scispace - formally typeset
Search or ask a question

Showing papers in "Lipids in 2013"


Journal ArticleDOI
25 Jul 2013-Lipids
TL;DR: A quantitative method based on LC–tandem mass spectrometry (LC–MS–MS) was developed and validated for the measurement of six abundant dietary phytosterols and structurally related triterpene alcohols including brassicasterol, campesterol, cycloartenol, β-sitosterol, stigmasterol, and lupeol in edible oils.
Abstract: Previous methods for the quantitative analysis of phytosterols have usually used GC–MS and require elaborate sample preparation including chemical derivatization. Other common methods such as HPLC with absorbance detection do not provide information regarding the identity of the analytes. To address the need for an assay that utilizes mass selectivity while avoiding derivatization, a quantitative method based on LC–tandem mass spectrometry (LC–MS–MS) was developed and validated for the measurement of six abundant dietary phytosterols and structurally related triterpene alcohols including brassicasterol, campesterol, cycloartenol, β-sitosterol, stigmasterol, and lupeol in edible oils. Samples were saponified, extracted with hexane and then analyzed using reversed phase HPLC with positive ion atmospheric pressure chemical ionization tandem mass spectrometry and selected reaction monitoring. The utility of the LC–MS–MS method was demonstrated by analyzing 14 edible oils. All six compounds were present in at least some of the edible oils. The most abundant phytosterol in all samples was β-sitosterol, which was highest in corn oil at 4.35 ± 0.03 mg/g, followed by campesterol in canola oil at 1.84 ± 0.01 mg/g. The new LC–MS–MS method for the quantitative analysis of phytosterols provides a combination of speed, selectivity and sensitivity that exceed those of previous assays.

91 citations


Journal ArticleDOI
26 Jan 2013-Lipids
TL;DR: No differences in lipid species composition were evident when the lipid extraction protocols were compared, indicating that MTBE extraction with mechanical bead homogenization provides an improved method for the lipidomic profiling of human brain tissue.
Abstract: We have developed a protocol suitable for high-throughput lipidomic analysis of human brain samples. The traditional Folch extraction (using chloroform and glass–glass homogenization) was compared to a high-throughput method combining methyl-tert-butyl ether (MTBE) extraction with mechanical homogenization utilizing ceramic beads. This high-throughput method significantly reduced sample handling time and increased efficiency compared to glass–glass homogenizing. Furthermore, replacing chloroform with MTBE is safer (less carcinogenic/toxic), with lipids dissolving in the upper phase, allowing for easier pipetting and the potential for automation (i.e., robotics). Both methods were applied to the analysis of human occipital cortex. Lipid species (including ceramides, sphingomyelins, choline glycerophospholipids, ethanolamine glycerophospholipids and phosphatidylserines) were analyzed via electrospray ionization mass spectrometry and sterol species were analyzed using gas chromatography mass spectrometry. No differences in lipid species composition were evident when the lipid extraction protocols were compared, indicating that MTBE extraction with mechanical bead homogenization provides an improved method for the lipidomic profiling of human brain tissue.

83 citations


Journal ArticleDOI
28 Aug 2013-Lipids
TL;DR: A methodology employing liquid chromatography coupled with evaporative light scattering detector has been optimized and validated to quantify the major phospholipids classes in human milk providing absolute content of these lipids in a relatively large cohort.
Abstract: Phospholipids are integral constituents of the milk fat globule membranes and they play a central role in infants’ immune and inflammatory responses. A methodology employing liquid chromatography coupled with evaporative light scattering detector has been optimized and validated to quantify the major phospholipids classes in human milk. Phospholipids were extracted using chloroform and methanol and separated on C18 column. Repeatability, intermediate reproducibility, and recovery values were calculated and a large sample set of human milk analyzed. In human milk, phospholipid classes were quantified at concentrations of 0.6 mg/100 g for phosphatidylinositol; 4.2 mg/100 g for phosphatidylethanolamine, 0.4 mg/100 g for phosphatidylserine, 2.8 mg/100 g for phosphatidylcholine, and 4.6 mg/100 g for sphingomyelin. Their relative standard deviation of repeatability and intermediate reproducibility values ranging between 0.8 and 13.4 % and between 2.4 and 25.7 %, respectively. The recovery values ranged between 67 and 112 %. Finally, the validated method was used to quantify phospholipid classes in human milk collected from 50 volunteers 4 weeks postpartum providing absolute content of these lipids in a relatively large cohort. The average content of total phospholipids was 23.8 mg/100 g that corresponds to an estimated mean intake of 140 mg phospholipids/day in a 4-week old infant when exclusively breast-fed.

82 citations


Journal ArticleDOI
15 Mar 2013-Lipids
TL;DR: It is suggested that daily egg consumption promotes favorable shifts in HDL lipid composition and function beyond increasing plasma HDL-C in MetS.
Abstract: We recently demonstrated that daily whole egg consumption during moderate carbohydrate restriction leads to greater increases in plasma HDL-cholesterol (HDL-C) and improvements in HDL profiles in metabolic syndrome (MetS) when compared to intake of a yolk-free egg substitute. We further investigated the effects of this intervention on HDL composition and function, hypothesizing that the phospholipid species present in egg yolk modulate HDL lipid composition to increase the cholesterol-accepting capacity of subject serum. Men and women classified with MetS were randomly assigned to consume either three whole eggs (EGG, n = 20) per day or the equivalent amount of egg substitute (SUB, n = 17) throughout a 12-week moderate carbohydrate-restricted (25–30 % of energy) diet. Relative to other HDL lipids, HDL-cholesteryl ester content increased in all subjects, with greater increases in the SUB group. Further, HDL-triacylglycerol content was reduced in EGG group subjects with normal baseline plasma HDL-C, resulting in increases in HDL-CE/TAG ratios in both groups. Phospholipid analysis by mass spectrometry revealed that HDL became enriched in phosphatidylethanolamine in the EGG group, and that EGG group HDL better reflected sphingomyelin species present in the whole egg product at week 12 compared to baseline. Further, macrophage cholesterol efflux to EGG subject serum increased from baseline to week 12, whereas no changes were observed in the SUB group. Together, these findings suggest that daily egg consumption promotes favorable shifts in HDL lipid composition and function beyond increasing plasma HDL-C in MetS.

