scispace - formally typeset
Search or ask a question
JournalISSN: 1439-8621

Limnology 

Springer Science+Business Media
About: Limnology is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Population & Phytoplankton. It has an ISSN identifier of 1439-8621. Over the lifetime, 709 publications have been published receiving 11595 citations. The journal is also known as: freshwater science.


Papers
More filters
Journal ArticleDOI
TL;DR: There have been numerous sediment quality guidelines (SQGs) developed during the past 20 years to assist regulators in dealing with contaminated sediments as discussed by the authors, but these guidelines are chemical specific and do not establish causality where chemical mixtures occur.
Abstract: There have been numerous sediment quality guidelines (SQGs) developed during the past 20 years to assist regulators in dealing with contaminated sediments. Unfortunately, most of these have been developed in North America. Traditionally, sediment contamination was determined by assessing the bulk chemical concentrations of individual compounds and often comparing them with background or reference values. Since the 1980s, SQGs have attempted to incorporate biological effects in their derivation approach. These approaches can be categorized as empirical, frequency-based approaches to establish the relationship between sediment contamination and toxic response, and theoretically based approaches that attempt to account for differences in bioavailability through equilibrium partitioning (EqP) (i.e., using organic carbon or acid volatile sulfides). Some of these guidelines have been adopted by various regulatory agencies in several countries and are being used as cleanup goals in remediation activities and to identify priority polluted sites. The original SQGs, which compared bulk chemical concentrations to a reference or to background, provided little insight into the ecosystem impact of sediment contaminants. Therefore, SQGs for individual chemicals were developed that relied on field sediment chemistry paired with field or laboratory-based biological effects data. Although some SQGs have been found to be relatively good predictors of significant site contamination, they also have several limitations. False positive and false negative predictions are frequently in the 20% to 30% range for many chemicals and higher for others. The guidelines are chemical specific and do not establish causality where chemical mixtures occur. Equilibrium-based guidelines do not consider sediment ingestion as an exposure route. The guidelines do not consider spatial and temporal variability, and they may not apply in dynamic or larger-grained sediments. Finally, sediment chemistry and bioavailability are easily altered by sampling and subsequent manipulation processes, and therefore, measured SQGs may not reflect in situ conditions. All the assessment tools provide useful information, but some (such as SQGs, laboratory toxicity and bioaccumulation, and benthic indices) are prone to misinterpretation without the availability of specific in situ exposure and effects data. SQGs should be used only in a “screening” manner or in a “weight-of-evidence” approach. Aquatic ecosystems (including sediments) must be assessed in a “holistic” manner in which multiple components are assessed (e.g., habitat, hydrodynamics, resident biota, toxicity, and physicochemistry, including SQGs) by using integrated approaches.

519 citations

Journal ArticleDOI
TL;DR: Using this method, the surveillance of fish species composition in freshwater using environmental DNA as species markers can be conducted less laboriously than with traditional methods.
Abstract: Prompt and accurate methods for assessing the species composition of given areas are indispensable in addressing the rapid loss of biodiversity. Here, we propose a method for the surveillance of fish species composition in freshwater using environmental DNA as species markers. First, the applicability of the method was demonstrated through aquarium experiments. DNA was extracted from 120 ml aquarium water, and the degenerated primers targeting the fish mitochondrial cytochrome b gene were used for amplification. PCR-amplified fragments were analysed by random cloning, and all species reared in the aquarium were detected. Next, this method was applied to natural freshwater environments. Water samples were collected from three sites in the Yura River, Japan; DNA was concentrated from 2 l of environmental water, and then amplified and cloned. Up to four species of fish were detected by sequencing 47 randomly selected clones from a single water sample. Overall, the results were consistent with previous knowledge of fish habitat utilisation. Using this method, the surveillance of fish species composition can be conducted less laboriously than with traditional methods.

