scispace - formally typeset
Search or ask a question
JournalISSN: 0889-504X

Journal of Turbomachinery-transactions of The Asme 

ASM International
About: Journal of Turbomachinery-transactions of The Asme is an academic journal published by ASM International. The journal publishes majorly in the area(s): Turbine blade & Turbine. It has an ISSN identifier of 0889-504X. Over the lifetime, 3949 publications have been published receiving 119257 citations. The journal is also known as: ASME journal of turbomachinery.


Papers
More filters
Journal ArticleDOI
TL;DR: The origins and effects of loss in turbomachines are discussed in this article with the emphasis on trying to understand the physical origins of loss rather than on reviewing the available prediction methods.
Abstract: The origins and effects of loss in turbomachines are discussed with the emphasis on trying to understand the physical origins of loss rather than on reviewing the available prediction methods. Loss is defined in terms of entropy increase and the relationship of this to the more familiar loss coefficients is derived and discussed. The sources of entropy are, in general: viscous effects in boundary layers, viscous effects in mixing processes, shock waves, and heat transfer across temperature differences. These are first discussed in general and then the results are applied to turbomachinery flows. Understanding of the loss due to heat transfer requires some discussion of cycle thermodynamics

1,203 citations

Journal ArticleDOI
TL;DR: Langtry et al. as discussed by the authors developed a new correlation-based transition model based strictly on local variables, which is compatible with modern computational fluid dynamics (CFD) approaches, such as unstructured grids and massive parallel execution.
Abstract: A new correlation-based transition model has been developed, which is based strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) approaches, such as unstructured grids and massive parallel execution. The model is based on two transport equations, one for intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models) but form a framework for the implementation of correlation-based models into general-purpose CFD methods. Part I (this part) of this paper gives a detailed description of the mathematical formulation of the model and some of the basic test cases used for model validation, including a two-dimensional turbine blade. Part II (Langtry, R. B., Menter, F. R., Likki, S. R., Suzen, Y. B., Huang, P. G., and Volker, S., 2006, ASME J. Turbomach., 128(3), pp. 423–434) of the paper details a significant number of test cases that have been used to validate the transition model for turbomachinery and aerodynamic applications. The authors believe that the current formulation is a significant step forward in engineering transition modeling, as it allows the combination of correlation-based transition models with general purpose CFD codes.

1,131 citations

Journal ArticleDOI
TL;DR: In this article, a row of inclined holes that injected cryogenically cooled air across a flat, adiabatic test plate was used to study the effectiveness of film cooling.
Abstract: Film-cooling effectiveness was studied using a row of inclined holes that injected cryogenically cooled air across a flat, adiabatic test plate. The density ratio of the coolant to mainstream varied from 1.2 to 2.0. Surface temperatures were measured using a unique surface thermocouple arrangement free of conduction errors. Temperatures were obtained along the jet centerline and across a number of lateral locations. By independently varying density ratio and blowing rate, scaling of adiabatic effectiveness with mass flux ratio, velocity ratio, and momentum ratio was determined. Depending on the momentum flux ratio, the jet either remains attached to the surface, detaches and then reattaches, or is fully detached. For attached jets, the centerline effectiveness scaled with the mass flux ratio. However, for detached-reattached jets, a consistent scaling was not found although the general distribution of the centerline effectiveness scaled with momentum flux ratio. Laterally averaged effectiveness was found to be dependent on density ratio and momentum flux ratio. Decreases in density ratio and increases in momentum flux ratio were found to reduce the spreading of the film cooling jet significantly and thereby reduce laterally averaged effectiveness.

529 citations

Journal ArticleDOI
TL;DR: Menter et al. as mentioned in this paper proposed a new correlation-based transition model based on local variables, which is compatible with modern computational fluid dynamics (CFD) methods using unstructured grids and massive parallel execution.
Abstract: A new correlation-based transition model has been developed, which is built strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) methods using unstructured grids and massive parallel execution. The model is based on two transport equations, one for the intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models), but form a framework for the implementation of correlation-based models into general-purpose CFD methods. Part I of this paper (Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., and Volker, S., 2006, ASME J. Turbomach., 128(3), pp. 413–422) gives a detailed description of the mathematical formulation of the model and some of the basic test cases used for model validation. Part II (this part) details a significant number of test cases that have been used to validate the transition model for turbomachinery and aerodynamic applications, including the drag crisis of a cylinder, separation-induced transition on a circular leading edge, and natural transition on a wind turbine airfoil. Turbomachinery test cases include a highly loaded compressor cascade, a low-pressure turbine blade, a transonic turbine guide vane, a 3D annular compressor cascade, and unsteady transition due to wake impingement. In addition, predictions are shown for an actual industrial application, namely, a GE low-pressure turbine vane. In all cases, good agreement with the experiments could be achieved and the authors believe that the current model is a significant step forward in engineering transition modeling.

436 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202358
2022183
202162
2020181
2019153
2018129