scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Virology in 2007"


Journal ArticleDOI
TL;DR: It is shown that transgenic mice that express the SARS-CoV receptor (human angiotensin-converting enzyme 2 [hACE2]) in airway and other epithelia develop a rapidly lethal infection after intranasal inoculation with a human strain of the virus.
Abstract: The severe acute respiratory syndrome (SARS), caused by a novel coronavirus (SARS-CoV), resulted in substantial morbidity, mortality, and economic losses during the 2003 epidemic. While SARS-CoV infection has not recurred to a significant extent since 2003, it still remains a potential threat. Understanding of SARS and development of therapeutic approaches have been hampered by the absence of an animal model that mimics the human disease and is reproducible. Here we show that transgenic mice that express the SARS-CoV receptor (human angiotensin-converting enzyme 2 [hACE2]) in airway and other epithelia develop a rapidly lethal infection after intranasal inoculation with a human strain of the virus. Infection begins in airway epithelia, with subsequent alveolar involvement and extrapulmonary virus spread to the brain. Infection results in macrophage and lymphocyte infiltration in the lungs and upregulation of proinflammatory cytokines and chemokines in both the lung and the brain. This model of lethal infection with SARS-CoV should be useful for studies of pathogenesis and for the development of antiviral therapies.

815 citations


Journal ArticleDOI
TL;DR: A broad spectrum of anti-HBV immunity is expressed by patients with chronic HBV infection and this spectrum is proportional to HBV replication levels and can be improved by blocking the PD-1/PD-L1 pathway.
Abstract: Dysfunctional CD8+ T cells present in chronic virus infections can express programmed death 1 (PD-1) molecules, and the inhibition of the engagement of PD-1 with its ligand (PD-L1) has been reported to enhance the antiviral function of these T cells. We took advantage of the wide fluctuations in levels of viremia which are typical of chronic hepatitis B virus (HBV) infection to comprehensively analyze the impact of prolonged exposure to different virus quantities on virus-specific T-cell dysfunction and on its reversibility through the blocking of the PD-1/PD-L1 pathway. We confirm that chronic HBV infection has a profound effect on the HBV-specific T-cell repertoire. Despite the use of a comprehensive panel of peptides covering all HBV proteins, HBV-specific T cells were rarely observed directly ex vivo in samples from patients with chronic infection, in contrast to those from patients with acute HBV infection. In chronic HBV infection, virus-specific T cells were detected mainly in patients with lower levels of viremia. These HBV-specific CD8+ T cells expressed PD-1, and their function was improved by the blocking of PD-1/PD-L1 engagement. Thus, a broad spectrum of anti-HBV immunity is expressed by patients with chronic HBV infection and this spectrum is proportional to HBV replication levels and can be improved by blocking the PD-1/PD-L1 pathway. This information may be useful for the design of immunotherapeutic strategies to complement and optimize available antiviral therapies.

802 citations


Journal ArticleDOI
TL;DR: The identification of a previously unknown polyomvirus provisionally named KI polyomavirus, which is phylogenetically related to other primatepolyomaviruses in the early region of the genome but has very little homology to known polyomVirus in the late region, illustrates how unbiased screening of respiratory tract samples can be used for the discovery of diverse virus types.
Abstract: We have previously reported on a system for large-scale molecular virus screening of clinical samples. As part of an effort to systematically search for unrecognized human pathogens, the technology was applied for virus screening of human respiratory tract samples. This resulted in the identification of a previously unknown polyomavirus provisionally named KI polyomavirus. The virus is phylogenetically related to other primate polyomaviruses in the early region of the genome but has very little homology (<30% amino acid identity) to known polyomaviruses in the late region. The virus was found by PCR in 6 (1%) of 637 nasopharyngeal aspirates and in 1 (0.5%) of 192 fecal samples but was not detected in sets of urine and blood samples. Since polyomaviruses have oncogenic potential and may produce severe disease in immunosuppressed individuals, continued searching for the virus in different medical contexts is important. This finding further illustrates how unbiased screening of respiratory tract samples can be used for the discovery of diverse virus types.

655 citations


Journal ArticleDOI
TL;DR: It has been determined that SARS-CoV open reading frame (ORF) 3b, ORF 6, and N proteins antagonize interferon, a key component of the innate immune response.
Abstract: The severe acute respiratory syndrome coronavirus (SARS-CoV) is highly pathogenic in humans, with a death rate near 10%. This high pathogenicity suggests that SARS-CoV has developed mechanisms to overcome the host innate immune response. It has now been determined that SARS-CoV open reading frame (ORF) 3b, ORF 6, and N proteins antagonize interferon, a key component of the innate immune response. All three proteins inhibit the expression of beta interferon (IFN-beta), and further examination revealed that these SARS-CoV proteins inhibit a key protein necessary for the expression of IFN-beta, IRF-3. N protein dramatically inhibited expression from an NF-kappaB-responsive promoter. All three proteins were able to inhibit expression from an interferon-stimulated response element (ISRE) promoter after infection with Sendai virus, while only ORF 3b and ORF 6 proteins were able to inhibit expression from the ISRE promoter after treatment with interferon. This indicates that N protein inhibits only the synthesis of interferon, while ORF 3b and ORF 6 proteins inhibit both interferon synthesis and signaling. ORF 6 protein, but not ORF 3b or N protein, inhibited nuclear translocation but not phosphorylation of STAT1. Thus, it appears that these three interferon antagonists of SARS-CoV inhibit the interferon response by different mechanisms.

