scispace - formally typeset
Search or ask a question

Showing papers in "Langmuir in 2021"


Journal ArticleDOI
29 Jan 2021-Langmuir
TL;DR: The Lucas-Washburn (LW) equation and its modified forms have been applied extensively to elucidate the fundamental mechanisms underlying the basic statics and dynamics of the capillary-driven flow in porous systems.
Abstract: Fluid flow in porous systems driven by capillary pressure is one of the most ubiquitous phenomena in nature and industry, including petroleum and hydraulic engineering as well as material and life sciences. The classical Lucas-Washburn (LW) equation and its modified forms were developed and have been applied extensively to elucidate the fundamental mechanisms underlying the basic statics and dynamics of the capillary-driven flow in porous systems. The LW equation assumes that fluids are incompressible Newton ones and that capillary channels all have the same radii. This kind of hypothesis is not true for many natural situations, however, where porous systems comprise complicated pore and capillary channel structures at microscales. The LW equation therefore often leads to inaccurate capillary imbibition predictions in such situations. Numerous studies have been conducted in recent years to develop and assess the modifications and extensions of the LW equation in various porous systems. Significant progresses in computational techniques have also been attained to further improve our understanding of imbibition dynamics. A state-of-the-art review is therefore needed to summarize the recent significant models and numerical simulation techniques as well as to discuss key ongoing research topics arising from various new engineering practices. The theoretical basis of the LW equation is first introduced in this review and recent progress in mathematical models is then summarized to demonstrate the modifications and extensions of this equation to various microchannels and porous media. These include capillary tubes with nonuniform and noncircular cross sections, discrete fractures, and capillary tubes that are not straight as well as heterogeneous porous media. Numerical studies on the LW equation are also reviewed, and comments on future works and research directions for LW-based capillary-driven flows in porous systems are listed.

117 citations


Journal ArticleDOI
22 Nov 2021-Langmuir
TL;DR: In this paper, the S-scheme heterojunction photocatalyst showed high activity toward photocatalytic H2O2 production, which is 3.4 and 5.0 times higher than pure g-C3N4 and ZnO, respectively.
Abstract: The design of photocatalysts with hierarchical pore sizes is an effective method to improve mass transport, enhance light absorption, and increase specific surface area. Moreover, the construction of a heterojunction at the interface of two semiconductor photocatalysts with suitable band positions plays a crucial role in separating and transporting charge carriers. Herein, ZIF-8 and urea are used as precursors to prepare hierarchically porous ZnO/g-C3N4 S-scheme heterojunction photocatalysts through a two-step calcination method. This S-scheme heterojunction photocatalyst shows high activity toward photocatalytic H2O2 production, which is 3.4 and 5.0 times higher than that of pure g-C3N4 and ZnO, respectively. The mechanism of charge transfer and separation within the S-scheme heterojunction is studied by Kelvin probe, in situ irradiated X-ray photoelectron spectroscopy (ISI-XPS), and electron paramagnetic resonance (EPR). This research provides an idea of designing S-scheme heterojunction photocatalysts with hierarchical pores in efficient photocatalytic hydrogen peroxide production.

107 citations


Journal ArticleDOI
03 May 2021-Langmuir
TL;DR: In this paper, a simple spraying method is used to construct wear-resistant super-hydrophobic coatings on various substrates such as glass, filter paper, copper sheets, and polyethylene terephthalate films, using an integrated fluorine-free suspension consisting of silica micropowder, nanofumed silica, epoxy resin and polydimethylsiloxane.
Abstract: With the rapid development of bionic science and manufacturing technology, superhydrophobic surfaces have received extensive attention and research. However, the cumbersome steps, high cost, fluorine pollution, and poor durability greatly restrict its commercial promotion and application. Here, a simple spraying method is used to construct wear-resistant superhydrophobic coatings on various substrates such as glass, filter paper, copper sheets, and polyethylene terephthalate films, using an integrated fluorine-free suspension consisting of silica micropowder, nanofumed silica, epoxy resin, and polydimethylsiloxane. The prepared superhydrophobic coating can withstand 75 sandpaper abrasion cycles and can still maintain good superhydrophobic performance after other physical tests (e.g., hand kneading and tape peeling after knife scraping). In addition, the coating is extremely water-repellent under harsh conditions such as strong UV irradiation and extreme chemical corrosive media. In the buoyancy test, the coated filter paper can bear 39 times its own gravity. This water-repellent interface also has the ability to self-clean in air and oil environments due to its ultralow adhesion to water droplets. Thanks to its simplicity, cheapness, and environmental friendliness, this superhydrophobic coating has promising applications in the fields of construction, chemicals, transportation, and electronics.

