scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Vibration and Acoustics in 2017"


Journal ArticleDOI
TL;DR: In this paper, a nonlinear energy sink (NES) approach is proposed for whole-spacecraft vibration reduction, which can efficiently absorb and dissipate broadband-frequency energy via nonlinear beats, irreversible targeted energy transfer (TET), or both for different parameters.
Abstract: A nonlinear energy sink (NES) approach is proposed for whole-spacecraft vibration reduction. Frequency sweeping tests are conducted on a scaled whole-spacecraft structure without or with a NES attached. The experimental transmissibility results demonstrate the significant reduction of the whole-spacecraft structure vibration over a broad spectrum of excitation frequency. The NES attachment hardly changes the natural frequencies of the structure. A finite element model is developed, and the model is verified by the experimental results. A two degrees-of-freedom (DOF) equivalent model of the scaled whole-spacecraft is proposed with the two same natural frequencies as those obtained via the finite element model. The experiment, the finite element model, and the equivalent model predict the same trends that the NES vibration reduction performance becomes better for the increasing NES mass, the increasing NES viscous damping, and the decreasing nonlinear stiffness. The energy absorption measure and the energy transition measure calculated based on the equivalent model reveals that an appropriately designed NES can efficiently absorb and dissipate broadband-frequency energy via nonlinear beats, irreversible targeted energy transfer (TET), or both for different parameters. [DOI: 10.1115/1.4035377]

91 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented an analytical study of a multifunctional system based on the concept of acoustic-elastic metamaterial (AEMM) that exhibits a stop band gap for wave transmission.
Abstract: Inspired by the mechanism of acoustic-elastic metamaterial (AEMM) that exhibits a stop band gap for wave transmission, simultaneous vibration suppression and energy harvesting can be achieved by integrating AEMM with energy-harvesting component. This article presents an analytical study of a multifunctional system based on this concept. First, a mathematical model of a unit-cell AEMM embedded with a piezoelectric transducer is developed and analyzed. The most important finding is the double-valley phenomenon that can intensively widen the band gap under strong electromechanical coupling condition. Based on the mathematical model, a dimensionless parametric study is conducted to investigate how to tune the system to enhance its vibration suppression ability. Subsequently, a multicell system is conceptualized from the findings of the unit-cell system. In a similar way, dimensionless parametric studies are conducted to optimize the vibration suppression performance and the energy-harvesting performance severally. It turns out that different impedance matching schemes are required to achieve optimal vibration suppression and energy harvesting. To handle this problem, compromising solutions are proposed for weakly and strongly coupled systems, respectively. Finally, the characteristics of the AEMM-based piezoelectric energy harvester (PEH) from two functional aspects are summarized, providing several design guidelines in terms of system parameter tuning. It is concluded that certain tradeoff is required in the process of optimizing the performance toward dual functionalities.

85 citations





Journal ArticleDOI
TL;DR: In this article, a hexapod of quasi-zero-stiffness (QZS) struts is proposed to provide a solution for low-frequency vibration isolation in 6DOFs.
Abstract: A platform supported by a hexapod of quasi-zero-stiffness (QZS) struts is proposed to provide a solution for low-frequency vibration isolation in six degrees-of-freedom (6DOFs). The QZS strut is developed by combining a pair of mutually repelling permanent magnets in parallel connection with a coil spring. Dynamic analysis of the 6DOFs QZS platform is carried out to obtain dynamic responses by using the harmonic balance method, and the vibration isolation performance in each DOF is evaluated in terms of force/moment transmissibility, which indicates that the QZS platform perform a good function of low-frequency vibration isolation within broad bandwidth, and has notable advantages over its linear counterpart in all 6DOFs. [DOI: 10.1115/1.4035715]

55 citations



Journal ArticleDOI
TL;DR: In this article, the authors derived a magneto-elastic beam operated at the transition between mono and bi-stable regions for low frequency vibration energy harvesting at around 17 Hz.
Abstract: Abstract Vibration energy harvesting can be an effective method for scavenging wasted mechanical energy for use by wireless sensors that have limited battery life. Two major goals in designing energy harvesters are enhancing the power scavenged at low frequency and improving efficiency by increasing the frequency bandwidth. To achieve these goals, we derived a magneto-elastic beam operated at the transition between monoand bi-stable regions. By improving the mathematical model of the interaction of magnetic force and beam dynamics, we obtained a precise prediction of natural frequencies as the distance of magnets varies. Using the shooting technique for the improved model, we present a fundamental understanding of interesting combined softening and hardening responses that happen at the transition between the two regimes. The transition regime is proposed as the optimal region for energy conversion in terms of frequency bandwidth and output voltage. Using this technique, low frequency vibration energy harvesting at around 17 Hz was possible. The theoretical results were in good agreement with the experimental results. The target application is to power wildlife bio-logging devices from bird flights that have consistent high power density around 16 Hz [1].Vibration energy harvesting can be an effective method for scavenging wasted mechanical energy for use by wireless sensors that have limited battery life. Two major goals in designing energy harvesters are enhancing the power scavenged at low frequency and improving efficiency by increasing the frequency bandwidth. To achieve these goals, we derived a magneto-elastic beam operated at the transition between monoand bi-stable regions. By improving the mathematical model of the interaction of magnetic force and beam dynamics, we obtained a precise prediction of natural frequencies as the distance of magnets varies. Using the shooting technique for the improved model, we present a fundamental understanding of interesting combined softening and hardening responses that happen at the transition between the two regimes. The transition regime is proposed as the optimal region for energy conversion in terms of frequency bandwidth and output voltage. Using this technique, low frequency vibration energy harvesting at around 17 Hz was possible. The theoretical results were in good agreement with the experimental results. The target application is to power wildlife bio-logging devices from bird flights that have consistent high power density around 16 Hz [1].