628 citations


Journal ArticleDOI
TL;DR: The 2′,5′-oligoadenylate synthetase (OAS)/RNase L system is an innate immunity pathway that responds to a pathogen-associated molecular pattern to induce degradation of viral and cellular RNAs and thereby block viral infections.
Abstract: RNA cleavage is a fundamental host response for controlling viral infections in both plants and animals ([26][1]). In higher vertebrates, this process is often regulated by interferons (IFNs), a family of antiviral cytokines discovered 50 years ago ([50][2]). One of the principal IFN antiviral

594 citations


Journal ArticleDOI
TL;DR: The results indicate that, in addition to sequestering dsRNA, the NS1 of influenza A virus binds to RIG-I and inhibits downstream activation of IRF-3, preventing the transcriptional induction of IFN-β.
Abstract: The retinoic acid-inducible gene I product (RIG-I) has been identified as a cellular sensor of RNA virus infection resulting in beta interferon (IFN-β) induction. However, many viruses are known to encode viral products that inhibit IFN-β production. In the case of influenza A virus, the viral nonstructural protein 1 (NS1) prevents the induction of the IFN-β promoter by inhibiting the activation of transcription factors, including IRF-3, involved in IFN-β transcriptional activation. The inhibitory properties of NS1 appear to be due at least in part to its binding to double-stranded RNA (dsRNA), resulting in the sequestration of this viral mediator of RIG-I activation. However, the precise effects of NS1 on the RIG-I-mediated induction of IFN-β have not been characterized. We now report that the NS1 of influenza A virus interacts with RIG-I and inhibits the RIG-I-mediated induction of IFN-β. This inhibition was apparent even when a mutant RIG-I that is constitutively activated (in the absence of dsRNA) was used to trigger IFN-β production. Coexpression of RIG-I, its downstream signaling partner, IPS-1, and NS1 resulted in increased levels of RIG-I and NS1 within an IPS-1-rich, solubilization-resistant fraction after cell lysis. These results suggest that RIG-I, IPS-1, and NS1 become part of the same complex. Consistent with this idea, NS1 was also found to inhibit IFN-β promoter activation by IPS-1 overexpression. Our results indicate that, in addition to sequestering dsRNA, the NS1 of influenza A virus binds to RIG-I and inhibits downstream activation of IRF-3, preventing the transcriptional induction of IFN-β.

581 citations


Journal ArticleDOI
TL;DR: The hallmark of coronavirus transcription is the production of multiple subgenomic mRNAs that contain sequences corresponding to both ends of the genome.
Abstract: Coronaviruses are a family of enveloped, plus-stranded RNA viruses with helical nucleocapsids and extraordinarily large genomes. The hallmark of coronavirus transcription is the production of multiple subgenomic mRNAs that contain sequences corresponding to both ends of the genome. (Transcription is

543 citations


Journal ArticleDOI
TL;DR: The construction of three novel rAd vector systems from Ad26, Ad48, and Ad50 are described and a detailed comparison of multiple rAd vectors from subgroups B and D is reported, which substantially expand the portfolio of rare serotype r adenovirus serotype vectors that may prove useful as vaccine vectors for the developing world.
Abstract: Recombinant adenovirus serotype 5 (rAd5) vector-based vaccines are currently being developed for both human immunodeficiency virus type 1 and other pathogens. The potential limitations associated with rAd5 vectors, however, have led to the construction of novel rAd vectors derived from rare Ad serotypes. Several rare serotype rAd vectors have already been described, but a detailed comparison of multiple rAd vectors from subgroups B and D has not previously been reported. Such a comparison is critical for selecting optimal rAd vectors for advancement into clinical trials. Here we describe the construction of three novel rAd vector systems from Ad26, Ad48, and Ad50. We report comparative seroprevalence and immunogenicity studies involving rAd11, rAd35, and rAd50 vectors from subgroup B; rAd26, rAd48, and rAd49 vectors from subgroup D; and rAd5 vectors from subgroup C. All six rAd vectors from subgroups B and D exhibited low seroprevalence in a cohort of 200 individuals from sub-Saharan Africa, and they elicited Gag-specific cellular immune responses in mice both with and without preexisting anti-Ad5 immunity. The rAd vectors from subgroup D were also evaluated using rhesus monkeys and were shown to be immunogenic after a single injection. The rAd26 vectors proved the most immunogenic among the rare serotype rAd vectors studied, although all rare serotype rAd vectors were still less potent than rAd5 vectors in the absence of anti-Ad5 immunity. These studies substantially expand the portfolio of rare serotype rAd vectors that may prove useful as vaccine vectors for the developing world.

500 citations


Journal ArticleDOI
TL;DR: Influenza (or “flu”) leads to the hospitalization of more than 200,000 people yearly and results in 36,000 deaths from flu or flu-related complications in the United States.
Abstract: Influenza (or “flu”) leads to the hospitalization of more than 200,000 people yearly and results in 36,000 deaths from flu or flu-related complications in the United States ([15][1]), striking both the elderly and infant populations particularly hard ([24][2]). Two members of the

490 citations


Journal ArticleDOI
TL;DR: It is demonstrated that SARS-COV ORF6 protein is localized to the endoplasmic reticulum (ER)/Golgi membrane in infected cells, where it binds to and disrupts nuclear import complex formation by tethering karyopherin alpha 2 and kARYopherin beta 1 to the membrane.
Abstract: The host innate immune response is an important deterrent of severe viral infection in humans and animals. Nuclear import factors function as key gatekeepers that regulate the transport of innate immune regulatory cargo to the nucleus of cells to activate the antiviral response. Using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model, we demonstrate that SARS-COV ORF6 protein is localized to the endoplasmic reticulum (ER)/Golgi membrane in infected cells, where it binds to and disrupts nuclear import complex formation by tethering karyopherin alpha 2 and karyopherin beta 1 to the membrane. Retention of import factors at the ER/Golgi membrane leads to a loss of STAT1 transport into the nucleus in response to interferon signaling, thus blocking the expression of STAT1-activated genes that establish an antiviral state. We mapped the region of ORF6, which binds karyopherin alpha 2, to the C terminus of ORF6 and show that mutations in the C terminus no longer bind karyopherin alpha 2 or block the nuclear import of STAT1. We also show that N-terminal deletions of karyopherin alpha 2 that no longer bind to karyopherin beta 1 still retain ORF6 binding activity but no longer block STAT1 nuclear import. Recombinant SARS-CoV lacking ORF6 did not tether karyopherin alpha 2 to the ER/Golgi membrane and allowed the import of the STAT1 complex into the nucleus. We discuss the likely implications of these data on SARS-CoV replication and pathogenesis.

