scispace - formally typeset
Search or ask a question

Showing papers in "Lubricants in 2018"


Journal ArticleDOI
TL;DR: In this article, the effects of humidity on macro and nano-scale friction and wear of various types of materials are reviewed, including graphite and graphene, diamond-like carbon (DLC), ultrananocrystalline diamond (UNCD), transition metal dichalcogenides (TMDs), hexagonal boron nitride (h-BN), boric acid, silicon, silicon oxide, silicates, advanced ceramics, and metals.
Abstract: The friction and wear behavior of materials are not intrinsic properties, but extrinsic properties; in other words, they can drastically vary depending on test and environmental conditions. In ambient air, humidity is one such extrinsic parameter. This paper reviews the effects of humidity on macro- and nano-scale friction and wear of various types of materials. The materials included in this review are graphite and graphene, diamond-like carbon (DLC) films, ultrananocrystalline diamond (UNCD), transition metal dichalcogenides (TMDs), hexagonal boron nitride (h-BN), boric acid, silicon, silicon oxide, silicates, advanced ceramics, and metals. Details of underlying mechanisms governing friction and wear behaviors vary depending on materials and humidity; nonetheless, a comparison of various material cases revealed an overarching trend. Tribochemical reactions between the tribo-materials and the adsorbed water molecules play significant roles; such reactions can occur at defect sites in the case of two-dimensionally layered materials and carbon-based materials, or even on low energy surfaces in the case of metals and oxide materials. It is extremely important to consider the effects of adsorbed water layer thickness and structure for a full understanding of tribological properties of materials in ambient air.

95 citations


Journal ArticleDOI
TL;DR: The application of ionic liquids as lubricants has attracted substantial interest over the past decade and this has produced a rich literature as discussed by the authors, and the main challenges to be overcome in order to optimise ionic liquid lubricant performance for common applications.
Abstract: The application of ionic liquids as lubricants has attracted substantial interest over the past decade and this has produced a rich literature. The aim of this review is to summarize the main findings about frictional behavior of ionic liquids in the boundary lubrication regime. We first recall why the unusual properties of ionic liquids make them very promising lubricants, and the molecular mechanisms at the origin of their lubricating behavior. We then point out the main challenges to be overcome in order to optimise ionic liquid lubricant performance for common applications. We finally discuss their use in the context of electroactive lubrication.

53 citations


Journal ArticleDOI
TL;DR: In this paper, the influence of surface porosity on the performance of elastohydrodynamically lubricated (EHL) contacts was investigated using thin film colorimetric interferometry.
Abstract: Oil-impregnated open-pored sintered materials can be used to provide the intrinsic self-lubrication of tribological contacts. Although its general functionality was recently confirmed for highly-loaded contacts, detailed analyses on the local effects of surface porosity in tribological contacts are required in order to understand and improve its operating behavior. In this context, this study investigates the influence of different surface finishes at a twin-disk test rig, and the local effects of surface porosity in elastohydrodynamically lubricated (EHL) contacts at an optical tribometer, based on thin film colorimetric interferometry. The results show the detrimental influence of high surface porosity on the operating behavior. Local observations of the lubricant film in EHL contacts indicate the presence of “open” pores, resulting in local film breakdown, and “closed” pores, transporting the additional lubricant into the pressurized zone. An appropriate surface finish technique to manufacture a low permeable layer with an adequate mechanical strength is demanded.

38 citations


Journal ArticleDOI
TL;DR: In this paper, the sliding wear properties of high performance polymer (HPP)-based engineering materials in tribological applications have been studied. And the effects of the intrinsic properties of polymer composites and external environmental conditions (e.g., service temperature and lubrication medium) on the formation of transfer layers (TL) were discussed.
Abstract: High-performance polymer (HPP)-based engineering materials in tribological applications have been under continuous research over the last few decades. This paper reviewed the recent studies on the sliding wear properties of HPPs and their nanocomposites, which are associated with the intrinsic and extrinsic parameters. In particular, the effects of the intrinsic properties of polymer composites (e.g., mechanical properties of the materials and the types of fillers) and external environmental conditions (e.g., service temperature and lubrication medium) on the formation of transfer layers (TLs) were discussed. The latter would govern the overall friction and wear of polymeric materials in sliding against metallic counterparts. In addition, correlations between the basic mechanical properties of HPPs and their sliding wear behavior were also explored.