81 citations


Journal ArticleDOI
01 Mar 2013-Lipids
TL;DR: Recommendations for regular fatty fish consumption and point toward health benefits in terms of lowering inflammation in adults with one or more features of MetS are supported.
Abstract: Individuals with metabolic syndrome (MetS) have a higher risk of type 2 diabetes and cardiovascular disease, therefore, research has been directed at reducing various components that contribute to MetS and associated metabolic impairments, including chronic low-grade inflammation. Epidemiological, human, animal and cell culture studies provide evidence that dietary n-3 polyunsaturated fatty acids (n-3 PUFA), including alpha-linolenic acid (18:3n-3, ALA), eicosapentaenoic acid (20:5n-3, EPA) and/or docosahexaenoic acid (22:6n-3, DHA) may improve some of the components associated with MetS. The current review will discuss recent evidence from human observational and intervention studies that focused on the effects of ALA, EPA or DHA on inflammatory markers in healthy adults and those with one or more features of MetS. Observational studies in healthy adults support the recommendation that a diet rich in n-3 fatty acids may play a role in preventing and reducing inflammation, whereas intervention studies in healthy adults have yielded inconsistent results. The majority of intervention studies in adults with features of MetS have reported a benefit for some inflammatory measures; however, other studies using high n-3 fatty acid doses and long supplementation periods have reported no effect. Overall, the data reviewed herein support recommendations for regular fatty fish consumption and point toward health benefits in terms of lowering inflammation in adults with one or more features of MetS.

77 citations


Journal ArticleDOI
26 Jul 2013-Lipids
TL;DR: It is demonstrated that 2 g/day of fish oil for 9 weeks of chemotherapy improves CRP values, CRP/albumin status, plasma fatty acid profile and potentially prevents weight loss during treatment.
Abstract: Previous studies have shown that n-3 polyunsaturated fatty acids n-3 (n-3 PUFA) have several anticancer effects, especially attributed to their ability to modulate a variety of genomic and immune responses. In this context, this randomized, prospective, controlled clinical trial was conducted in order to check whether supplementation of 2 g/day of fish oil for 9 weeks alters the production of inflammatory markers, the plasma fatty acid profile and the nutritional status in patients with colorectal cancer (CRC). Eleven adults with CRC in chemotherapy were randomized into two groups: (a) supplemented (SG) daily with 2 g/day of encapsulated fish oil [providing 600 mg/day of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA)] for 9 weeks (n = 6), and (b) control (CG) (n = 5). All outcomes were evaluated on the day before the first chemotherapy session and 9 weeks later. Plasma TNF-α, IL-1β, IL-10 and IL-17A, the pro/anti-inflammatory balance (ratio TNF-α/IL-10 and IL-1β/IL10) and serum albumin, showed no significant changes between times and study groups (p > 0.05). C-reactive protein (CRP) and the CRP/albumin ratio showed opposite behavior in groups, significantly reducing their values in SG (p < 0.05). Plasma proportions of EPA and DHA increased 1.8 and 1.4 times, respectively, while the ARA reduced approximately 0.6 times with the supplementation (9 weeks vs baseline, p < 0.05). Patients from SG gained 1.2 kg (median) while the CG lost −0.5 kg (median) during the 9 weeks of chemotherapy (p = 0.72). These results demonstrate that 2 g/day of fish oil for 9 weeks of chemotherapy improves CRP values, CRP/albumin status, plasma fatty acid profile and potentially prevents weight loss during treatment.

71 citations


Journal ArticleDOI
16 Feb 2013-Lipids
TL;DR: The results show that maternal dietary source of fat affects milk FA composition and circulating FA profile, as could be expected, but also BWG and thermogenic capacity of offspring during the suckling period.
Abstract: We aimed to assess the effects of maternal supplementation with the main fat sources used in the human Western diet (olive oil, butter, margarine) on milk FA composition and on plasma FA profile of offspring, and to determine whether it may influence body-weight-gain (BWG) and adiposity of offspring during the suckling period. Wistar rats were supplemented with the different fat sources from day 14 of gestation and throughout lactation. Olive oil-supplemented dams showed the highest proportion of oleic-acid in milk, with no changes in plasma. Their offspring also showed the highest proportion of this FA in plasma, lower BWG during the suckling period, and higher levels of UCP1 in brown adipose tissue (BAT) at weaning. Margarine-supplemented dams showed the highest percentage of PUFA in milk, and a similar tendency was found in plasma of their offspring. Butter-supplemented dams displayed higher proportion of saturated FA (SFA) in milk compared to other fat-supplemented dams, but lower than controls. Control offspring also showed higher proportion of SFA in plasma and greater BWG during the suckling period than fat-supplemented groups. Significant correlations were found between the relative content of some milk FA and BWG of offspring, in particular, oleic-acid levels correlated negatively with BWG and positively with UCP1 levels. These results show that maternal dietary source of fat affects milk FA composition and circulating FA profile, as could be expected, but also BWG and thermogenic capacity of offspring during the suckling period. An effect of oleic-acid stimulating BAT thermogenic capacity of suckling pups is proposed.

65 citations


Journal ArticleDOI
15 Aug 2013-Lipids
TL;DR: High-throughput n-3 fatty acid profiling is enabled by collection techniques such as venous whole blood and fingertip prick (FTP) sampling, but the resulting increased sample numbers increases storage demand, so whole blood for fatty acid analysis should be stored at −75 °C whenever possible.
Abstract: High-throughput n-3 fatty acid profiling is enabled by collection techniques such as venous whole blood and fingertip prick (FTP) sampling, but the resulting increased sample numbers increases storage demand. Highly unsaturated fatty acids (HUFA) in erythrocytes are susceptible to oxidation, but this tendency is poorly characterized in venous and FTP whole blood. Presently, whole blood samples with low and high n-3 content collected with ethylenediaminetetraacetic acid were stored on chromatography paper with and without BHT pre-treatment for up to 180 days at different temperatures (room, 4, −20, −75 °C). Whole blood prepared with heparin and BHT and stored in cryovials was also examined. Eicosapentaenoic acid (EPA, 20:5n-3) + docosahexaenoic acid (DHA, 22:6n-3) is relatively stable when stored at −75 °C under various conditions but rapidly decreases in whole blood when stored at −20 °C. At −20 °C, BHT + heparin prepared whole blood can prevent decreases in cryovials up to 180 days but BHT only slows the decreases on chromatography paper. Surprisingly, whole blood stored at 4 °C and room temperature was less susceptible to decreases in EPA + DHA as compared with −20 °C storage. Assessments of n-3 blood biomarkers indicate the % n-3 HUFA in total HUFA was more stable as compared with the sum of the relative % of EPA + DHA. In conclusion, FTP and venous whole blood for fatty acid analysis should be stored at −75 °C whenever possible. In the absence of −75 °C storage conditions, BHT should be added and 4 °C or room temperature appear to be better alternatives to −20 °C.