481 citations


Journal ArticleDOI
TL;DR: It is concluded that p7 and NS2 function at an early stage of virion morphogenesis, prior to the assembly of infectious virus.
Abstract: Hepatitis C virus (HCV) infection is a global health concern affecting an estimated 3% of the world's population. Recently, cell culture systems have been established, allowing recapitulation of the complete virus life cycle for the first time. Since the HCV proteins p7 and NS2 are not predicted to be major components of the virion, nor are they required for RNA replication, we investigated whether they might have other roles in the viral life cycle. Here we utilize the recently described infectious J6/JFH chimera to establish that the p7 and NS2 proteins are essential for HCV infectivity. Furthermore, unprocessed forms of p7 and NS2 were not required for this activity. Mutation of two conserved basic residues, previously shown to be important for the ion channel activity of p7 in vitro, drastically impaired infectious virus production. The protease domain of NS2 was required for infectivity, whereas its catalytic active site was dispensable. We conclude that p7 and NS2 function at an early stage of virion morphogenesis, prior to the assembly of infectious virus.

Journal ArticleDOI
TL;DR: It is found that in chronic HCV infection, peripheral HCV-specific T cells express high levels ofPD-1 and that blockade of the PD-1/PD-L1 interaction led to an enhanced proliferative capacity.
Abstract: The majority of people infected with hepatitis C virus (HCV) fail to generate or maintain a T-cell response effective for viral clearance. Evidence from murine chronic viral infections shows that expression of the coinhibitory molecule PD-1 predicts CD8+ antiviral T-cell exhaustion and may contribute to inadequate pathogen control. To investigate whether human CD8+ T cells express PD-1 and demonstrate a dysfunctional phenotype during chronic HCV infection, peripheral and intrahepatic HCV-specific CD8+ T cells were examined. We found that in chronic HCV infection, peripheral HCV-specific T cells express high levels of PD-1 and that blockade of the PD-1/PD-L1 interaction led to an enhanced proliferative capacity. Importantly, intrahepatic HCV-specific T cells, in contrast to those in the periphery, express not only high levels of PD-1 but also decreased interleukin-7 receptor alpha (CD127), an exhausted phenotype that was HCV antigen specific and compartmentalized to the liver, the site of viral replication.

Journal ArticleDOI
TL;DR: Findings indicate that Kaposi's sarcoma-associated herpesvirus miR-K12-11 is an ortholog of hsa-miR-155, an miRNA frequently found to be up-regulated in lymphomas and critically important for B-cell development.
Abstract: MicroRNAs (miRNAs) are small noncoding RNAs that posttranscriptionally regulate gene expression by binding to 3'-untranslated regions (3'UTRs) of target mRNAs. Kaposi's sarcoma-associated herpesvirus (KSHV), a virus linked to malignancies including primary effusion lymphoma (PEL), encodes 12 miRNA genes, but only a few regulatory targets are known. We found that KSHV-miR-K12-11 shares 100% seed sequence homology with hsa-miR-155, an miRNA frequently found to be up-regulated in lymphomas and critically important for B-cell development. Based on this seed sequence homology, we hypothesized that both miRNAs regulate a common set of target genes and, as a result, could have similar biological activities. Examination of five PEL lines showed that PELs do not express miR-155 but do express high levels of miR-K12-11. Bioinformatic tools predicted the transcriptional repressor BACH-1 to be targeted by both miRNAs, and ectopic expression of either miR-155 or miR-K12-11 inhibited a BACH-1 3'UTR-containing reporter. Furthermore, BACH-1 protein levels are low in cells expressing either miRNA. Gene expression profiling of miRNA-expressing stable cell lines revealed 66 genes that were commonly down-regulated. For select genes, miRNA targeting was confirmed by reporter assays. Thus, based on our in silico predictions, reporter assays, and expression profiling data, miR-K12-11 and miR-155 regulate a common set of cellular targets. Given the role of miR-155 during B-cell maturation, we speculate that miR-K12-11 may contribute to the distinct developmental phenotype of PEL cells, which are blocked in a late stage of B-cell development. Together, these findings indicate that KSHV miR-K12-11 is an ortholog of miR-155.

Journal ArticleDOI
TL;DR: The capacity of FLUAV NS1 to suppress the antiviral host defense at multiple levels is demonstrated and the existence of strain-specific differences that may modulate virus pathogenicity is demonstrated.
Abstract: The replication and pathogenicity of influenza A virus (FLUAV) are controlled in part by the alpha/beta interferon (IFN-α/β) system. This virus-host interplay is dependent on the production of IFN-α/β and on the capacity of the viral nonstructural protein NS1 to counteract the IFN system. Two different mechanisms have been described for NS1, namely, blocking the activation of IFN regulatory factor 3 (IRF3) and blocking posttranscriptional processing of cellular mRNAs. Here we directly compare the abilities of NS1 gene products from three different human FLUAV (H1N1) strains to counteract the antiviral host response. We found that A/PR/8/34 NS1 has a strong capacity to inhibit IRF3 and activation of the IFN-β promoter but is unable to suppress expression of other cellular genes. In contrast, the NS1 proteins of A/Tx/36/91 and of A/BM/1/18, the virus that caused the Spanish influenza pandemic, caused suppression of additional cellular gene expression. Thus, these NS1 proteins prevented the establishment of an IFN-induced antiviral state, allowing virus replication even in the presence of IFN. Interestingly, the block in gene expression was dependent on a newly described NS1 domain that is important for interaction with the cleavage and polyadenylation specificity factor (CPSF) component of the cellular pre-mRNA processing machinery but is not functional in A/PR/8/34 NS1. We identified the Phe-103 and Met-106 residues in NS1 as being critical for CPSF binding, together with the previously described C-terminal binding domain. Our results demonstrate the capacity of FLUAV NS1 to suppress the antiviral host defense at multiple levels and the existence of strain-specific differences that may modulate virus pathogenicity.

