use or climate.
Abstract: A heuristic framework for understanding and predicting the distribution and categorical abundance of species in stream communities is presented. The framework requires that species be described in terms of their functional relationships to habitat selective forces or their surrogates, which constitute "filters" occurring at hierarchical landscape scales (ranging from microhabitats to watersheds or basins). Large-scale filters are viewed as causative or mechanistic agents that constrain expression of local selective forces or biotic potential at lower scales. To join a local community, species in a regional pool must possess appropriate functional attributes (species traits) to "pass" through the nested filters. Biotic interactions are also a potential filter on local community composition, and they are invoked at the lower hierarchical levels, after species have passed through the physicochemical habitat filters. Potential landscape filters and their associated selective properties are identified, as are ...

1,690 citations

Journal ArticleDOI
TL;DR: In this paper, the authors define disturbance in stream ecosystems to be: any relatively discrete event in time that is characterized by a frequency, intensity, and severity outside a predictable range, and that disrupts ecosystem, community, or population structure and changes resources or the physical environment.
Abstract: We define disturbance in stream ecosystems to be: any relatively discrete event in time that is characterized by a frequency, intensity, and severity outside a predictable range, and that disrupts ecosystem, community, or population structure and changes resources or the physical environment. Of the three major hypotheses relating disturbance to lotic community structure, the dynamic equilibrium hypothesis appears to be generally applicable, although specific studies support the intermediate disturbance hypothesis and the equilibrium model. Differences in disturbance frequency between lentic and lotic systems may explain why biotic interactions are more apparent in lakes than in streams. Responses to both natural and anthropogenic disturbances vary regionally, as illustrated by examples from the mid-continent, Pacific northwest, and southeastern United States. Based on a generalized framework of climatic-biogeochemical characteristics, two features are considered to be most significant in choosing streams...

1,564 citations

Journal ArticleDOI
TL;DR: Progress in conservation of freshwater biodiversity is reviewed, with a focus on the period since 1986, and key challenges for the future are outlined, including bridge the gap between freshwater ecology and conservation biology.
Abstract: Freshwater habitats occupy ,1% of the Earth's surface, yet are hotspots that support ,10% of all known species, and ,M of vertebrate species. Fresh waters also are hotspots for human activities that have led to widespread habitat degradation, pollution, flow regulation and water extraction, fisheries overexploitation, and alien species introductions. These impacts have caused severe declines in the range and abundance of many freshwater species, so that they are now far more imperiled than their marine or terrestrial counterparts. Here, we review progress in conservation of freshwater biodiversity, with a focus on the period since 1986, and outline key challenges for the future. Driven by rising conservation concerns, freshwater ecologists have conducted a great deal of research over the past 25 y on the status, trends, autecology, and propagation of imperiled species, threats to these species, the consequences of biodiversity loss for ecosystem functioning, metapopulation dynamics, biodiversity hotspots, reserve design, habitat restoration, communication with stakeholders, and weaknesses of protective legislation. Nevertheless, existing efforts might be insufficient to stem the ongoing and coming multitude of freshwater extinctions. We briefly discuss 4 important challenges for freshwater conservation. First, climate change will imperil both freshwater species and human uses of fresh water, driving engineering responses that will further threaten the freshwater biota. We need to anticipate both ecological and human responses to climate change, and to encourage rational and deliberate planning of engineering responses to climate change before disasters strike. Second, because freshwater extinctions are already well underway, freshwater conservationists must be prepared to act now to prevent further losses, even if our knowledge is incomplete, and engage more effectively with other stakeholders. Third, we need to bridge the gap between freshwater ecology and conservation biology. Fourth, we suggest that scientific societies and scholarly journals concerned with limnology or freshwater sciences need to improve their historically poor record in publishing important papers and influencing practice in conservation ecology. Failure to meet these challenges will lead to the extinction or impoverishment of the very subjects of our research.

1,369 citations

Journal ArticleDOI
TL;DR: A predicted increase in the severity and frequency of disturbances with global climate change requires a comprehensive understanding of the disturbance ecology of running waters.
Abstract: Perturbations in ecosystems consist of a sequence of 2 events: the disturbance, marked by the application of the disturbing forces, and the response shown by the biota to the damage inflicted by the disturbance. The disturbance must be effectively characterized, without confounding it with the response, for progress to be made in the study of the disturbance ecology of streams. A disturbance may take the form of a pulse, a press, or a ramp, and the consequent trajectory of the response may be a pulse, a press, or a ramp.Floods and droughts are the major forms of natural disturbance in flowing waters and, although the effects of floods have been relatively well studied, those of droughts have been largely neglected. Floods accentuate downstream and lateral transport links, often with damaging consequences, whereas droughts fragment the continuity of streams. Both floods and droughts destroy and generate habitat patchiness and patchiness of the biota. During recovery, there are changes in the biotic...

1,126 citations

Network Information
Related Journals (5)
Freshwater Biology
6.1K papers, 360.5K citations
94% related
Hydrobiologia
20.4K papers, 638.7K citations
89% related
Canadian Journal of Fisheries and Aquatic Sciences
10.1K papers, 598.3K citations
86% related
Limnology and Oceanography
11.2K papers, 917.6K citations
86% related
Ecological Applications
5.1K papers, 498.7K citations
84% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20154
201188
2010105
200990
200881
200764