228 citations

Journal ArticleDOI
TL;DR: In this article, the effect of thermal stratification on water quality in a reservoir has been investigated by field observations and statistical analysis, and the authors found that turbidity peaked mostly in the thermocline region, closely related to the location of the maximum density gradient and thus low turbulence stabilizing the sediments in the vertical water column.
Abstract: In this study, the effect of thermal stratification on water quality in a reservoir has been investigated by field observations and statistical analysis. During the summer period, when stratification is evident, field observations indicate that the observed dissolved oxygen concentrations drop well below the standard limit of 5 mg l−1 at the thermocline, leading to the development of anoxia. The reasons for variations in the dissolved oxygen concentrations were investigated. Variations of air temperature and other meteorological factors and lateral flows from side arms of the lake were found to be responsible for the increase of dissolved oxygen concentrations. It was also observed that turbidity peaked mostly in the thermocline region, closely related to the location of the maximum density gradient and thus low turbulence stabilizing the sediments in the vertical water column. Relatively cold sediment-laden water flowing into the lake after rain events also resulted in increased turbidity at the bottom of the lake. Nondimensional analysis widely used in the literature was used to identify the strength of the stratification, but this analysis alone was found insufficient to describe the evolution of dissolved oxygen and turbidity in the water column. Thus correlation of these parameters was investigated by multivariate analysis. Fall (partial mixing), summer (no mixing), and winter (well mixed) models describe the correlation structures between the independent variables (meteorological parameters) and the dependent variables (water-quality parameters). Statistical analysis results indicate that air temperature, one day lagged wind speed, and low humidity affected variation of water-quality parameters.

173 citations

Journal ArticleDOI
TL;DR: It is concluded that in spite of the higher growth rate under ideal conditions, Microcystis does not usually bloom in the North Basin because of low availability of phosphorus and nitrogen.
Abstract: Under optimal nutrient conditions, both Microcystis sp. and Anabaena sp. isolated from Lake Biwa grew optimally at 28–32°C but differed in maximal growth rates, phosphate uptake kinetics, maximal phosphorus quotas, and growth responses to nitrogen and phosphorus limitation. The maximal growth rates of Microcystis and Anabaena were 1.6 and 1.25 divisions day−1, respectively. With phosphate and nitrate in the growth-limiting range, the growth of Microcystis was optimal at an N : P ratio of 100 : 1 (by weight) and declined at lower (nitrogen limitation) and higher (phosphorus limitation) ratios. In contrast, Anabaena growth rates did not change at N : P ratios from 1000 : 1 to 10 : 1. Starting with cells containing the maximal phosphorus quota, Microcystis growth in minus-phosphorus medium ceased in 7–9 days, compared with 12–13 days for Anabaena. The phosphate turnover time in cultures starved to their minimum cell quotas was 7.9 min for Microcystis and 0.6 min for Anabaena. Microcystis had a higher K s (0.12 μg P l−1 10−6 cells) and lower V max (9.63 μg P l−1 h−1 10−6 cells), than Anabaena (K s 0.02 μg P l−1 h−1 10−6 cells; V max 46.25 63 μg P l−1 h−1 10−6 cells), suggesting that Microcystis would not be able to grow well in phosphorus-limited waters. We conclude that in spite of the higher growth rate under ideal conditions, Microcystis does not usually bloom in the North Basin because of low availability of phosphorus and nitrogen. Although Anabaena has an efficient phosphorus-uptake system, its main strategy for growth in low-phosphorus environments may depend on storage of phosphorus during periods of abundant phosphorus supply, which are rare in the North Basin.

129 citations

Journal ArticleDOI
TL;DR: Certain candidate chemicals belonging to the group of cationic surfactants were examined for their effectiveness as preservatives for eDNA water samples by simply adding the chemicals to water samples to suppress the degradation of eDNA.
Abstract: Environmental DNA (eDNA) analysis is a powerful tool within ecology for the study of the distribution or abundance of aquatic species, although the simplification of water sampling is required for enabling light and fast field sampling to expand further application of eDNA analysis. Here, certain candidate chemicals belonging to the group of cationic surfactants were examined for their effectiveness as preservatives for eDNA water samples by simply adding the chemicals to water samples to suppress the degradation of eDNA. The quaternary ammonium compound benzalkonium chloride (BAC) at a final concentration of 0.01% was effective to retain 92% of eDNA derived from the bluegill sunfish Lepomis macrochirus in an 8-h incubation test at ambient temperature, which assumed a transportation of water samples in 1-day field sampling during the daytime. Meanwhile, eDNA in water samples without BAC retained only 14% of the initial eDNA. Moreover, an additional long-term incubation test (up to 10 days) revealed BAC-treated samples retained ~70 and 50% of bluegill DNA compared to the initial amount after 1- and 10-day incubation at ambient temperature, respectively. Meanwhile, eDNA in naive samples reduced to 20% after 1-day incubation and reached undetectable levels after 10 days. Up to now, many eDNA studies have adopted on-site filtration followed by filter fixation, which requires many pieces of equipment. Addition of BAC can protect eDNA in water samples with less effort and equipment resulting in an increase of measurement accuracy of the eDNA quantity and detection probability of rare species by preventing the disappearance of rare sequences in water samples.

118 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202317
202220
202162
202046
201932
201835