Journal ArticleDOI
TL;DR: A detailed comparison of signal transduction initiated by type I and type III IFN is described and it is found that typeIII IFN relies strongly upon both p38 and JNK MAP kinases for gene induction.
Abstract: Type III interferon (IFN) is a novel member of the interferon family. Type III IFN utilizes a receptor complex different from that of type I IFN, but both types of IFN induce STAT1, STAT2, and STAT3 activation. Here we describe a detailed comparison of signal transduction initiated by type I and type III IFN. Gene expression array analysis showed that IFN types I and III induced a similar subset of genes. In particular, no genes were induced uniquely by type III IFN. Next, we used chromatin immunoprecipitation (ChIP) analysis to investigate the promoter activation by types I and III IFN. The ChIP assays demonstrated that stimulation of cells with both type I and type III IFN resulted in the recruitment of ISGF3 transcription factor components to the promoter region of responsive genes and in an increase of polymerase II loading and histone acetylation. Whereas IFN type I signaling was observed for a broad spectrum of cell lines, type III IFN signaling was more restricted. The lack of IFN type III signaling was correlated with a low expression of the IL28Ra component of the IFN type III receptor, and IL28Ra overexpression was sufficient to restore IFN type III signaling. We also tested the activation of mitogen-activated protein (MAP) kinases by type III IFN and found that type III IFN relies strongly upon both p38 and JNK MAP kinases for gene induction.

Journal ArticleDOI
TL;DR: It is demonstrated that apoE is required forHCV virion infectivity and production, suggesting that HCV virions are assembled as apOE-enriched lipoprotein particles, and identified apo E as a novel target for discovery and development of antiviral drugs and monoclonal antibodies to suppress HCVvirion formation and infection.
Abstract: Recent advances in reverse genetics of hepatitis C virus (HCV) made it possible to determine the properties and biochemical compositions of HCV virions. Sedimentation analysis and characterization of HCV RNA-containing particles produced in the cultured cells revealed that HCV virions cover a large range of heterogeneous densities in sucrose gradient. The fractions of low densities are infectious, while the higher-density fractions containing the majority of HCV virion RNA are not. HCV core protein and apolipoprotein B and apolipoprotein E (apoE) were detected in the infectious HCV virions. The level of apoE correlates very well with HCV infectivity. Both apoE- and HCV E2-specific monoclonal antibodies precipitated HCV, demonstrating that HCV virions contain apoE and E2 proteins. apoE-specific monoclonal antibodies efficiently neutralized HCV infectivity in a dose-dependent manner, resulting in a reduction of infectious HCV by nearly 4 orders of magnitude. The knockdown of apoE expression by specific small interfering RNAs (siRNAs) remarkably reduced the levels of intracellular as well as secreted HCV virions. The apoE siRNA suppressed HCV production by more than 100-fold at 50 nM. These findings demonstrate that apoE is required for HCV virion infectivity and production, suggesting that HCV virions are assembled as apoE-enriched lipoprotein particles. Our findings also identified apoE as a novel target for discovery and development of antiviral drugs and monoclonal antibodies to suppress HCV virion formation and infection.

Journal ArticleDOI
TL;DR: The polarized T-cell morphology, Env-CD4 coordinated adhesion, and viral transfer from HIV-infected to uninfected cells suggest that VS allows HIV-1 to evade antibody neutralization and to disseminate efficiently.
Abstract: Cell-free human immunodeficiency virus type 1 (HIV-1) can initiate infections, but contact between infected and uninfected T cells can enhance viral spread through intercellular structures called virological synapses (VS). The relative contribution of VS to cell-free viral transfer has not been carefully measured. Using an ultrasensitive, fluorescent virus transfer assay, we estimate that when VS between HIV-expressing Jurkat T cells and primary CD4(+) T cells are formed, cell-associated transfer of virus is 18,000-fold more efficient than uptake of cell-free virus. Furthermore, in contrast to cell-free virus uptake, the VS deposits virus rapidly into focal, trypsin-resistant compartments in target T cells. This massive virus internalization requires Env-CD4 receptor interactions but is resistant to inhibition by patient-derived neutralizing antisera that inhibit homologous cell-free virus. Deleting the Env cytoplasmic tail does not abrogate VS-mediated transfer, but it renders the VS sensitive to neutralizing antibodies, suggesting that the tail limits exposure of VS-neutralizing epitopes on the surface of infected cells. Dynamic live imaging of the VS reveals that HIV-expressing cells are polarized and make sustained, Env-dependent contacts with target cells through uropod-like structures. The polarized T-cell morphology, Env-CD4 coordinated adhesion, and viral transfer from HIV-infected to uninfected cells suggest that VS allows HIV-1 to evade antibody neutralization and to disseminate efficiently. Future studies will discern to what extent this massive viral transfer contributes to productive infection or viral dissemination through the migration of virus-carrying T cells.

Journal ArticleDOI
TL;DR: The consistent association between the observed genetic findings and changes in epidemiology leads to the conclusion that population immunity plays a role in the epochal evolution of GGII.4 norovirus strains.
Abstract: Noroviruses are the causative agents of the majority of viral gastroenteritis outbreaks in humans. During the past 15 years, noroviruses of genotype GGII.4 have caused four epidemic seasons of viral gastroenteritis, during which four novel variants (termed epidemic variants) emerged and displaced the resident viruses. In order to understand the mechanisms and biological advantages of these epidemic variants, we studied the genetic changes in the capsid proteins of GGII.4 strains over this period. A representative sample was drawn from 574 GGII.4 outbreak strains collected over 15 years of systematic surveillance in The Netherlands, and capsid genes were sequenced for a total of 26 strains. The three-dimensional structure was predicted by homology modeling, using the Norwalk virus (Hu/NoV/GGI.1/Norwalk/1968/US) capsid as a reference. The highly significant preferential accumulation and fixation of mutations (nucleotide and amino acid) in the protruding part of the capsid protein provided strong evidence for the occurrence of genetic drift and selection. Although subsequent new epidemic variants differed by up to 25 amino acid mutations, consistent changes were observed in only five positions. Phylogenetic analyses showed that each variant descended from its chronologic predecessor, with the exception of the 2006b variant, which is more closely related to the 2002 variant than to the 2004 variant. The consistent association between the observed genetic findings and changes in epidemiology leads to the conclusion that population immunity plays a role in the epochal evolution of GGII.4 norovirus strains.