68 citations


Journal ArticleDOI
13 Jan 2021-Langmuir
TL;DR: In this article, a sandwich-like composite catalyst Cu2O/TiO2/Ti3C2 was prepared by an easily available solvent reduction measure for the highly efficient catalytic nitro compounds.
Abstract: Photocatalysts play an increasingly important role in environmental remediation polluted by industrial wastewater. However, the preparation of adsorbents and catalysts with high activity by simple and easy methods is still a great challenge. Here, sandwich-like composite catalyst Cu2O/TiO2/Ti3C2 was prepared by an easily available solvent reduction measure for the highly efficient catalytic nitro compounds. In particular, sandwich-like composite catalyst Cu2O/TiO2/Ti3C2 exhibits excellent catalysis for 2-nitroaniline (2-NA) and 4-nitrophenol (4-NP), and its pseudo-first-order reaction rate constants (k) are 0.163 and 0.114 min-1, respectively. Interestingly, even after eight consecutive cycles of catalytic experiments, the conversion rates of catalytic 2-NA and 4-NP are still greater than 95 and 92%, respectively, demonstrating that the obtained catalyst has excellent catalytic capability and a high reutilization rate. The excellent catalytic performances of Cu2O/TiO2/Ti3C2 can be attributed to the fact that Ti3C2 provides a greater reaction site for the formation of Cu2O and reduces the aggregation during the formation of Cu2O by in situ synthesis. Therefore, ternary composite catalyst Cu2O/TiO2/Ti3C2 prepared by solvent reduction not only supplies a technical method for the catalytic reaction of MXene-based material but also lays the foundation for the development of new photocatalysts.

64 citations


Journal ArticleDOI
11 Mar 2021-Langmuir
TL;DR: In this paper, a single-step hydrothermal strategy was used to synthesize heteroatom-doped fluorescent carbon quantum dots (C-dots), which could serve as an antioxidant.
Abstract: This work presents the facile synthesis of heteroatom-doped fluorescent carbon quantum dots (C-dots), which could serve as an antioxidant. Herein, nitrogen, phosphorous, and sulfur codoped carbon dots (NPSC-dots) have been synthesized by a single-step hydrothermal strategy. Owing to the radical scavenging activity of the NPSC-dots, they were tested against several methods as well as in practical applications. The antioxidant ability of the NPSC-dots was efficiently utilized on plastic films by coating with these NPSC-dots. For the very first time, NPSC-dots were immobilized onto nonpolar plastic films (polypropylene) via photochemical covalent grafting to extend the shelf life of food items or storage without affecting the quality of plastic films. The NPSC-dot-coated PP film with negligible deterioration of transparency was extensively studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) analysis, X-ray photoelectron spectroscopy (XPS), contact angle measurement, and thermogravimetric analysis (TGA). The fluorescent character, antioxidant ability, and durability under different solvent systems of the coated film were examined. Also, the coated films were extensively and rigorously evaluated against simulated drastic environmental conditions to ensure the durability and antifogging application.

59 citations


Journal ArticleDOI
19 May 2021-Langmuir
TL;DR: In this paper, a review of existing explanations for drop pinning and the origin of the force required to initiate the sliding of a drop on a solid surface (depinning) is presented.
Abstract: We review existing explanations for drop pinning and the origin of the force required to initiate the sliding of a drop on a solid surface (depinning). Theories that describe these phenomena include de Gennes', Marmur's, Furmidge's, the related Furmidge-Extrand's, and Tadmor's theory. These theories are all well cited but generally do not address each other, and usually papers that cite one of them ignore the others. Here, we discuss the advantages and disadvantages of these theories and their applicability to different experimental systems. Thus, we link different experimental systems to the theories that describe them best. We describe the force laws that can be deduced should these theories be united and the major open problems that remain. We describe a physical meaning that can be extracted from retention force measurements, specifically, the interfacial modulus that describes the tendency of a solid to conform to the liquid. This has implications for various wetting phenomena such as adhesion robustness, drug penetration into biological tissues, and solid robustness/resilience versus solid degradation over time as a result of its contact with a liquid.

53 citations


Journal ArticleDOI
20 Jul 2021-Langmuir
TL;DR: In this paper, a thorough characterization of four new industrially produced cellulose nanocrystals (CNCs) including sulfated CNCs from NORAM Engineering and Constructors Ltd. and Melodea Ltd. was presented.
Abstract: The demand for industrially produced cellulose nanocrystals (CNCs) has been growing since 2012, when CelluForce Inc. opened its inaugural demonstration plant with a production capacity of 1 tonne per day. Currently, there are 10 industrial CNC producers worldwide, each producing a unique material. Thus, academic researchers and commercial users alike must consider the properties of all available CNCs and carefully select the material which will optimize the performance of their desired application. To support these efforts, this article presents a thorough characterization of four new industrially produced CNCs including sulfated CNCs from NORAM Engineering and Constructors Ltd. (in cooperation with InnoTech Alberta and Alberta-Pacific Forest Industries Inc.) and Melodea Ltd., as well as carboxylated CNCs from Anomera Inc. and Blue Goose Biorefineries Inc. These materials were benchmarked against typical lab-made, sulfated CNCs. While all CNCs were similar in size, shape, crystallinity, and suspension quality, the sulfated CNCs had a higher surface charge density than their carboxylated counterparts, leading to higher colloidal stability. Additionally, significant differences in the rheological profiles of aqueous CNC suspensions, as well as CNC thermal stability and self-assembly behavior, were observed. As such, this article highlights both the subtle and significant differences between five CNC types and acts as a guide for end-users looking to optimize the performance of CNC-based materials.