34 citations


Journal ArticleDOI
TL;DR: In this paper, stainless steel surfaces were laser textured by two different laser techniques, i.e., the direct laser interference patterning by using a nanosecond pulsed Nd:YAG laser and additionally by an ultrashort pulsed femtosecond Ti:Sa.
Abstract: Laser surface texturing is an interesting possibility to tailor materials’ surfaces and thus to improve the friction and wear properties if proper texture feature sizes are selected. In this research work, stainless steel surfaces were laser textured by two different laser techniques, i.e., the direct laser interference patterning by using a nanosecond pulsed Nd:YAG laser and additionally by an ultrashort pulsed femtosecond Ti:Sa. The as-textured surfaces were then studied regarding their frictional response in a specially designed linear reciprocating test rig under lubricated conditions with a fully formulated 15W40 oil. Results show that dimples with smaller diameter lead to a significant reduction in the coefficient of friction compared to the dimples with a larger diameter and surfaces with a grid-like surface pattern produced by direct laser interference patterning.

30 citations


Journal ArticleDOI
TL;DR: In this study, a verified CFD model based on the finite volume method is used to investigate the oil flow in a single-stage gearbox and the results show that CFD simulations can visualize theOil flow behavior with a very high degree of detail.
Abstract: Three main concerns are in the focus of the development of geared transmissions nowadays: load carrying capacity, noise–vibration–harshness (NVH) behavior, and efficiency. Increasing the efficiency of modern gearboxes contributes significantly to the reduction of energy consumption and the saving of resources. Gearboxes are frequently designed conservatively with an oversupply of oil to guarantee operational reliability. An oversupply of oil results in an unnecessarily high amount of oil kept in motion and to high no-load losses. Detailed information on the oil distribution in the early design stages of gearboxes would help to optimize the lubrication and to increase the efficiency. Thereby, CFD (computational fluid dynamics) methods offer a very flexible way to visualize the oil flow inside gearboxes with much fewer restrictions compared to measurements with transparent gearbox designs. In this study, a verified CFD model based on the finite volume method is used to investigate the oil flow in a single-stage gearbox. Different oil viscosities and circumferential speeds are considered. The investigations focus on the oil flow. The gear churning loss, as part of the no-load loss, is additionally considered. Experimental validation is obtained by high-speed camera recordings and measurements at the FZG no-load power loss test rig. The results show very strong agreement between simulation and measurement. The results show that CFD simulations can visualize the oil flow behavior with a very high degree of detail.

30 citations


Journal ArticleDOI
TL;DR: In this article, the authors performed the first ab initio molecular dynamics simulations of additive tribochemistry in boundary lubrication conditions, where an organophosphourus additive was experimentally shown to reduce friction in steel-on-steel sliding contacts thanks to the tribologically induced formation of an iron phosphide tribofilm.
Abstract: We performed, for the first time to our knowledge, fully ab initio molecular dynamics simulations of additive tribochemistry in boundary lubrication conditions. We consider an organophosphourus additive that has been experimentally shown to reduce friction in steel-on-steel sliding contacts thanks to the tribologically-induced formation of an iron phosphide tribofilm. The simulations allow us to observe in real time the molecular dissociation at the sliding iron interface under pressure and to understand the mechanism of iron phosphide formation. We discuss the role played by the mechanical stress by comparing the activation times for molecular dissociation observed in the tribological simulations at different applied loads with that expected on the basis of the dissociation barrier.

27 citations


Journal ArticleDOI
TL;DR: In this paper, the authors evaluated changes due to temperature and pressure in viscosity of engine oil over its lifetime and to perform uncertainty analysis of the measured values, and also included a Computational Fluid Dynamics (CFD) model, applying the experimental results in the piston ring tribology problem.
Abstract: To further improve efficiency in automotive engine systems, it is important to understand the generation of friction in its components. Accurate simulation and modeling of friction in machine components is, amongst other things, dependent on realistic lubricant rheology and lubricant properties, where especially the latter may change as the machine ages. Some results of research under laboratory conditions on the aging of engine commercial oils with different performance levels (mineral SAE 30, synthetic SAE10W-40, and bio-based) are presented in this paper. The key role of the action of pressure and temperature in engine oils’ aging is described. The paper includes the results of experiments over time in laboratory testing of a single cylinder motorbike. The aging of engine oil causes changes to its dynamic viscosity value. The aim of this work is to evaluate changes due to temperature and pressure in viscosity of engine oil over its lifetime and to perform uncertainty analysis of the measured values. The results are presented as the characteristics of viscosity and time in various temperatures and the shear rates/pressures. This paper also includes a Computational Fluid Dynamics (CFD) model, applying the experimental results in the piston ring tribology problem.