Journal ArticleDOI
TL;DR: It is demonstrated that the inhibitory molecule programmed death-1 (PD-1) is significantly upregulated on total and HCV-specific CD8+ cytotoxic T lymphocytes in the peripheral blood and livers of patients with chronic infection compared to subjects with spontaneous HCV resolution, patients with nonviral liver disease, and normal controls.
Abstract: Infection with hepatitis C virus (HCV) is associated with persistence in the majority of individuals. We demonstrate here that the inhibitory molecule programmed death-1 (PD-1) is significantly upregulated on total and HCV-specific CD8 + cytotoxic T lymphocytes (CTLs) in the peripheral blood and livers of patients with chronic infection compared to subjects with spontaneous HCV resolution, patients with nonviral liver disease, and normal controls. PD-1 expression on cytomegalovirus-specific CTLs also varies according to HCV status and is highest in patients with chronic infection. HCV-specific CTLs that are PD-1 high express higher levels of the senescence marker CD57 than PD-1 low CTLs, and CD57 expression is greater in chronic than in resolved infection. In vitro blockade of PD-1 by monoclonal antibodies specific to its ligands (PD-L1 and PD-L2) results in restoration of functional competence (proliferation and gamma interferon and interleukin-2 secretion) of HCV-specific CTLs, including those residing in the liver. This reversal of CTL exhaustion is evident even in individuals who lack HCV-specific CD4 + T-cell help. Our data indicate that the PD-1/PD-L pathway is critical in persistent HCV infection in humans and represents a potential novel target for restoring function of exhausted HCV-specific CTLs.

Journal ArticleDOI
TL;DR: The structure of the NS5 nuclear localization sequences, previously thought to fold into a separate domain, form an integral part of the polymerase subdomains and reveals the presence of two zinc ion binding motifs, which should inform and accelerate the structure-based design of antiviral compounds against dengue virus.
Abstract: Dengue fever, a neglected emerging disease for which no vaccine or antiviral agents exist at present, is caused by dengue virus, a member of the Flavivirus genus, which includes several important human pathogens, such as yellow fever and West Nile viruses. The NS5 protein from dengue virus is bifunctional and contains 900 amino acids. The S-adenosyl methionine transferase activity resides within its N-terminal domain, and residues 270 to 900 form the RNA-dependent RNA polymerase (RdRp) catalytic domain. Viral replication begins with the synthesis of minus-strand RNA from the dengue virus positive-strand RNA genome, which is subsequently used as a template for synthesizing additional plus-strand RNA genomes. This essential function for the production of new viral particles is catalyzed by the NS5 RdRp. Here we present a high-throughput in vitro assay partly recapitulating this activity and the crystallographic structure of an enzymatically active fragment of the dengue virus RdRp refined at 1.85-A resolution. The NS5 nuclear localization sequences, previously thought to fold into a separate domain, form an integral part of the polymerase subdomains. The structure also reveals the presence of two zinc ion binding motifs. In the absence of a template strand, a chain-terminating nucleoside analogue binds to the priming loop site. These results should inform and accelerate the structure-based design of antiviral compounds against dengue virus.

Journal ArticleDOI
TL;DR: The results suggest that TNF-α may contribute to morbidity during H5N1 influenza virus infection, while IL-1 may be important for effective virus clearance in nonlethal H 5N1 disease.
Abstract: Highly pathogenic avian H5N1 influenza viruses are now widespread in poultry in Asia and have recently spread to some African and European countries. Interspecies transmission of these viruses to humans poses a major threat to public health. To better understand the basis of pathogenesis of H5N1 viruses, we have investigated the role of proinflammatory cytokines in transgenic mice deficient in interleukin-6 (IL-6), macrophage inflammatory protein 1 alpha (MIP-1α), IL-1 receptor (IL-1R), or tumor necrosis factor receptor 1 (TNFR1) by the use of two avian influenza A viruses isolated from humans, A/Hong Kong/483/97 (HK/483) and A/Hong Kong/486/97 (HK/486), which exhibit high and low lethality in mice, respectively. The course of disease and the extent of virus replication and spread in IL-6- and MIP-1α-deficient mice were not different from those observed in wild-type mice during acute infection with 1,000 50% mouse infective doses of either H5N1 virus. However, with HK/486 virus, IL-1R-deficient mice exhibited heightened morbidity and mortality due to infection, whereas no such differences were observed with the more virulent HK/483 virus. Furthermore, TNFR1-deficient mice exhibited significantly reduced morbidity following challenge with either H5N1 virus but no difference in viral replication and spread or ultimate disease outcome compared with wild-type mice. These results suggest that TNF-α may contribute to morbidity during H5N1 influenza virus infection, while IL-1 may be important for effective virus clearance in nonlethal H5N1 disease.

Journal ArticleDOI
TL;DR: The plateaus observed in the mechanism of HIV resistance to maraviroc are consistent with the virus having acquired the ability to utilize marviroc-bound receptor for entry and are further corroborated by the observation that a high concentration of marAViroc blocks the activity of aplAviroc against maravIROc-resistant virus.
Abstract: Maraviroc is a CCR5 antagonist in clinical development as one of a new class of antiretrovirals targeting human immunodeficiency virus type 1 (HIV-1) coreceptor binding. We investigated the mechanism of HIV resistance to maraviroc by using in vitro sequential passage and site-directed mutagenesis. Serial passage through increasing maraviroc concentrations failed to select maraviroc-resistant variants from some laboratory-adapted and clinical isolates of HIV-1. However, high-level resistance to maraviroc was selected from three of six primary isolates passaged in peripheral blood lymphocytes (PBL). The SF162 strain acquired resistance to maraviroc in both treated and control cultures; all resistant variants were able to use CXCR4 as a coreceptor. In contrast, maraviroc-resistant virus derived from isolates CC1/85 and RU570 remained CCR5 tropic, as evidenced by susceptibility to the CCR5 antagonist SCH-C, resistance to the CXCR4 antagonist AMD3100, and an inability to replicate in CCR5 Δ32/Δ32 PBL. Strain-specific mutations were identified in the V3 loop of maraviroc-resistant CC1/85 and RU570. The envelope-encoding region of maraviroc-resistant CC1/85 was inserted into an NL4-3 background. This recombinant virus was completely resistant to maraviroc but retained susceptibility to aplaviroc. Reverse mutation of gp120 residues 316 and 323 in the V3 loop (numbering from HXB2) to their original sequence restored wild-type susceptibility to maraviroc, while reversion of either mutation resulted in a partially sensitive virus with reduced maximal inhibition (plateau). The plateaus are consistent with the virus having acquired the ability to utilize maraviroc-bound receptor for entry. This hypothesis was further corroborated by the observation that a high concentration of maraviroc blocks the activity of aplaviroc against maraviroc-resistant virus.