50 citations


Journal ArticleDOI
Yushuang Yang1, Xiuping Chen1, Yiming Li1, Zichao Yin1, Mutai Bao1 
08 Jan 2021-Langmuir
TL;DR: In this article, a robust and superhydrophobic sodium alginate/graphene oxide/silicon oxide aerogel (SA/GO/SiO2-M) was fabricated by simple calcium ion cross-linking self-assembly, freeze-drying, and chemical vapor deposition methods based on the renewable and abundant raw materials.
Abstract: Bio-based aerogels serve as potential materials in separation of oil/water mixtures. Nevertheless, there remain some key challenges, including expensive/toxic organic cross-linkers, unpromising reusability, and poor performance in emulsion separation. Hereby, a novel, robust, and superhydrophobic sodium alginate/graphene oxide/silicon oxide aerogel (SA/GO/SiO2-M) was fabricated by simple calcium ion cross-linking self-assembly, freeze-drying, and chemical vapor deposition methods based on the renewable and abundant raw materials. The as-prepared SA-based aerogel possesses high absorbency for varieties of organic solvents and oils. Importantly, it shows high efficiency in the separation of surfactant-stabilized water-in-oil emulsions. SA/GO/SiO2-M aerogels display excellent reusability in both absorption and separation because of their good mechanical properties in the air and oil phase, and the mechanism in emulsion separation is discussed. This study shows that SA/GO/SiO2-M aerogels are a promising material in treating oil contaminants from different fields.

47 citations


Journal ArticleDOI
12 Oct 2021-Langmuir
TL;DR: In this paper, a set of experimental electrophoretic mobility (μe) data was used to show how inappropriate selection of the electrokinetic model used to calculate the zeta potential can compromise the interpretation of the results for nanoparticles (NPs).
Abstract: In this work, a set of experimental electrophoretic mobility (μe) data was used to show how inappropriate selection of the electrokinetic model used to calculate the zeta potential (ζ-potential) can compromise the interpretation of the results for nanoparticles (NPs). The main consequences of using ζ-potential values as criteria to indicate the colloidal stability of NP dispersions are discussed based on DLVO interaction energy predictions. For this, magnetite (Fe3O4) NPs were synthesized and characterized as a model system for performing electrokinetic experiments. The results showed that the Fe3O4 NPs formed mass fractal aggregates in solution, so the ζ-potential could not be determined under ideal conditions when μe depends on the NP radius. In addition, the Dukhin number (Du) estimated from potentiometric titration results indicated that stagnant layer conduction (SLC) could not be neglected for this system. The electrokinetic models that do not consider SLC grossly underestimated the ζ-potential values for the Fe3O4 NPs. The DLVO interaction energy predictions for the colloidal stability of the Fe3O4 NP dispersions also depended on the electrokinetic model used to calculate the ζ-potential. The results obtained for the Fe3O4 NP dispersions also suggested that, contrary to many reports in the literature, high ζ-potential values do not necessarily reflect high colloidal stability for charge-stabilized NP dispersions.

43 citations


Journal ArticleDOI
06 Apr 2021-Langmuir
TL;DR: In this article, polyvinyl alcohol (PVA) with numerous hydroxyl groups has been applied as a suitable substrate for efficient formation of zinc oxide (ZnO) nanoparticles with a flower shape (confirmed by electron-scanning microscopy), silver iodide (AgI), and chlorophyll (Chl), as a natural-based photocatalyst.
Abstract: Here, poly(vinyl alcohol) (PVA) with numerous hydroxyl groups has been applied as a suitable substrate for efficient formation of zinc oxide (ZnO) nanoparticles with a flower shape (confirmed by electron-scanning microscopy), silver iodide (AgI) nanoparticles, and chlorophyll (Chl), as a natural-based photocatalyst (PVA/ZnO/AgI/Chl). First, an efficient preparation route for the PVA/ZnO/AgI/Chl nanophotocatalyst is presented starting from the extraction of Chl from fresh spinach. Then, the catalytic role of the prepared composite is precisely investigated in degradation of methylene blue (MB). The effects of visible-light irradiation, different contact times, and the employed ingredients on the architecture of the PVA/ZnO/AgI/Chl are screened in the degradation process of MB. It is demonstrated that the best result (MB removal efficiency ca. 95.5%) is achieved by applying the visible-light irradiation using a LED lamp (70 W, λ = 425 nm) for a 60 min duration. Moreover, the photocatalytic performance of PVA/ZnO/AgI/Chl has been further confirmed by degradation of Congo red (CR) (ca. 92%, in 150 min) and 4-chlorophenol (4-CP) (88%, in 270 min), as well. As another function of the prepared PVA/ZnO/AgI/Chl composite, a substantial antibacterial property against human bacterial pathogens such as Staphylococcus aureus and Escherichia coli as Gram-positive and Gram-negative bacteria has been noticed, studied by agar diffusion cup plate and colony methods. The zones of inhibition have been evaluated ca. 20 and 12 mm for the S. aureus and E. coli cell lines, respectively. Finally, a great synergy between the prepared composite and the visible light has been observed through the examination of the live bacteria: 99.6% for S. aureus and 99.8% for E. coli in the presence of visible light, after the subjection of PVA/ZnO/AgI/Chl particles to the bacteria, verified by the colony counter method.

43 citations


Journal ArticleDOI
16 Feb 2021-Langmuir
TL;DR: In this paper, a core-shell material of CeO2@SiO2 based on rice husk was synthesized as a hybridized adsorbent for antibiotic removal, and the phase structures of both the core shell and the nanoparticles were analyzed.
Abstract: This work aims to synthesize a core–shell material of CeO2@SiO2 based on rice husk as a novel hybridized adsorbent for antibiotic removal. The phase structures of CeO2@SiO2 and CeO2 nanoparticles t...