64 citations


Journal ArticleDOI
01 Feb 2013-Lipids
TL;DR: The new HPLC-electrospray-ionization triple-quadrupole MS (HPLC-ESI-TQMS) method can be applied to quantify the nine major classes of polar glycerolipid in planktonic communities, simplifying downstream analysis and increasing sample throughput.
Abstract: Polar glycerolipids are a diverse family of lipid molecules that form the bulk of bacterial and eukaryotic microbial membranes. The earth and ocean sciences has a long history of using fatty acids as biomarkers for microbes, but have only recently begun to examine the intact polar lipids from which they are derived. Current analytical approaches rely on laboriously quantifying the molecular ions of each of these species independently. Thus, we saw a need for a method for quantifying polar glycerolipid classes that was: (i) selective for individual classes, (ii) inclusive of all species within a class, (iii) independent of foreknowledge of the molecular ions of the polar glycerolipid, and (iv) amenable to automated, high-throughput data analysis methods. Our new HPLC-electrospray-ionization triple-quadrupole MS (HPLC-ESI-TQMS) method can be applied to quantify the nine major classes of polar glycerolipid in planktonic communities: the phospholipids phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine; the glycolipids monoglycosyldiacylglycerol, diglycosyldiacylglycerol and sulfoquinovosyldiacylglycerol; and the betaine lipids diacylglyceryl trimethyl homoserine, diacylglyceryl hydroxymethyl trimethyl-β-alanine, and diacylglyceryl carboxyhydroxymethylcholine. The analyses rely on neutral loss and parent ion scan events that yield one chromatogram for each class of polar glycerolipid, simplifying downstream analysis and increasing sample throughput. The efficacy of the method was demonstrated by analyzing plankton community samples from a variety of marine environments.

63 citations


Journal ArticleDOI
24 Jul 2013-Lipids
TL;DR: Australian children do not consume the recommended amounts of long chain omega-3 fatty acids, especially DHA, which could be explained by low fish consumption.
Abstract: Secondary analysis of the 2007 Australian National Children’s Nutrition and Physical Activity survey was undertaken to assess the intake and food sources of EPA, DPA and DHA (excluding supplements) in 4,487 children aged 2–16 years. An average of two 24-h dietary recalls was analysed for each child and food sources of EPA, DPA and DHA were assessed using the Australian nutrient composition database called AUSNUT 2007. Median (inter quartile range, IQR) for EPA, DPA and DHA intakes (mg/day) for 2–3, 4–8, 9–13, 14–16 year were: EPA 5.3 (1.5–14), 6.7 (1.8–18), 8.7 (2.6–23), 9.8 (2.7–28) respectively; DPA 6.2 (2.2–14), 8.2 (3.3–18), 10.8 (4.3–24), 12.2 (5–29) respectively; and DHA 3.9 (0.6–24), 5.1 (0.9–26), 6.8 (1.1–27), 7.8 (1.5–33) respectively. Energy-adjusted intakes of EPA, DPA and DHA in children who ate fish were 7.5, 2 and 16-fold higher, respectively (P < 0.001) compared to those who did not eat fish during the 2 days of the survey. Intake of total long chain n-3 PUFA was compared to the energy adjusted suggested dietary target (SDT) for Australian children and 20 % of children who ate fish during the 2 days of the survey met the SDT. Fish and seafood products were the largest contributors to DHA (76 %) and EPA (59 %) intake, while meat, poultry and game contributed to 56 % DPA. Meat consumption was 8.5 times greater than that for fish/seafood. Australian children do not consume the recommended amounts of long chain omega-3 fatty acids, especially DHA, which could be explained by low fish consumption.

51 citations


Journal ArticleDOI
12 Feb 2013-Lipids
TL;DR: The developed and validated for brain tissue analysis one-step extraction protocol and UPLC–MS/MS method significantly increases the recovery of the PG extraction up to 95 %, and allows for a much faster major iso-PGE2 and -PGD2 separation with 5 times narrower chromatographic peaks as compared to previously used methods.
Abstract: Prostaglandins (PG) and isoprostanes (iso-PG) may be derived through cyclooxygenase or free radical pathways and are important signaling molecules that are also robust biomarkers of oxidative stress. Their quantification is important for understanding many biological processes where PG, iso-PG, or oxidative stress are involved. One of the common methods for PG and iso-PG quantifications is LC–MS/MS that allows a highly selective, sensitive, simultaneous analysis for prostanoids without derivatization. However, the currently used LC–MS/MS methods require a multi-step extraction and a long (within an hour) LC separation to achieve simultaneous separation and analysis of the major iso-PG. The developed and validated for brain tissue analysis one-step extraction protocol and UPLC–MS/MS method significantly increases the recovery of the PG extraction up to 95 %, and allows for a much faster (within 4 min) major iso-PGE2 and -PGD2 separation with 5 times narrower chromatographic peaks as compared to previously used methods. In addition, it decreases the time and cost of analysis due to the one-step extraction approach performed in disposable centrifuge tubes. All together, this significantly increases the sensitivity, and the time and cost efficiency of the PG and iso-PG analysis.