Journal ArticleDOI
TL;DR: The SARS-CoV that lacks the E gene is attenuated in hamsters, might be a safer research tool, and may be a good candidate for the development of a live attenuated SARS -CoV vaccine.
Abstract: Severe acute respiratory syndrome (SARS) is a respiratory disease characterized by an atypical pneumonia, caused by a novel coronavirus (CoV) (13, 15, 27, 28, 35, 41, 45). The disease was reported for the first time in Guangdong Province, China, at the end of 2002, and spread to 32 countries in the course of a few months. After July 2003, only 4 community-acquired SARS cases were reported in China, but there have been at least as many reports of laboratory-acquired infections, with secondary spread in one case. Efficacious therapy is not available for this life-threatening disease that caused a mortality of about 10% in the epidemic of 2002 to 2003. Therefore, it is of interest to engineer attenuated SARS-CoVs as safer research tools. SARS-CoV is an enveloped virus of the Coronaviridae family, group 2, and has a single-stranded, positive-sense 29.7-kb RNA genome (18, 48). Coronaviruses replicate in the cell cytoplasm and encode a nested set of mRNA molecules of different sizes. Viral genome expression begins with the translation of two large polyproteins, pp1a and pp1ab, including the viral replicase genes (50). Expression of the open reading frame (ORF) 1ab involves a ribosomal frameshifting into the −1 frame just upstream of the ORF 1a translation termination codon (4). The pp1a and pp1ab polyproteins are processed by viral proteinases to yield functional components of the membrane-bound replicase complex (59). The replicase complex is involved in genome replication and transcription of subgenomic mRNAs (sgmRNAs), encoding structural proteins, such as the spike (S), envelope (E), membrane (M), and nucleocapsid (N), and a set of nonstructural proteins, whose sequence and number differ between the different species of coronavirus (47). In the case of SARS-CoV, ORFs 3a and 7a encode additional structural proteins (22, 25, 46). Among human CoVs (HCoVs), such as HCoV-229E, HCoV-OC43, SARS-CoV, HCoV-NL63, and Hong Kong University 1-CoV, SARS-CoV causes the most severe disease (52, 54). The virion envelope of CoVs contains at least three structural proteins, S, E, and M, embedded in the membrane. SARS-CoV has an additional structural membrane protein, 3a (25, 46). CoV M and E proteins are key factors for virus assembly and budding (6-8, 11, 14, 30). In fact, expression of these proteins in cell lines results in the production of virus-like particles (VLPs) (3, 8, 23, 53). In the case of SARS-CoV, there are conflicting reports on the proteins necessary for the formation of VLPs. Some reports describe the requirement of E and M for the efficient assembly of pseudoparticles in insect cells (21, 36), whereas others suggest that E protein is not essential for SARS-CoV-like particle formation in mammalian cells and propose that M and N proteins play a major role in morphogenesis (23). The CoV E protein is present in virions in low copy number as a transmembrane protein (30, 34, 42). E protein contains a short (7 to 9 amino acid) hydrophilic amino terminus region and a 21- to 29-amino-acid hydrophobic region, followed by a hydrophilic carboxy terminus (6, 7). The SARS-CoV E protein contains an unusually short, palindromic transmembrane helical hairpin predicted around a previously unidentified pseudo-center of symmetry (2, 26). This hairpin possibly modifies lipid bilayers by increasing their curvature and likely plays a pivotal role in viral budding. CoV E proteins share several characteristics with proteins of other viruses that function as ion channels, having a highly hydrophobic domain that forms at least one amphipathic α-helix that oligomerizes to form a putative ion-conductive pore in membranes (51). SARS-CoV and murine hepatitis virus (MHV) E proteins alter membrane permeability (31-33). Furthermore, HCoV-229E, MHV, SARS-CoV, and infectious bronchitis virus (IBV) E proteins form ion channels that are more permeable to monovalent cations than to monovalent anions (55, 56). The transmissible gastroenteritis virus (TGEV) E protein is essential for the production of recombinant infectious virus (9, 39). In contrast, MHV E protein is critical but not essential for virus replication because an MHV mutant in which the E gene has been deleted grows in cell culture to titers that are at least 3 orders of magnitude lower than recombinant wild-type viruses (30). In this article, we report the generation of a recombinant SARS-CoV (rSARS-CoV) mutant in which expression of the E gene was abolished in a SARS-CoV cDNA clone that was assembled as a bacterial artificial chromosome (BAC). Although maximal virus titers reached by this defective virus were lower than those of the recombinant wild-type virus, the ΔE virus infected different cell lines, indicating that E protein is important but not essential for SARS-CoV replication. This rSARS-CoV-ΔE virus was attenuated in vivo, making it a safer research tool and a promising vaccine candidate.