Journal ArticleDOI
28 Mar 2021-Langmuir
TL;DR: A review of the recent developments related to the liquid crystals in curved confined geometries by focusing on microfluidics-mediated approaches is provided in this paper. But the focus of this paper is on the photonic applications.
Abstract: The quest for interesting properties and phenomena in liquid crystals toward their employment in nondisplay application is an intense and vibrant endeavor. Remarkable progress has recently been achieved with regard to liquid crystals in curved confined geometries, typically represented as enclosed spherical geometries and cylindrical geometries with an infinitely extended axial-symmetrical space. Liquid-crystal emulsion droplets and fibers are intriguing examples from these fields and have attracted considerable attention. It is especially noteworthy that the rapid development of microfluidics brings about new capabilities to generate complex soft microstructures composed of both thermotropic and lyotropic liquid crystals. This review attempts to outline the recent developments related to the liquid crystals in curved confined geometries by focusing on microfluidics-mediated approaches. We highlight a wealth of novel photonic applications and beyond and also offer perspectives on the challenges, opportunities, and new directions for future development in this emerging research area.

Journal ArticleDOI
02 Jul 2021-Langmuir
TL;DR: In this article, a super-hydrophobic composite coating based on double hydroxide (LDH) was constructed on Mg alloy by laser treatment, in situ growth of Mg-Al LDHs, and modification with octadecyl-trimethoxy-silane (OTS).
Abstract: Both a superhydrophobic structure and layered double hydroxide (LDH) coating were effective to improve the corrosion resistance of alloys. In this study, a superhydrophobic composite coating based on LDHs was constructed on Mg alloy by laser treatment, in situ growth of Mg-Al LDHs, and modification with octadecyl-trimethoxy-silane (OTS). The so-obtained composite coating was coded as L-LDHs-OTS, where L stands for laser treatment. Results showed that the L-LDHs-OTS composite coating presented the best anti-corrosion performance and the corrosion current density was reduced by about 5 orders of magnitude compared with that of the Mg alloy substrate. The excellent corrosion resistance was related to the superhydrophobicity of the composite coating, the compactness and ion-exchange capacity of the LDH layer, and the dense Si-O-Si network within the OTS layer. Moreover, the L-LDHs-OTS composite coating was still effective after 20 days of immersion tests, showing good long-term corrosion resistance due to the existence of hydrophobicity of the composite coating and the self-healing ability of LDHs.

Journal ArticleDOI
28 Jan 2021-Langmuir
TL;DR: In this paper, three highly water-soluble and photoluminescent graphitic carbon nitride quantum dots (CNQDs) are synthesized through a green and facile one-step hydrothermal approach, with urea as the nitrogen source and citric acid and its salts as carbon sources.
Abstract: Graphitic carbon nitride quantum dots (CNQDs) are a new class of nanomaterial with an extraordinary photoluminescent property. Here, three highly water-soluble and photoluminescent CNQDs are synthesized through a green and facile one-step hydrothermal approach, with urea as the nitrogen source and citric acid and its salts as carbon sources. The photoluminescence (PL) performance demonstrated that the fluorescence emission peak was altered by neither the structures nor the molar ratio of urea to the carbon source. Three highly luminescent CNQDs with a quantum yield of 40% were obtained when the molar ratio of urea to sodium citrate, citric acid, and ammonium citrate was 6:1, 18:1, and 18:1, which have average sizes of 4.1, 4.6, and 6.3 nm, respectively. Moreover, the possibility of using CNQDs as potential probes to determine the concentration of iron is also discussed. The results show that the as-prepared CNQDs has high selectivity for Fe3+ ions. The quenching mechanism of CNQDs by iron is connected with the nitrogen functional groups on the surface of CNQDs. Results showed valuable information about the effects of the carbon source on the PL efficiency, biocompatibility, and metal ion detection properties of CNQDs.

Journal ArticleDOI
04 Mar 2021-Langmuir
TL;DR: In this article, a simple modification of the PSO rate equation was proposed, yielding d q t d t = k'C t ( 1 - q t q e ) 2.
Abstract: The development of new adsorbent materials for the removal of toxic contaminants from drinking water is crucial toward achieving the United Nations Sustainable Development Goal 6 (clean water and sanitation). The characterization of these materials includes fitting models of adsorption kinetics to experimental data, most commonly the pseudo-second-order (PSO) model. The PSO model, however, is not sensitive to parameters such as adsorbate and adsorbent concentrations (C0 and Cs) and consequently is not able to predict changes in performance as a function of operating conditions. Furthermore, the experimental conditionality of the PSO rate constant, k2, can lead to erroneous conclusions when comparing literature results. In this study, we analyze 103 kinetic experiments from 47 literature sources to develop a relatively simple modification of the PSO rate equation, yielding d q t d t = k ' C t ( 1 - q t q e ) 2 . Unlike the original PSO model, this revised rate equation (rPSO) provides the first-order and zero-order dependencies upon C0 and Cs that we observe empirically. Our new model reduces the residual sum of squares by 66% when using a single rate constant to model multiple adsorption experiments with varying initial conditions. Furthermore, we demonstrate how the rPSO rate constant k' is more appropriate for comparing literature studies, highlighting faster kinetics in the adsorption of arsenic onto alumina versus iron oxides. This revised rate equation should find applications in engineering studies, especially since the rPSO rate constant k' does not show a counter-intuitive inverse relationship with increasing reaction rates when C0 is increased, unlike the PSO rate constant k2.