Journal ArticleDOI
24 Jan 2013-Lipids
TL;DR: The SPV method can also be adopted for analyzing other types of complex lipids secretions, such as sebum, as well as whole lipid extracts from other lipid-enriched organs and tissues, if proper standards are chosen.
Abstract: Human meibomian gland secretions (meibum) are the major lipid component of the human preocular tear film. The predominant lipid classes found in meibum include waxes (WE), cholesteryl esters (CE), and varying amounts of cholesterol (Chl). The classical sulfo-phospho-vanillin assay (SPVA), adapted for a microplate reader, was used to quantitate lipids in meibum. To account for varying reactivities of different lipids in SPVA, a model meibomian lipid mixture (MMx) that approximated the WE/CE/Chl composition of meibum was developed and used to quantitate meibomian lipids. The overall SPV responses of MMx and meibum were found to be close, with similar intermediate and final reaction products for both. Saturated WE that had not been expected to be reactive were found to be SPV-positive. A reaction mechanism for these compounds in SPVA which involves the formation of alkenyl ethers is proposed and discussed. Tested proteins were non-reactive in SPVA. Thus, by comparing the results of gravimetric analyses of meibum samples with the results of a properly calibrated SPVA, it was estimated that the SPV-reactive lipid content of dry meibum in tested samples was about 78 % (w/w). The SPV method can also be adopted for analyzing other types of complex lipids secretions, such as sebum, as well as whole lipid extracts from other lipid-enriched organs and tissues, if proper standards are chosen.

Journal ArticleDOI
11 Jun 2013-Lipids
TL;DR: It is demonstrated that cyclopropaneoctanoic acid 2-hexyl is present in human adipose tissue and serum and the storage of this cycloprostane FA is affected by food restriction.
Abstract: Fatty acids containing a cyclopropane ring in their structure (cyclopropane FA) have been found in a wide variety of bacteria, a number of protozoa, and Myriapoda. Little is known about cyclopropane FA in mammal, especially in human tissues. The present study deals with the identification of cyclopropane FA in adipose tissue and serum of humans and rats. Fatty acids extracted from the adipose tissue and serum obtained from obese women during bariatric surgery were methylated and analyzed on GC–MS. We have identified: cyclopropaneoctanoic acid 2-hexyl, cyclopropaneoctanoic acid 2-octyl, cyclopropanenonanoic acid, and 2-[[2-[(2-ethylcyclopropyl)methyl]cyclopropyl]methyl] acid in human adipose tissue. We confirmed the presence of cyclopropaneoctanoic acid 2-hexyl by derivatization of FA extracted from human adipose tissue to picolinyl esters. Cyclopropaneoctanoic acid 2-hexyl was the main cyclopropane FA (approximately 0.4 % of total fatty acids in human adipose tissue, and about 0.2 % of total fatty acids in the serum). In adipose tissue cyclopropaneoctanoic acid 2-hexyl was found mainly in triacylglycerols, whereas in serum in phospholipids and triacylglycerols. The cyclopropaneoctanoic acid 2-hexyl has also been found in serum, and adipose tissue of rats in amounts comparable to humans. The content of cyclopropaneoctanoic acid 2-hexyl decreased in adipose tissue of rats maintained on a restricted diet for 1 month. In conclusion, we demonstrated that cyclopropaneoctanoic acid 2-hexyl is present in human adipose tissue and serum. Adipose tissue cyclopropaneoctanoic acid 2-hexyl is stored mainly in triacylglycerols and the storage of this cyclopropane FA is affected by food restriction.

Journal ArticleDOI
21 Mar 2013-Lipids
TL;DR: Results show that fucoxanthin down-regulates SCD1 expression and alters fatty acid composition of the liver via regulation of leptin signaling in hyperleptinemia KK-Ay mice but not in leptin-deficient ob/ob mice.
Abstract: Stearoyl-coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that catalyzes the biosynthesis of monounsaturated fatty acids from saturated fatty acids. Recently, SCD1 down-regulation has been implicated in the prevention of obesity, and the improvement of insulin and leptin sensitivity. In this study, we examined the effect of fucoxanthin, a marine carotenoid, on hepatic SCD1 in obese mouse models of hyperleptinemia KK-Ay and leptin-deficiency ob/ob. In KK-Ay mice, providing a diet containing 0.2 % fucoxanthin for 2 weeks markedly suppressed SCD1 mRNA and protein expressions in the liver. The fatty acid composition of liver lipids was also affected by an observed decrease in the ratio of oleic acid to stearic acid. Furthermore, serum leptin levels were significantly decreased in hyperleptinemia KK-Ay mice after 2 weeks of fucoxanthin feeding. However, the suppressive effects of fucoxanthin on hepatic SCD1 and body weight gain were not observed in ob/ob mice. These results show that fucoxanthin down-regulates SCD1 expression and alters fatty acid composition of the liver via regulation of leptin signaling in hyperleptinemia KK-Ay mice but not in leptin-deficient ob/ob mice.

Journal ArticleDOI
01 Mar 2013-Lipids
TL;DR: Transplanted corals attained very similar zooxanthellae, chlorophyll a and lipid values at all sites as the specimens originating from those sites, which indicates a high potential for trophic plasticity in the case of a change in food sources, which makes this species competitive and resistant to eutrophication.
Abstract: Following up on previous investigations on the stress resistance of corals, this study assessed the trophic plasticity of the coral Stylophora subseriata in the Spermonde Archipelago (Indonesia) along an eutrophication gradient. Trophic plasticity was assessed in terms of lipid content and fatty acid composition in the holobiont relative to its plankton (50–300 μm) food as well as the zooxanthellae density, lipid, FA and chlorophyll a content. A cross-transplantation experiment was carried out for 1.5 months in order to assess the trophic potential of corals. Corals, which live in the eutrophied nearshore area showed higher zooxanthellae and chlorophyll a values and higher amounts of the dinoflagellate biomarker FA 18:4n-3. Their lipid contents were maintained at similar to levels from specimens further away from the anthropogenic impact source going up to 14.9 ± 0.9 %. A similarity percentage analysis of the groups holobiont, zooxanthellae and plankton >55 μm found that differences between the FA composition of the holobiont and zooxanthellae symbionts were more distinct in the site closer to the shore, thus heterotrophic feeding became more important. Transplanted corals attained very similar zooxanthellae, chlorophyll a and lipid values at all sites as the specimens originating from those sites, which indicates a high potential for trophic plasticity in the case of a change in food sources, which makes this species competitive and resistant to eutrophication.