Journal ArticleDOI
TL;DR: A review of the genetic diversity of HIV-1 can be found in this article, with particular emphasis on its pathogenetic and therapeutic implications, as well as the potential for vaccine development.
Abstract: Human immunodeficiency virus type 1 (HIV-1) is the causative agent of AIDS (10, 38, 105, 114). It is characterized by extensive and dynamic genetic diversity, generating variants falling into distinct molecular subtypes as well as recombinant forms; these forms display an uneven global distribution (55). This diversity has implications for our understanding of viral transmission, pathogenesis, and diagnosis and profoundly influences strategies for vaccine development. Here we review selected aspects of the genetic diversity of HIV-1, with particular emphasis on its pathogenetic and therapeutic implications.

Journal ArticleDOI
TL;DR: It is suggested that HAdV-52 may be one of many agents causing gastroenteritis of unknown etiology, and was so divergent from the known human adenoviruses that it was not only a new type but also represented a new species (humanAdenovirus G).
Abstract: An unidentified agent was cultured in primary monkey cells at the Los Angeles County Public Health Department from each of five stool specimens submitted from an outbreak of gastroenteritis. Electron microscopy and an adenovirus-specific monoclonal antibody confirmed this agent to be an adenovirus. Since viral titers were too low, complete serotyping was not possible. Using the DNase-sequence-independent viral nucleic acid amplification method, we identified several nucleotide sequences with a high homology to human adenovirus 41 (HAdV-41) and simian adenovirus 1 (SAdV-1). However, using anti-SAdV-1 sera, it was determined that this virus was serologically different than SAdV-1. Genomic sequencing and phylogenetic analysis confirmed that this new adenovirus was so divergent from the known human adenoviruses that it was not only a new type but also represented a new species (human adenovirus G). In a retrospective clinical study, this new virus was detected by PCR in one additional patient from a separate gastroenteritis outbreak. This study suggests that HAdV-52 may be one of many agents causing gastroenteritis of unknown etiology.

Journal ArticleDOI
TL;DR: To determine the precise locations and receptor binding modes of HBGA carbohydrates on the viral capsids, a recombinant P protein of a GII-4 strain norovirus was cocrystallized with synthetic type A or B trisaccharides and demonstrated that the receptor binding site lies at the outermost end of the P domain and forms an extensive hydrogen-bonding network with the saccharide ligand.
Abstract: Noroviruses are one of the major causes of nonbacterial gastroenteritis epidemics in humans. Recent studies on norovirus receptors show that different noroviruses recognize different human histo-blood group antigens (HBGAs), and eight receptor binding patterns of noroviruses have been identified. The P domain of the norovirus capsids is directly involved in this recognition. To determine the precise locations and receptor binding modes of HBGA carbohydrates on the viral capsids, a recombinant P protein of a GII-4 strain norovirus, VA387, was cocrystallized with synthetic type A or B trisaccharides. Based on complex crystal structures observed at a 2.0-A resolution, we demonstrated that the receptor binding site lies at the outermost end of the P domain and forms an extensive hydrogen-bonding network with the saccharide ligand. The A and B trisaccharides display similar binding modes, and the common fucose ring plays a key role in this interaction. The extensive interface between the two protomers in a P dimer also plays a crucial role in the formation of the receptor binding interface.

Journal ArticleDOI
TL;DR: It is argued that unregulated IFN responses during acute-phase SARS may culminate in a malfunction of the switch from innate immunity to adaptive immunity, and the potential for the use of the gene signatures described in this study to better assess the immunopathology and clinical management of severe viral infections.
Abstract: It is not understood how immune inflammation influences the pathogenesis of severe acute respiratory syndrome (SARS). One area of strong controversy is the role of interferon (IFN) responses in the natural history of SARS. The fact that the majority of SARS patients recover after relatively moderate illness suggests that the prevailing notion of deficient type I IFN-mediated immunity, with hypercytokinemia driving a poor clinical course, is oversimplified. We used proteomic and genomic technology to systematically analyze host innate and adaptive immune responses of 40 clinically well-described patients with SARS during discrete phases of illness from the onset of symptoms to discharge or a fatal outcome. A novel signature of high IFN-alpha, IFN-gamma, and IFN-stimulated chemokine levels, plus robust antiviral IFN-stimulated gene (ISG) expression, accompanied early SARS sequelae. As acute illness progressed, SARS patients entered a crisis phase linked to oxygen saturation profiles. The majority of SARS patients resolved IFN responses at crisis and expressed adaptive immune genes. In contrast, patients with poor outcomes showed deviated ISG and immunoglobulin gene expression levels, persistent chemokine levels, and deficient anti-SARS spike antibody production. We contend that unregulated IFN responses during acute-phase SARS may culminate in a malfunction of the switch from innate immunity to adaptive immunity. The potential for the use of the gene signatures we describe in this study to better assess the immunopathology and clinical management of severe viral infections, such as SARS and avian influenza (H5N1), is therefore worth careful examination.

Journal ArticleDOI
TL;DR: It is shown that adenovirus elicited innate immune response through the induction of high levels of type I interferons (IFNs) by both plasmacytoid dendritic cells ( pDCs) and non-pDCs such as conventional DCs and macrophages, and approaches to activate the type I IFN pathway may enhance vaccine potency.
Abstract: Recombinant adenoviral vectors have been widely used for gene therapy applications and as vaccine vehicles for treating infectious diseases such as human immunodeficiency virus disease. The innate immune response to adenoviruses represents the most significant hurdle in clinical application of adenoviral vectors for gene therapy, but it is an attractive feature for vaccine development. How adenovirus activates innate immunity remains largely unknown. Here we showed that adenovirus elicited innate immune response through the induction of high levels of type I interferons (IFNs) by both plasmacytoid dendritic cells (pDCs) and non-pDCs such as conventional DCs and macrophages. The innate immune recognition of adenovirus by pDCs was mediated by Toll-like receptor 9 (TLR9) and was dependent on MyD88, whereas that by non-pDCs was TLR independent through cytosolic sensing of adenoviral DNA. Furthermore, type I IFNs were pivotal in innate and adaptive immune responses to adenovirus in vivo, and type I IFN blockade diminished immune responses, resulting in more stable transgene expression and reduction of inflammation. These findings indicate that adenovirus activates innate immunity by its DNA through TLR-dependent and -independent pathways in a cell type-specific fashion, and they highlight a critical role for type I IFNs in innate and adaptive immune responses to adenoviral vectors. Our results that suggest strategies to interfere with type I IFN pathway may improve the outcome of adenovirus-mediated gene therapy, whereas approaches to activate the type I IFN pathway may enhance vaccine potency.