Journal ArticleDOI
19 Jul 2021-Langmuir
TL;DR: In this paper, the surface tension of the oxide skin was determined on quartz glass and liquid metal-phobic diamond coating to be around 350-365 mN/m, thus independent of the substrate surface or employed liquid metal.
Abstract: Gallium-based alloys have garnered considerable attention in the scientific community, particularly as they are in an atypical liquid state at and near room temperature. Though physical parameters, such as thermal conductivity, electrical conductivity, viscosity, yield stress, and surface tension, of these alloys are broadly known, the surface tension (surface free energy) of the oxide skin remains intangible due to the high yield stress of the oxide skin. In this article, we propose to employ gradually attenuated vibrations to obtain equilibrium shapes, which are analyzed along the lines of the puddle height method. The surface tension of the oxide skin was determined on quartz glass and liquid metal-phobic diamond coating to be around 350-365 mN/m, thus independent of the substrate surface or employed liquid metal (i.e., eutectic Ga-In (EGaIn) and galinstan). The similarity of the surface tension for different alloys was ascribed to the composition of the oxide skin, which predominantly comprises gallium oxides due to thermodynamic constraints. We envision that this method can also be applied to other liquid metal alloys and liquid metal marble systems facilitating modeling, simulation, and optimization processes.

Journal ArticleDOI
26 Jan 2021-Langmuir
TL;DR: In this article, the effects of preparation parameters [lipid concentration, flow rate ratio (FRR), and total flow rate], dialysis process, and complex formation between siRNA and ionizable cationic lipids on the physicochemical properties [siRNA entrapment on the particle size and polydispersity index (PDI)] were investigated using a design of experiments approach.
Abstract: Lipid nanoparticles (LNPs) containing short-interfering RNA (LNP-siRNA systems) are a promising approach for silencing disease-causing genes in hepatocytes following intravenous administration. LNP-siRNA systems are generated by rapid mixing of lipids in ethanol with siRNA in aqueous buffer (pH 4.0) where the ionizable lipid is positively charged, followed by dialysis to remove ethanol and to raise the pH to 7.4. Ionizable cationic lipids are the critical excipient in LNP systems as they drive entrapment and intracellular delivery. A recent study on the formation of LNP-siRNA systems suggested that ionizable cationic lipids segregate from other lipid components upon charge neutralization to form an amorphous oil droplet in the core of LNPs. This leads to a decrease in intervesicle electrostatic repulsion, thereby engendering fusion of small vesicles to form final LNPs of increased size. In this study, we prepared LNP-siRNA systems containing four lipid components (hydrogenated soy phosphatidylcholine, cholesterol, PEG-lipid, and 1,2-dioleoyl-3-dimethylammonium propane) by microfluidic mixing. The effects of preparation parameters [lipid concentration, flow rate ratio (FRR), and total flow rate], dialysis process, and complex formation between siRNA and ionizable cationic lipids on the physicochemical properties [siRNA entrapment on the particle size and polydispersity index (PDI)] were investigated using a design of experiments approach. The results for the preparation parameters showed no impact on siRNA encapsulation, but lipid concentration and FRR significantly affected the particle size and PDI. In addition, the effect of FRR on the particle size was suppressed in the presence of anionic polymers such as siRNA as compared to the case of LNPs alone. More intriguingly, unlike empty LNPs, a decrease in the PDI and an increase in the particle size occurred after dialysis in the LNP-siRNA systems. Such changes by dialysis were suppressed at FRR = 1. These findings provide useful information to guide the development and manufacturing conditions for LNP-siRNA systems.

Journal ArticleDOI
27 Apr 2021-Langmuir
TL;DR: In this paper, electron spin resonance spectroscopy (ESR) was used to confirm the formation of solid microbubble shells generated by iron ions in the condensed ionic cloud around the microbubbles.
Abstract: Microbubbles are very fine bubbles that shrink and collapse underwater within several minutes, leading to the generation of free radicals. Electron spin resonance spectroscopy (ESR) confirmed the generation of hydroxyl radicals under strongly acidic conditions. The drastic environmental change caused by the collapse of the microbubbles may trigger radical generation via the dispersion of the elevated chemical potential that had accumulated around the gas-water interface. The present study also confirmed the generation of ESR signals from the microbubble-treated waters even after several months had elapsed following the dispersion of the microbubbles. Bulk nanobubbles were expected to be the source of the spin-adducts of hydroxyl radicals. Such microbubble stabilization and conversion might be caused by the formation of solid microbubble shells generated by iron ions in the condensed ionic cloud around the microbubble. Therefore, the addition of a strong acid might cause drastic changes in the environment and destroy the stabilized condition. This would restart the collapsing process, leading to hydroxyl radical generation.