49 citations








Journal ArticleDOI
TL;DR: In this paper, a comparison of wave dispersion for two-and three-dimensional (3D) metamaterial models and evaluation of the applicability ranges of 2D results is presented.
Abstract: Locally resonant metamaterials (LRMs) controlling low-frequency waves due to resonant scattering are usually characterized by narrow band gaps (BGs) and a poor wave filtering performance. To remedy this shortcoming, multiresonant metamaterial structures with closely located BGs have been proposed and widely studied. However, the analysis is generally limited to two-dimensional (2D) structures neglecting the finite height of any real resonator. The aim of this paper is the comparison of the wave dispersion for two- and three-dimensional (3D) metamaterial models and evaluation of the applicability ranges of 2D results. Numerical study reveals that dual-resonant structures with cylindrical inclusions possess only a single (compared to two in the 2D case) BG for certain height-to-width ratios. In contrast, the wave dispersion in metamaterials with multiple spherical resonators can be accurately evaluated using a 2D approximation, enabling a significant simplification of resource-consuming 3D models.







Journal ArticleDOI
TL;DR: In accounting for the interaction between the robot and ground, a dynamic model using the first two modes of each leg shows good agreement with experimental results for the centimeter-scale prototypes, in terms of both magnitude and the trends in robot locomotion with respect to actuation conditions.
Abstract: A dynamic model is developed for small-scale robots with multiple high-frequency actuated compliant elastic legs and a rigid body. The motion of the small-scale robots results from dual-direction motion of piezoelectric actuators attached to the legs, with impact dynamics increasing robot locomotion complexity. A dynamic model is developed to describe the small-scale robot motion in the presence of variable properties of the underlying terrain. The dynamic model is derived from beam theory with appropriate boundary and loading conditions and considers each robot leg as a continuous structure moving in two directions. Robot body motion is modeled in up to five degrees-of-freedom (DOF) using a rigid body approximation for the central robot chassis. Individual modes of the resulting multimode robot are treated as second-order linear systems. The dynamic model is tested with two different centimeter-scale robot prototypes having an analogous actuation scheme to millimeter-scale microrobots. In accounting for the interaction between the robot and ground, a dynamic model using the first two modes of each leg shows good agreement with experimental results for the centimeter-scale prototypes, in terms of both magnitude and the trends in robot locomotion with respect to actuation conditions. [DOI: 10.1115/1.4035959]

Journal ArticleDOI
TL;DR: In this paper, an experimental test rig was constructed to determine the influence of non-completely rigid nearby surfaces in the dynamic behavior of a submerged structure, based on a disk attached to a shaft and confined in a tank covered with two different casings with different mass and stiffness.
Abstract: Determining the dynamic response of submerged and confined disklike structures is of interest in engineering applications, such as in hydraulic turbine runners. This dynamic response is heavily affected by the added mass and damping as well as the proximity of solid boundaries. These solid boundaries are normally considered as completely rigid in theoretical or numerical calculations, however, this assumption is not always valid. Some hydraulic turbines have noncompletely stiff casings, which can modify the dynamic response of the runner itself, affecting specially its natural frequencies and damping behavior. To determine the influence of noncompletely rigid nearby surfaces in the dynamic behavior of a submerged structure, an experimental test rig has been constructed. This test rig is based on a disk attached to a shaft and confined in a tank covered with two different casings with different mass and stiffness. For both covers and different disk to cover distances, natural frequencies and damping ratios of the disk have been obtained experimentally. Accelerometers installed on the disk and covers as well as pressure sensors are used for this purpose. Results obtained for all the cases are discussed in detail and compared with a simplified theoretical model.


Journal ArticleDOI
TL;DR: In this paper, an ensemble empirical mode decomposition (EEMD) method with optimized two parameters is proposed to solve the mode mixing problem in vibration signal decomposition, and the initial values of the two critical parameters are selected based on an adaptive algorithm.
Abstract: The vibration signal decomposition is a critical step in the assessment of machine health condition. Though ensemble empirical mode decomposition (EEMD) method outperforms fast Fourier transform (FFT), wavelet transform, and empirical mode decomposition (EMD) on nonstationary signal decomposition, there exists a mode mixing problem if the two critical parameters (i.e., the amplitude of added white noise and the number of ensemble trials) are not selected appropriately. A novel EEMD method with optimized two parameters is proposed to solve the mode mixing problem in vibration signal decomposition in this paper. In the proposed optimal EEMD, the initial values of the two critical parameters are selected based on an adaptive algorithm. Then, a multimode search algorithm is explored to optimize the critical two parameters by its good performance in global and local search. The performances of the proposed method are demonstrated by means of a simulated signal, two bearing vibration signals, and a vibration signal in a milling process. The results show that compared with the traditional EEMD method and other improved EEMD method, the proposed optimal EEMD method automatically obtains the appropriate parameters of EEMD and achieves higher decomposition accuracy and faster computational efficiency. [DOI: 10.1115/1.4035480]





Journal ArticleDOI
TL;DR: The necessity of reducing CO2 emissions has lead to an increased number of passenger cars that utilize turbocharging to maintain performance when the internal combustion (IC) engines are downsized.
Abstract: The necessity of reducing CO2 emissions has lead to an increased number of passenger cars that utilize turbocharging to maintain performance when the internal combustion (IC) engines are downsized. ...