Journal ArticleDOI
07 Feb 2013-Lipids
TL;DR: Significant positive correlations between serum FA composition and the corresponding weight percentage of total FA intake were observed for EPA and DHA in all sex and age groups, and for ARA among females in their 40s, independent of corresponding FA intake among community-dwelling Japanese men and women.
Abstract: Docosahexaenoic acid (DHA) and arachidonic acid (ARA) are the predominant long-chain polyunsaturated fatty acids (PUFA) among membrane phospholipids in the mammalian brain and neural tissues. This cross-sectional study examined age effects on serum eicosapentaenoic acid (EPA), DHA, and ARA compositions assessed with reference to dietary intakes among 1,014 Japanese men and 1,028 Japanese women aged 40-79 years. Venous blood was collected early in the morning after at least 12-h fasting. Serum fatty acid (FA) compositions were expressed as molar percentages of the total FA (mol% of total). Diet was assessed using a 3-day dietary record that included photographs. Participants were categorized into groups by sex and age (40-49, 50-59, 60-69, and 70-79 years). Intakes of fish, EPA, and DHA tended to increase with age. Significant positive correlations between serum FA composition and the corresponding weight percentage of total FA intake were observed for EPA and DHA in all sex and age groups, and for ARA among females in their 40s. Serum EPA and DHA compositions were higher, while ARA decreased with age, and these associations remained consistent even after adjusting for corresponding FA intake. These results suggest potential effects of age on differences in blood EPA, DHA, and ARA compositions, independent of corresponding FA intake among community-dwelling Japanese men and women.

Journal ArticleDOI
26 Mar 2013-Lipids
TL;DR: The inclusion of dietary n-3 PUFA increased meat and erythrocyte oxidation susceptibility; however, the ERYthrocytes from the S group were less resistant to osmotic changes.
Abstract: The aim of this study was to determine the effects of an omega-3 (n-3) polyunsaturated fatty acid (PUFA)-enriched diet on animal fat depots and lipid oxidation in the blood and meat of broiler chickens. Abdominal fat pad (AFP), sartorius muscle and liver histology were used to assess the effect of the dietary fat on animal lipid depots. A total of 60 female broilers (14 days old) was randomly divided into two groups which received a diet containing 10 % of tallow (S diet), rich in saturated fatty acids or 10 % of a blend of fish oil and linseed oil (N3 diet), rich in n-3 PUFA from 14 to 50 days of life. Both absolute and relative weights of AFP in N3 animals were lower than in the S group (P < 0.05). These results paralleled with a lower adipocyte mean area (P < 0.001) obtained in N3-fed animals, leading to a higher number of fat cells per unit of surface measured (383.4 adipocytes/mm2 vs. 273.7 adipocytes/mm2). Similarly, fat content and the intramuscular fat-occupied area of muscle were lower in N3 (P < 0.0001) than in the S-fed birds. Neither macroscopic nor microscopic differences were observed in the liver. The inclusion of dietary n-3 PUFA increased meat and erythrocyte oxidation susceptibility; however, the erythrocytes from the S group were less resistant to osmotic changes. Results indicate that feeding an n-3 PUFA diet influences fat distribution and the oxidative status of broiler chickens.

Journal ArticleDOI
01 Feb 2013-Lipids
TL;DR: Although GOLDN study is one of the largest in studying PPL and FF treatment effects, the relatively small samples in association tests appeals for a replication of such a study, and candidates as CBNL4, FAM84B, NXPH1, SLC24A4 remain unclear for their functional relation to lipid metabolism.
Abstract: Sixteen nuclear magnetic resonance (NMR) spectroscopy lipoprotein measurements of more than 1,000 subjects of GOLDN study, at fasting and at 3.5 and 6 h after a postprandial fat (PPL) challenge at visits 2 and 4, before and after a 3 weeks Fenofibrate (FF) treatment, were included in 6 time-independent multivariate factor analyses. Their top 1,541 unique SNPs were assessed for association with GOLDN NMR-particles and classical lipids. Several SNPs with −log10p > 7.3 and MAF ≥ 0.10, mostly intergenic associated with NMR-single traits near genes FAM84B (8q24.21), CRIPT (2p21), ACOXL (2q13), BCL2L11 (2q13), PCDH10 (4q28.3), NXPH1 (7p22), and SLC24A4 (14q32.12) in association with NMR-LDLs; HOMER1 (5q14.2), KIT (4q11–q12), VSNL1 (2p24.3), QPRT (16p11.2), SYNPR (3p14.2), NXPH1 (7p22), NELL1 (11p15.1), and RUNX3 (1p36) with NMR-HDLs; and DOK5-CBLN4-MC3R (20q13), NELL1 (11p15.1), STXBP6 (14q12), APOB (2p24-p23), GPR133 (12q24.33), FAM84B (8q24.21) and NR5A2 (1q32.1) in association with NMR-VLDLs particles. NMR single traits associations produced 75 % of 114 significant candidates, 7 % belonged to classical lipids and 18 % overlapped, and 16 % matched for time of discovery between NMR- and classical traits. Five proxy genes, (ACOXL, FAM84B, NXPH1, STK40 and VAPA) showed pleiotropic effects. While tagged for significant associations in our study and with some extra evidence from the literature, candidates as CBNL4, FAM84B, NXPH1, SLC24A4 remain unclear for their functional relation to lipid metabolism. Although GOLDN study is one of the largest in studying PPL and FF treatment effects, the relatively small samples (over 700–1,000 subjects) in association tests appeals for a replication of such a study. Thus, further investigation is needed.

Journal ArticleDOI
17 Sep 2013-Lipids
TL;DR: The chromatographic conditions applied in this study showed the potential of separating in a single 90-min analysis, among others, the short chain and trans fatty acids contained in dairy products, and the polyunsaturated fatty acidscontained in marine products.
Abstract: The fatty acids contained in marine oils or products are traditionally analyzed by gas chromatography using capillary columns coated with polyethylene glycol phases. Recent reports indicate that 100 % cyanopropyl siloxane phases should also be used when the analyzed samples contain trans fatty acids. We investigated the separation of the fatty acid methyl esters prepared from menhaden oil using the more polar SLB-IL111 (200 m × 0.25 mm) ionic liquid capillary column and the chromatographic conditions previously optimized for the separation of the complex mixture of fatty acid methyl esters prepared from milk fat. Identifications of fatty acids were achieved by applying Ag+-HPLC fractionation and GC-TOF/MS analysis in CI+ mode with isobutane as the ionization reagent. Calculation of equivalent chain lengths confirmed the assignment of double bond positions. This methodology allowed the identification of 125 fatty acids in menhaden oil, including isoprenoid and furanoid fatty acids, and the novel 7-methyl-6-hexadecenoic and 7-methyl-6-octadecenoic fatty acids. The chromatographic conditions applied in this study showed the potential of separating in a single 90-min analysis, among others, the short chain and trans fatty acids contained in dairy products, and the polyunsaturated fatty acids contained in marine products.