Journal ArticleDOI
TL;DR: It is demonstrated that expression of virus-specific artificial miRNAs is an effective and predictable new approach to engineering resistance to CMV and, possibly, to other plant viruses as well.
Abstract: RNA silencing in plants is a natural defense system against foreign genetic elements including viruses. This natural antiviral mechanism has been adopted to develop virus-resistant plants through expression of virus-derived double-stranded RNAs or hairpin RNAs, which in turn are processed into small interfering RNAs (siRNAs) by the host's RNA silencing machinery. While these virus-specific siRNAs were shown to be a hallmark of the acquired virus resistance, the functionality of another set of the RNA silencing-related small RNAs, microRNAs (miRNAs), in engineering plant virus resistance has not been extensively explored. Here we show that expression of an artificial miRNA, targeting sequences encoding the silencing suppressor 2b of Cucumber mosaic virus (CMV), can efficiently inhibit 2b gene expression and protein suppressor function in transient expression assays and confer on transgenic tobacco plants effective resistance to CMV infection. Moreover, the resistance level conferred by the transgenic miRNA is well correlated to the miRNA expression level. Comparison of the anti-CMV effect of the artificial miRNA to that of a short hairpin RNA-derived small RNA targeting the same site revealed that the miRNA approach is superior to the approach using short hairpin RNA both in transient assays and in transgenic plants. Together, our data demonstrate that expression of virus-specific artificial miRNAs is an effective and predictable new approach to engineering resistance to CMV and, possibly, to other plant viruses as well.

Journal ArticleDOI
TL;DR: The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.
Abstract: Eukaryotic mRNAs possess a 5′ cap structure that is cotranscriptionally formed in the nucleus. mRNA capping is essential for mRNA stability and efficient translation (13, 39). Most animal viruses that replicate in cytoplasm encode their own capping machinery to produce capped RNAs. RNA capping generally consists of three steps in which the 5′ triphosphate end of nascent RNA transcript is first hydrolyzed to a 5′ diphosphate by an RNA triphosphatase, then capped with GMP by an RNA guanylyltransferase, and finally methylated at the N-7 position of guanine by an RNA guanine-methyltransferase (N-7 MTase) (15). Additionally, the first and second nucleotides of many cellular and viral mRNAs are further methylated at the ribose 2′-OH position by a nucleoside 2′-O MTase, to form cap 1 (m7GpppNm) and cap 2 (m7GpppNmNm) structures, respectively (13). Both N-7 and 2′-O MTases use S-adenosyl-l-methionine (SAM) as a methyl donor and generate S-adenosyl-l-homocysteine (SAH) as a by-product. The order of capping and methylation varies among cellular and viral RNAs (13). The genus Flavivirus comprises approximately 70 viruses, many of which are important human pathogens, including four serotypes of dengue virus (DENV), yellow fever virus (YFV), St. Louis encephalitis virus, and West Nile virus (WNV) (23). The flavivirus genome is a single-stranded RNA of positive (i.e., mRNA sense) polarity. The 5′ end of the genome contains a type 1 cap followed by a conserved dinucleotide sequence 5′-AG-3′ (7, 41). The single open reading frame of the flavivirus genome encodes a polyprotein, which is processed by viral and cellular proteases into three structural proteins and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) (23). Of the four enzymes required for synthesis of flavivirus m7GpppAm cap structure, the RNA triphosphatase and 2′-O MTase have been, respectively, mapped to NS3 (20, 42) and NS5 (9). We recently showed that WNV NS5 carries both guanine N-7 and ribose 2′-O MTase activities (34). The guanylyltransferase for flavivirus capping remains elusive. Flavivirus NS5 consists of an N-terminal MTase and a C-terminal RNA-dependent-RNA polymerase (RdRp) domain (1, 16, 28). The structure of DENV-2 MTase suggests that flavivirus NS5 MTase belongs to a family of SAM-dependent MTases (9). Most of the MTases within this family, including both N-7 and 2′-O RNA MTases such as Encephalitozoon cuniculi (Ecm1) N-7 MTase and vaccinia virus 2′-O MTase VP39 (10, 18), share a common core structure referred to as a “SAM-dependent MTase fold,” composed of an open α/β/α sandwich structure (11, 24). Structure and sequence comparisons of the 2′-O MTases suggest that a conserved K-D-K-E tetrad forms the active site for the 2′-O methyl transfer reaction (9). Using Ala substitution, we recently showed that all residues within the K61-D146-K182-E218 tetrad of the WNV MTase are essential for 2′-O methylation activity, whereas D146 is more critical than the other three residues for N-7 methylation. In addition, we found that methylations of guanine N-7 and ribose 2′-O of the WNV cap structure are sequential, with N-7 preceding 2′-O methylation (34). The WNV MTase represents a unique system to study how a single enzyme catalyzes two distinct cap methylations. Here we report that, similar to the WNV, MTases from other flaviviruses also sequentially methylate viral RNA cap at guanine N-7 and ribose 2′-O positions, indicating that it is a general mechanism for flaviviruses to encode the NS5 MTase with dual methylation activities for an efficient synthesis of the viral RNA cap. By contrast, the crystal structure of the WNV MTase in complex with SAH shows only a single SAM-binding site. Thus, the 5′ cap of flavivirus RNA must evidently be repositioned to accept two methyl groups from SAM during methylations. Biochemical and mutagenesis analyses suggest that the WNV MTase methylates the N-7 and 2′-O positions using two distinct mechanisms. In the context of full-length WNV, a mutation (D146A) defective in both the N-7 and 2′-O methylations is lethal to the virus. Mutant viruses inactive for 2′-O but not N-7 methylation (K61A, K182A, or E218A) are attenuated in cell culture and in mice and can be used to protect mice from challenge with wild-type WNV.