Journal ArticleDOI
07 Sep 2021-Langmuir
TL;DR: In this paper, the authors show that the advancing angle for gallium-based liquid metals is always high (>140°), even on substrates to which it adheres, because the solid native oxide must rupture in tension to advance the contact line.
Abstract: This work establishes that static contact angles for gallium-based liquid metals have no utility despite the continued and common use of such angles in the literature. In the presence of oxygen, these metals rapidly form a thin (∼1-3 nm) surface oxide "skin" that adheres to many surfaces and mechanically impedes its flow. This property is problematic for contact angle measurements, which presume the ability of liquids to flow freely to adopt shapes that minimize the interfacial energy. We show here that advancing angles for a metal are always high (>140°)-even on substrates to which it adheres-because the solid native oxide must rupture in tension to advance the contact line. The advancing angle for the metal depends subtly on the substrate surface chemistry but does not vary strongly with hydrophobicity of the substrate. During receding measurements, the metal droplet initially sags as the liquid withdraws from the "sac" formed by the skin and thus the contact area with the substrate initially increases despite its volumetric recession. The oxide pins at the perimeter of the deflated "sac" on all the surfaces are tested, except for certain rough surfaces. With additional withdrawal of the liquid metal, the pinned angle gets smaller until eventually the oxide "sac" collapses. Thus, static contact angles can be manipulated mechanically from 0° to >140° due to hysteresis and are therefore uninformative. We also provide recommendations and best practices for wetting experiments, which may find use in applications that use these alloys such as soft electronics, composites, and microfluidics.

Journal ArticleDOI
16 Feb 2021-Langmuir
TL;DR: This work prepared manganese oxides with different Mn2+/Mn3+ ratios through an over-reduction (OR) strategy for tuning the internal electron structure of mixed-valent manganESE, which could make these material oxides a good platform for researching the structure-property relationships.
Abstract: Manganese oxides composed of various valence states Mnx+ (x = 2, 3, and 4) have attracted wide attention as promising electrode materials for asymmetric supercapacitor. However, the poor electrical conductivity limited their performance and application. Appropriate regulation content of Mnx+ in mixed-valent manganese oxide can tune the electronic structure and further improve their conductivity and performance. Herein, we prepared manganese oxides with different Mn2+/Mn3+ ratios through an over-reduction (OR) strategy for tuning the internal electron structure of mixed-valent manganese, which could make these material oxides a good platform for researching the structure-property relationships. The Mn2+/Mn3+ ratio of manganese oxide could be precisely tuned from 0.6 to 1.7 by controlling the amount of reducing agent for manipulating the redox processes, where the manganese oxide electrode with the most appropriate Mn2+/Mn3+ ratio, as 1.65 (OR4) exhibits large capacitance (274 F g-1) and the assembling asymmetric supercapacitors by combining OR4 (positive) and the commercial activated carbon (as negative) achieved large 2.0 V voltage window and high energy density of 27.7 Wh kg-1 (power density of 500 W kg-1). The cycle lifespan of the OR4//AC could keep about 92.9% after 10 000-cycle tests owing to the Jahn-Teller distortion of the Mn(III)O6 octahedron, which is more competitive compared to other work. Moreover, a red-light-emitting diode (LED) can easily be lit for 15 min by two all-solid supercapacitor devices in a series.

Journal ArticleDOI
22 Apr 2021-Langmuir
TL;DR: In this article, cobalt manganese phosphate (H-CMP-series) thin films with different compositions of Co/Mn are prepared on stainless steel (SS) substrate via a facile hydrothermal method and employed as binder-free cathode electrodes in a hybrid supercapacitor.
Abstract: In the present study, cobalt manganese phosphate (H-CMP-series) thin films with different compositions of Co/Mn are prepared on stainless steel (SS) substrate via a facile hydrothermal method and employed as binder-free cathode electrodes in a hybrid supercapacitor. The XRD study reveals a monoclinic crystal structure, and the FE-SEM analysis confirmed that H-CMP-series samples displayed a nano/microarchitecture (microflowers to nanoflakes) on the surface of SS substrate with excess available surfaces and unique sizes. Interestingly, the synergy between cobalt and manganese species in the cobalt manganese phosphate thin film electrode demonstrates a maximum specific capacitance of 571 F g-1 at a 2.2 A g-1 current density in 1 M KOH. Besides, the nano/microstructured cobalt manganese phosphate was able to maintain capacitance retention of 88% over 8000 charge-discharge cycles. More importantly, the aqueous/all-solid-state asymmetric supercapacitor manufactured with the cobalt manganese phosphate thin film as the cathode and reduced graphene oxide (rGO) as the anode displays a high operating potential window of 1.6 V. The aqueous asymmetric device exhibited a maximum specific capacitance of 128 F g-1 at a current density of 1 A g-1 with an energy density of 45.7 Wh kg-1 and a power density of 1.65 kW kg-1. In addition, the all-solid-state asymmetric supercapacitor device provides a high specific capacitance of 37 F g-1 at 1 A g-1 with 13.3 Wh kg-1 energy density and 1.64 kW kg-1 power density in a polymer gel (PVA-KOH) electrolyte. The long cyclic life of both devices (87 and 84%, respectively, after 6000 cycles) and practical demonstration of the solid-state device (lighting of a LED lamp) suggest another alternative choice for cathode materials to develop stable energy storage devices with high energy density. Furthermore, the aforementioned study paves the way to investigate phosphate-based materials as a new class of materials for supercapacitor applicability.