Journal ArticleDOI
24 Aug 2013-Lipids
TL;DR: Erythrocyte membrane fatty acid (EMFA) composition reflects particularly well the intakes of n-3 PUFA, whereas other associations remained lower, yet, all main sources of dietary fat were related with EMFA.
Abstract: Erythrocyte membrane fatty acid (EMFA) composition is used in the validation of food frequency questionnaires (FFQ) and the evaluation of dietary fat quality. In this cross-sectional study we aimed to investigate associations of diet with EMFA. Altogether, 1,033 randomly selected Finnish men, aged from 47 to 75 years filled in a FFQ and their EMFA composition was analyzed. Marine polyunsaturated fatty acid (PUFA) intake correlated positively with erythrocyte eicosapentaenoic and docosahexaenoic acids (rs = 0.415 and rs = 0.340, respectively, P < 0.001) and inversely with all n-6 PUFA analyzed (P < 0.001). PUFA intake from spreads and cooking fats correlated positively with alpha-linolenic (ALA), linoleic (LNA) and nervonic acids (rs = 0.229, rs = 0.160 and rs = 0.143, respectively, P < 0.001). Milk fat intake was associated with myristic and behenic acids (rs = 0.186 and rs = 0.132, respectively P < 0.001). Butter users had lower ALA and LNA proportions (mol%) than non-users (0.16 ± 0.04 vs. 0.19 ± 0.05, P < 0.001 and 7.77 ± 1.02 vs. 8.12 ± 1.11, P = 0.001). Higher PUFA intake from meat was related to decreased long-chain n-3 (P < 0.001) and increased n-6 PUFA (P < 0.001) proportions. In conclusion, EMFA composition reflects particularly well the intakes of n-3 PUFA, whereas other associations remained lower. Yet, all main sources of dietary fat were related with EMFA. The dietary effect on the nervonic acid proportion was confirmed.

Journal ArticleDOI
17 Mar 2013-Lipids
TL;DR: Sesamol at 200 mg/kg reversed the elevated levels of cholesterol and triacylglycerol compared with the tyloxapol group at 12 and 24 h, which indicates its probable effect on cholesterol synthesis.
Abstract: The active constituents of Sesamum indicum, sesamin and sesamolin, have already been explored for hypolipidemic action. In this study we have explored the anti-dyslipidemic activity of another active component and metabolite of sesamolin (sesamol), by using acute models of hyperlipidemia viz., a fat tolerance test, a tyloxapol-induced hyperlipidemia model and a chronic model of hyperlipidemia viz., a high-fat diet-induced hyperlipidemia model in Swiss albino mice. Sesamol (100 and 200 mg/kg) significantly (P < 0.05) decreased triacylglycerol absorption in the fat tolerance test by showing a dose-dependent decrease in triacylglycerol levels. The hypolipidemic effect of sesamol at 200 mg/kg was equivalent to 10 mg/kg of orlistat. In the tyloxapol-induced hyperlipidemia model, Sesamol at 200 mg/kg reversed the elevated levels of cholesterol and triacylglycerol compared with the tyloxapol group at 12 and 24 h, which indicates its probable effect on cholesterol synthesis. Chronic hyperlipidemia in mice was produced by feeding a high-diet, a mixture of cholesterol (2 % w/w), cholic acid (1 % w/w) and coconut oil 30 % (v/w) with standard powdered standard animal chow (up to 100 g). Niacin (100 mg/kg) and sesamol (100 mg/kg) significantly (P < 0.05) reduced the elevated body weight compared with the high fat diet control group. Elevated levels of cholesterol and triacylglycerol were significantly (P < 0.05) reversed by the sesamol (50 and 100 mg/kg), implying that it might reduce the absorption and increase the excretion of cholesterol as well.

Journal ArticleDOI
03 Aug 2013-Lipids
TL;DR: A comprehensive nontargeted lipidomic characterization of porcine brain, heart, kidney, liver, lung, spinal cord, spleen, and stomach is performed using hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI/MS) to describe the representation of individual lipid classes in these organs.
Abstract: Lipids form a significant part of animal organs and they are responsible for important biological functions, such as semi-permeability and fluidity of membranes, signaling activity, anti-inflammatory processes, etc. We have performed a comprehensive nontargeted lipidomic characterization of porcine brain, heart, kidney, liver, lung, spinal cord, spleen, and stomach using hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI/MS) to describe the representation of individual lipid classes in these organs. Detailed information on identified lipid species inside classes are obtained based on relative abundances of deprotonated molecules [M-H](-) in the negative-ion ESI mass spectra, which provides important knowledge on phosphatidylethanolamines and their different forms of fatty acyl linkage (ethers and plasmalogens), phosphatidylinositols, and hexosylceramides containing nonhydroxy- and hydroxy-fatty acyls. The detailed analysis of identified lipid classes using reversed-phase liquid chromatography in the second dimension was performed for porcine brain to determine more than 160 individual lipid species containing attached fatty acyls of different acyl chain length, double-bond number, and positions on the glycerol skeleton. The fatty acid composition of porcine organs is determined by gas chromatography with flame ionization detection after the transesterification with sodium methoxide.

Journal ArticleDOI
09 Aug 2013-Lipids
TL;DR: Inhibition of SCD1 in bovine adipocytes decreases de novo fatty acid synthesis by down- Regulating genes involved in lipogenesis and up-regulating genesinvolved in lipolysis and oxidation.
Abstract: The objectives were to determine the effect of stearoyl-CoA desaturase (SCD1) inhibition on adipocyte proliferation, differentiation and cellular lipid metabolism in bovine primary adipocytes. Inhibition of SCD1 activity by sterculic acid (SA) or conjugated linoleic acid, trans-10 cis-12 isomer, (t10, c12-CLA) did not alter adipocyte cellular proliferation, viability or differentiation. In 1,2-[13C]-acetate supplemented cells, the mass isotopomer distribution analysis showed that the fractional synthesis rate of [13C]-16:0 was reduced (P < 0.01) in SA and t10, c12-CLA treatments compared to control. Of the lipogenic genes, t10, c12-CLA treatment decreased (P < 0.05) the expression of SCD1, acetyl-CoA carboxylase (ACC), fatty acid synthase; whereas SA supplementation decreased (P < 0.05) the expression of ACC. Both SA and t10, c12-CLA increased (P < 0.05) the expression of hormone-sensitive lipase and carnitine palmitoyl transferase involved in lipolysis and oxidation. Inhibition of SCD1 in bovine adipocytes decreases de novo fatty acid synthesis by down-regulating genes involved in lipogenesis and up-regulating genes involved in lipolysis and oxidation.

Journal ArticleDOI
01 Feb 2013-Lipids
TL;DR: It is shown that EPA and DHA can differently modulate aspects of the neutrophil response, which may be relevant for the development of therapies rich in one or other FA depending on the effect required.
Abstract: Fish oils are used as therapeutic agents in chronic inflammatory diseases The omega-3 fatty acids (FA) found in these oils are mainly eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids The anti-inflammatory properties of fish oils are attributed to both omega-3 fatty acids However, it is unknown whether such effects are due to either EPA or DHA In this study, the effects of EPA and DHA on rat neutrophil function in vitro were compared Both EPA and DHA increased the production of H2O2 when cells were stimulated or not with lipopolysaccharides (LPS) However, EPA was more potent than DHA in triggering an increase in superoxide release by cells in the basal condition or when stimulated with phorbol myristate acetate (PMA) or zymosan Only DHA increased the phagocytic capacity and fungicidal activity of neutrophils Both FA increased the release of tumor necrosis factor-α (TNF-α) in nonstimulated cells, but only EPA increased the production of cytokine-inducing neutrophil chemoattractant-2 (CINC-2) in the absence or presence of LPS, whereas production of interleukin-1 beta (IL-1β) was only increased by DHA in the presence of LPS In addition, there was no alteration in the production of nitric oxide In conclusion, we show herein that EPA and DHA can differently modulate aspects of the neutrophil response, which may be relevant for the development of therapies rich in one or other FA depending on the effect required

Journal ArticleDOI
20 Jan 2013-Lipids
TL;DR: The antihyperlipidemic and antioxidant effect of miglitol can be correlated to its effect on different enzymes and it can be used for inhibiting the development of cardiovascular diseases.
Abstract: Miglitol, an anti-diabetic drug, has been shown to reduce plasma lipids and inhibit free radical generation. The anti-hyperlipidemic and antioxidant effects of miglitol were studied in triton-induced hyperlipidemic rats and high fat diet-fed obese rats. Plasma cholesterol and triglycerides levels were significantly lowered by miglitol at 100 mg/kg body weight doses. Miglitol inhibited generation of superoxide anion and hydroxyl free radicals by 14 and 31 % in enzymatic systems and 19 and 25 % in non-enzymatic systems, respectively. The in-vitro effect of the drug on adipogenesis using 3T3-L₁ preadipocytes at 2-, 5- and 10-μM concentrations showed significant inhibition of adipogenesis (34.2 %) at 10-μM concentration. High fat diet-fed rat model was used to investigate anti-hyperlipidemic, anti-obesity and antioxidant effect of miglitol. Miglitol increased the activities of lecithin-cholesterol-acyltransferase (19 %), post heparin lipolytic activity (26 %), lipoprotein lipase (26 %) and triglyceride lipase (31 %) which result in a decrease in plasma lipid levels. The antioxidant enzymes viz., catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase and thioredoxin reductase were increased by the drug in the treated animals. The antihyperlipidemic and antioxidant effect of miglitol can be correlated to its effect on different enzymes and it can be used for inhibiting the development of cardiovascular diseases.

Journal ArticleDOI
04 Jun 2013-Lipids
TL;DR: Analysis of covariance showed that in the fish oil group there was a significant correlation (r = −0.51) between the change in erythrocyte DHA and thechange in scores of depression (p < 0.05), and further study of the relationship between D HA and depression is warranted.
Abstract: The aim of this study was to determine if changes in omega-3 polyunsaturated fatty acid status following tuna oil supplementation correlated with changes in scores of depression. A total of 95 volunteers receiving treatment for major depression were randomised to consume 8 × 1 g capsules per day of HiDHA (2 g DHA, 0.6 g EPA and 10 mg Vitamin E) or olive oil (placebo) for 16 weeks, whilst undergoing weekly counseling sessions by trained clinical psychologists using a standard empirically validated psychotherapy. Depression status was assessed using the 17 item Hamilton rating scale for depression and the Beck Depression Inventory by a psychodiagnostician who was blind to the treatment. Blood was taken at baseline and 16 weeks (n = 48) for measurement of erythrocyte fatty acids. With HiDHA supplementation, erythrocyte DHA content rose from 4.1 ± 0.2 to 7.9 ± 0.4 % (mean ± SEM, p < 0.001) of total fatty acids but did not change (4.0 ± 0.2 to 4.1 ± 0.2 %) in the olive oil group. The mean changes in scores of depression did not differ significantly between the two groups (−12.2 ± 2.1 for tuna oil and −14.4 ± 2.3 for olive oil). However, analysis of covariance showed that in the fish oil group there was a significant correlation (r = −0.51) between the change in erythrocyte DHA and the change in scores of depression (p < 0.05). Further study of the relationship between DHA and depression is warranted.