Journal ArticleDOI
12 Nov 2021-Langmuir
TL;DR: In this paper, the p-n nanojunction of xSnO2-yCr2O3 nanocomposites (NCs) are prepared and used as sensing materials, and the gas sensing properties, crystal structure, morphology, and chemical states are characterized by employing an electrochemical workstation, an Xray diffractometer, a transmission electron microscope, and an X-ray photoelectron spectrometer.
Abstract: Metal oxide semiconductor (MOS) gas sensors show poor selectivity when exposed to mixed gases. This is a challenge in gas sensors and limits their wide applications. There is no efficient way to detect a specific gas when two homogeneous gases are concurrently exposed to sensing materials. The p-n nanojunction of xSnO2-yCr2O3 nanocomposites (NCs) are prepared and used as sensing materials (x/y shows the Sn/Cr molar ratio in the SnO2-Cr2O3 composite and is marked as SnxCry for simplicity). The gas sensing properties, crystal structure, morphology, and chemical states are characterized by employing an electrochemical workstation, an X-ray diffractometer, a transmission electron microscope, and an X-ray photoelectron spectrometer, respectively. The gas sensing results indicate that SnxCry NCs with x/y greater than 0.07 demonstrate a p-type behavior to both CO and H2, whereas the SnxCry NCs with x/y < 0.07 illustrate an n-type behavior to the aforementioned reduced gases. Interestingly, the SnxCry NCs with x/y = 0.07 show an n-type behavior to H2 but a p-type to CO. The effect of the operating temperature on the opposite sensing response of the fabricated sensors has been investigated. Most importantly, the mechanism of selectivity opposite sensing response is proposed using the aforementioned characterization techniques. This paper proposes a promising strategy to overcome the drawback of low selectivity of this type of sensor.

Journal ArticleDOI
19 Jan 2021-Langmuir
TL;DR: In this paper, an eco-friendly and simple method to improve the inkjet printability of reactive dye solutions was proposed, where the influence of diethylene glycol on the surface tension, rheology, and dye molecule aggregation properties was investigated.
Abstract: Digital inkjet printing technology plays an increasingly important role in textile printing. The printing printability of reactive dye inks is the key to improving the quality of printed fabrics. In this study, an eco-friendly and simple method to improve the inkjet printability of reactive dye solutions was proposed. The influence of diethylene glycol on the surface tension, rheology, and dye molecule aggregation properties for three reactive dye solutions was investigated. The jetting performance of dye solutions was explored by observing droplet formation. Moreover, the color performance of printed cotton fabrics, including reactive dye solution penetration, colorimetric values, and color strength, was evaluated. Addition of diethylene glycol could change the aggregation of dye molecules by hydrophobic forces and hydrogen bonds. Diethylene glycol could inhibit formation of satellite droplets by changing the viscosity and surface tension of solutions, which made the pattern printed on cotton fabrics show regular edge sharpness. Furthermore, the dye solutions containing 10% DEG not only satisfied various properties of reactive dye inks but also had the highest color strength and the deepest and brightest colors.

Journal ArticleDOI
Guogui Shi1, Mingming Wu1, Qi Zhong1, Peng Mu1, Jian Li1 
16 Jun 2021-Langmuir
TL;DR: In this article, a superhydrophobic aerogel was developed with a unique three-dimensional porous network structure, which exhibits excellent selective oil absorption capacities and can absorb various organic solutions and its maximum absorption capacity can reach 47 times its own weight.
Abstract: As the main component of the municipal waste, waste cardboard has caused a host of environmental problems. Therefore, the reasonable disposal of waste cardboard is of great significance to global sustainable development and green economics. Herein, using waste cardboard as the raw material, a superhydrophobic aerogel has been developed with a unique three-dimensional porous network structure, which exhibits excellent selective oil absorption capacities. The aerogel was made by combining Ca2+ cross-links and postmodification with stearic acid. Superhydrophobic aerogels can absorb various organic solutions and its maximum absorption capacity can reach 47 times its own weight. Meanwhile, the size of aerogels has been further expanded, with a diameter of 21.2 cm and a height of 3.2 cm, which can absorb 34 times its own weight of kerosene. More importantly, the aerogel can also absorb oil droplets in oil/water emulsions with an adsorption efficiency of over 98.5%. Moreover, the aerogel can be employed multiple times without significantly reducing the adsorption capacity via distillation or squeezing, depending upon the type of pollutions. Consequently, we believe that these facile and inexpensive superhydrophobic aerogels can effectively adsorb oily wastewater, which matches well with the requirement for environmentally friendliness from the perspective of practical application.

Journal ArticleDOI
07 Nov 2021-Langmuir
TL;DR: In this article, an Ag3PO4/GO/UiO-66-NH2(U66N) composite photocatalyst was prepared by an ultrasonic assisted in situ precipitation method.
Abstract: A Ag3PO4/GO/UiO-66-NH2(AGU) composite photocatalyst was prepared by an ultrasonic-assisted in situ precipitation method. The optical property, structure, composition, and morphology of photocatalysts were investigated using UV-vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy, and charge flow tracking by photodeposition of Pt and PbO2 nanoparticles. In comparison with Ag3PO4 and Ag3PO4/UiO-66-NH2(AU), the AGU composite photocatalyst showed heightened photocatalytic performance for the degradation of levofloxacin hydrochloride (LVF). The AGU photocatalyst (dosage: 0.8 g/L) with 1% mass content of graphene oxide (GO), the mass ratio of Ag3PO4 and UiO-66-NH2(U66N) reached 2:1, showed the highest photodegradation rate of 94.97% for 25 mg/L LVF after 60 min of visible light irradiation at pH = 6. The formation of a heterojunction and the addition of GO synergistically promote faster separation of electron-hole pairs, retain more active substances, and enhance the performance of the photocatalyst. Furthermore, the mechanism of the Z-scheme of the AGU composite photocatalytic is proposed.

Journal ArticleDOI
29 Apr 2021-Langmuir
TL;DR: It is shown that CO2RR to CO is facet dependent and that Au(110) is the most active surface, and the importance of the acid–base bicarbonate/carbonate couple, not only as a buffering equilibrium but also as species involved in the electrochemical reactions under study.
Abstract: Among heterogeneous electrocatalysts, gold comes closest to the ideal reversible electrocatalysis of CO2 electrochemical reduction (CO2RR) to CO and, vice versa, of CO electroxidation to CO2 (COOR). The nature of the electrolyte has proven to crucially affect the electrocatalytic behavior of gold. Herein, we expand the understanding of the effect of the widely employed bicarbonate electrolytes on CO2RR using gold monocrystalline electrodes, detecting the CO evolved during CO2RR by selective anodic oxidation. First, we show that CO2RR to CO is facet dependent and that Au(110) is the most active surface. Additionally, we detect by in situ FTIR measurements the presence of adsorbed COtop only on the Au(110) surface. Second, we highlight the importance of acid-base equilibria for both CO2RR and COOR by varying the electrolyte (partial pressure of CO2 and the concentration of the bicarbonate) and voltammetric parameters. In this way, we identify different regimes of surface pH and bicarbonate speciation, as a function of the current and electrolyte conditions. We reveal the importance of the acid-base bicarbonate/carbonate couple, not only as a buffering equilibrium but also as species involved in the electrochemical reactions under study.

Journal ArticleDOI
07 Sep 2021-Langmuir
TL;DR: In this paper, a comparison study of the surface wettability, self-cleaning, anti-icing, anticorrosion behaviors, and mechanical durability was carried out to reveal the functional differences and mechanisms.
Abstract: Endowing metallic surfaces with special wettability and unique interfacial contacts broadens their wide application fields. Herein, superhydrophobic and lubricant-infused ultraslippery surfaces were achieved through chemical etching, low surface energy molecule grafting, and lubricant infusion. Systematic comparison studies of the surface wettability, self-cleaning, anti-icing, anticorrosion behaviors, and mechanical durability were carried out to reveal the functional differences and mechanisms. Both superhydrophobic and ultraslippery surfaces exhibit a distinct decrease in ice adhesion strength and a remarkable increase in charge-transfer resistance, demonstrating significantly improved ice overdelay and corrosion-resisting performance. Most notably, given the existence of a stable, defect-free, and inert lubricant-infused layer, the lubricant-infused ultraslippery surfaces possess superior mechanical robustness and long-term corrosion resistance, which provides better application potential under challenging service environments.

Journal ArticleDOI
14 Jul 2021-Langmuir
TL;DR: In this article, a new magnetic nanocomposite with a statistical star polymer structure was designed and synthesized based on the polymerization of aromatic polyamide chains on the surface of functionalized magnetic copper ferrite nanoparticles (CuFe2O4 MNPs).
Abstract: A new magnetic nanocomposite with a statistical star polymer structure was designed and synthesized. Nanocomposite fabrication is based on the polymerization of aromatic polyamide chains on the surface of functionalized magnetic copper ferrite nanoparticles (CuFe2O4 MNPs). This magnetic nanostructure was characterized by several analysis methods. All the analytical methods used, for instance, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetric, vibrating-sample magnetometer, and scanning electron microscopy (SEM), confirmed the formation of polyamide chains. The obtained images from SEM imaging showed a unique nanoflower morphology which was the proper orientation results of synthesized nanoplates. Finally, the magnetic nanostructure showed a good potential for hyperthermia applications, with a maximum specific absorption rate of 7 W/g for 1 mg/mL of the sample under a magnetic field in different frequencies (100, 200, 300, and 400 MHz) and 5 to 20 min time intervals.

Journal ArticleDOI
01 Apr 2021-Langmuir
TL;DR: In this paper, a metal-free all-solid-state z-scheme g-C3N4/NCDs/WOx photocatalyst was fabricated using nitrogen-doped carbon dots (NCDs) as the electron mediator.
Abstract: A novel metal-free all-solid-state z-scheme g-C3N4/NCDs/WOx photocatalyst was fabricated using nitrogen-doped carbon dots (NCDs) as the electron mediator. As-prepared sandwich-structured composites...

Journal ArticleDOI
12 Jan 2021-Langmuir
TL;DR: In this paper, a solution of aluminum chloride hexahydrate and N-dodecyltrimethoxysilane (DTMS) in ethanol was used as the electrolyte solution.
Abstract: In this article, a novel and facile method is used to construct superhydrophobic surfaces on aluminum alloys. A solution of aluminum chloride hexahydrate and N-dodecyltrimethoxysilane (DTMS) in ethanol was used as the electrolyte solution. The hydrolysis of DTMS was accelerated during the electrodeposition process, and the hydrolysate was bonded to a pretreated aluminum surface. The prepared aluminum alloy sample exhibits both superhydrophobicity (the surface water contact angle reached 155°) and excellent corrosion resistance. The inhibition efficiency of this sample is as high as 99.9% in 3.5 wt % NaCl solution, which remains at 98% even after 30 days of immersion. Thus, our fabrication can be well applied to the field of marine corrosion protection. Therefore, the working mechanism was discussed by confocal Raman microspectroscopy (CRM). In addition, the investigation by CRM and electrochemical impedance spectroscopy (EIS) also indicates that superhydrophobic samples show good stability in NaCl solution. The fabrication method can inspire new ideas for the construction of superhydrophobic aluminum alloys in the marine environment.