Journal ArticleDOI
23 Aug 2013-Lipids
TL;DR: A rapid and efficient method for monitoring oil accumulation in algae using high performance liquid chromatography for separation of all lipid classes combined with detection by evaporative light scattering (HPLC–ELSD) was developed and compared to the conventional TLC/GC method.
Abstract: Triacylglycerol (TAG) analysis and quantification are commonly performed by first obtaining a purified TAG fraction from a total neutral lipid extract using thin-layer chromatography (TLC), and then analyzing the fatty acid composition of the purified TAG fraction by gas chromatography (GC). This process is time-consuming, labor intensive and is not suitable for analysis of small sample sizes or large numbers. A rapid and efficient method for monitoring oil accumulation in algae using high performance liquid chromatography for separation of all lipid classes combined with detection by evaporative light scattering (HPLC–ELSD) was developed and compared to the conventional TLC/GC method. TAG accumulation in two Chlamydomonas reinhardtii (21 gr and CC503) and three Chlorella strains (UTEX 1230, CS01 and UTEX 2229) grown under conditions of nitrogen depletion was measured. The TAG levels were found to be 3–6 % DW (Chlamydomonas strains) and 7–12 % DW (Chlorella strains) respectively by both HPLC–ELSD and TLC/GC methods. HPLC–ELSD resolved the major lipid classes such as carotenoids, TAG, diacylglycerol (DAG), free fatty acids, phospholipids, and galactolipids in a 15-min run. Quantitation of TAG content was based on comparison to calibration curves of trihexadecanoin (16:0 TAG) and trioctadecadienoin (18:2 TAG) and showed linearity from 0.2 to 10 μg. Algal TAG levels >0.5 μg/g DW were detectable by this method. Furthermore TAG content in Chlorella kessleri UTEX 2229 could be detected. TAG as well as DAG and TAG content were estimated at 1.6 % DW by HPLC–ELSD, while it was undetectable by TLC/GC method.

Journal ArticleDOI
22 Sep 2013-Lipids
TL;DR: The most striking effect of aging observed in this study was a significant decrease in desmosterol concentration in the hippocampus which could reflect age-related reduced synaptic plasticity, thus representing one of the detrimental effects of advanced age.
Abstract: Disturbance of cholesterol homeostasis in the brain is coupled to age-related brain dysfunction. In the present work, we studied the relationship between aging and cholesterol metabolism in two brain regions, the cortex and hippocampus, as well as in the sera and liver of 6-, 12-, 18- and 24-month-old male Wistar rats. Using gas chromatography-mass spectrometry, we undertook a comparative analysis of the concentrations of cholesterol, its precursors and metabolites, as well as dietary-derived phytosterols. During aging, the concentrations of the three cholesterol precursors examined (lanosterol, lathosterol and desmosterol) were unchanged in the cortex, except for desmosterol which decreased (44 %) in 18-month-old rats. In the hippocampus, aging was associated with a significant reduction in lanosterol and lathosterol concentrations at 24 months (28 and 25 %, respectively), as well as by a significant decrease of desmosterol concentration at 18 and 24 months (36 and 51 %, respectively). In contrast, in the liver we detected age-induced increases in lanosterol and lathosterol concentrations, and no change in desmosterol concentration. The amounts of these sterols were lower than in the brain regions. In the cortex and hippocampus, desmosterol was the predominant cholesterol precursor. In the liver, lathosterol was the most abundant precursor. This ratio remained stable during aging. The most striking effect of aging observed in our study was a significant decrease in desmosterol concentration in the hippocampus which could reflect age-related reduced synaptic plasticity, thus representing one of the detrimental effects of advanced age.

Journal ArticleDOI
25 Jul 2013-Lipids
TL;DR: A formulated diet for cobia can be produced without fish products providing 100 % survivorship, specific growth rates greater than 2.45 and feed conversion ratios less than 1.5, as long as taurine is added and EFA levels are above 0.5 g EFA kg−1.
Abstract: We examined growth performance and the lipid content in juvenile cobia, Rachycentron canadum, fed a taurine supplemented (1.5 %), plant protein based diet with two fish oil replacements. The first fish oil replacement was a thraustochytrid meal (TM + SOY) plus soybean oil (~9 % CL) and the second was a canola oil supplemented with the essential fatty acids (EFA) docosahexaenoic acid (DHA) and arachidonic acid (ARA) (~8 % CL). The diet using the thraustochytrid meal plus soybean oil performed equivalently to the fish oil diet; both resulting in significantly higher growth rates, lower feed conversion ratios, and higher survival than the supplemented canola oil diet, even though all three diets were similar in overall energy and met known protein and lipid requirements for cobia. The poor performance of the canola oil diet was attributed to insufficient addition of EFA in the supplemented canola oil source. Increasing levels of EFA in the supplemented canola oil above 0.5 g EFA kg−1 would likely improve results with cobia. When fish fed either of the fish oil replacement diets were switched to the fish oil control diet, fatty acid profiles of the fillets were observed to transition toward that of the fish oil diet and could be predicted based on a standard dilution model. Based on these findings, a formulated diet for cobia can be produced without fish products providing 100 % survivorship, specific growth rates greater than 2.45 and feed conversion ratios less than 1.5, as long as taurine is added and EFA levels are above 0.5 g EFA kg−1.

Journal ArticleDOI
14 Mar 2013-Lipids
TL;DR: The contribution of HDL on the elimination of lipid hydroperoxides derived from oxidized low-density lipoprotein (LDL) is revealed and FFA-OOH was preferentially reduced by incubating oxidized LDL with HDL, participating in the mechanism of the antioxidant property of HDL.
Abstract: The antioxidant property of plasma high-density lipoprotein (HDL) is thought to be involved in potential anti-atherogenic effects but the exact mechanism is not known. We aimed to reveal the contribution of HDL on the elimination of lipid hydroperoxides (LOOH) derived from oxidized low-density lipoprotein (LDL). Oxidized LDL prepared by copper ion-induced oxidation contained nonesterified fatty acid hydroperoxides (FFA-OOH) and lysophosphatidylcholine (lysoPtdCho), in addition to cholesteryl ester hydroperoxides (CE-OOH) and phosphatidylcholine hydroperoxides (PtdCho-OOH). A platelet-activating factor-acetylhydrolase (PAF-AH) inhibitor suppressed formation of FFA-OOH and lysoPtdCho in oxidized LDL. Among LOOH species, FFA-OOH was preferentially reduced by incubating oxidized LDL with HDL. HDL exhibited selective FFA-OOH reducing ability if it was mixed with a liposomal solution containing FFA-OOH, CE-OOH and PtdCho-OOH. Two-electron reduction of the hydroperoxy group to the hydroxy group was confirmed by the formation of 13-hydroxyoctadecadienoic acid from 13-hydroperoxyoctadecadienoic acid in HPLC analyses. This reducing effect was also found in apolipoprotein A-1 (apoA-1). FFA-OOH released from PtdCho-OOH due to PAF-AH activity in oxidized LDL undergo two-electron reduction by the reducing ability of apoA1 in HDL. This preferential reduction of FFA-OOH may participate in the mechanism of the antioxidant property of HDL.