27 citations


Journal ArticleDOI
TL;DR: In this article, the effects of nanolubricants on rolling force, surface roughness, thickness of oxide scale, and microstructure were systematically investigated through varying nano-TiO2 concentrations.
Abstract: Hot rolling tests of a low-alloy steel were conducted at a rolling temperature of 850 °C under different lubrication conditions, including benchmarks (dry condition and water) and water-based nanolubricants containing different concentrations of nano-TiO2 from 1.0 to 8.0 wt%. The effects of nanolubricants on rolling force, surface roughness, thickness of oxide scale, and microstructure were systematically investigated through varying nano-TiO2 concentrations. The results show that the application of nanolubricants can decrease the rolling force, surface roughness and oxide scale thickness of rolled steels, and refine ferrite grains. In particular, the nanolubricant containing an optimal concentration (4.0 wt%) of nano-TiO2 demonstrates the best lubrication performance, owing to the synergistic effect of lubricating film, rolling, polishing, and mending generated by nano-TiO2.

25 citations


Journal ArticleDOI
TL;DR: In this article, the influence of different base oils (mineral, polyalphaolefin and polyglycol) on the friction of diamond-like carbon (DLC) coated spur gears was investigated.
Abstract: Diamond-Like Carbon (DLC) coatings can reduce fluid friction in TEHL contacts (thermo-elastohydrodynamic lubrication) of meshing gears. This study investigates the influence of different base oils i.e., mineral, polyalphaolefin and polyglycol oil on the friction of DLC coated spur gears. Thereby, a transient TEHL simulation model based on the finite element based full-system approach coupled iteratively with the thermal equations is applied, considering mechanical and thermal properties of the DLC coatings. Results show a clear reduction of fluid friction in DLC coated gears for all considered lubricants. This can be traced back to higher TEHL temperatures for DLC coated gears, which is due to its low thermal inertia resulting in a thermal insulation effect.

23 citations


Journal ArticleDOI
TL;DR: In this article, an alternative method using Computational Fluid Dynamics (CFD) with a moving boundary is used to predict the dynamic coefficients of slider bearings and the results are compared with the more commonly employed perturbed Reynolds equation model.
Abstract: The accuracy and utility of rotordynamic models for machinery systems are greatly affected by the accuracy of the constituent dynamic bearing models. Primarily, the dynamic behavior of bearings is modeled as linear combination of mass, damping, and stiffness coefficients that are predicted from a perturbed Reynolds equation. In the present paper, an alternative method using Computational Fluid Dynamics (CFD) with a moving boundary is used to predict the dynamic coefficients of slider bearings and the results are compared with the more commonly employed perturbed Reynolds equation model. A linear slider bearing geometry is investigated and the results serve as precursors to similar investigations involving the more complex journal bearing geometries. Time and frequency domain methods for the estimation of dynamic coefficients are shown to give comparable results. For CFD with a moving boundary, temporal inertia is found to have a significant effect for a reduced, squeeze Reynolds number less than one. The temporal inertia effect is captured through an added mass coefficient within the dynamic model of the bearing.

Journal ArticleDOI
TL;DR: The aim of this review is to present the latest advances in understanding of lubricin’s function in joint lubrication and in soft tissue friction and document what has been achieved so far in transforming this biomedical knowledge into new polymer design for advanced engineering tribology.
Abstract: Articular cartilage surrounds the ends of diarthrodial joints (most common movable joints) and during motion, it experiences a wide range of loading conditions while remaining under exceedingly low-friction and wear-free conditions. This remarkable tribological performance stems from complex interactions between the synovial fluid and articular cartilage. In fact, lubricin and hyaluronic acid (HA) that are part of the synovial fluid are now known to be the key contributors to effective joint lubrication and wear protection. Studies involving animal models and artificial systems suggest that lubricin and HA molecules may work in tandem to produce a highly synergistic effect for lubrication. However, latest observations suggest that lubricin has significant potential for protecting the articular joints, probably more than HA. Recently, lurbicin-related friction regulation in soft eye tissues, where much lower forces are involved compared to knee joints for instance, has been shown to be related to dry eye disease and contact lens discomfort. As such, lubricin’s role in natural friction regulation is very complex. Moreover, partially unresolved water-lubricin interactions are essential for lubrication and load carrying function in the joints. The chemical structure of lubricin has inspired several chemists to synthesize new copolymers and polymer brushes that function just like lubricin in order to design new synthetic or bio-based lubricants with ultra-low-friction coefficients. Hence, lubricin has emerged as a key natural molecule for bioinspired tribology. The aim of this review is to present the latest advances in understanding of lubricin’s function in joint lubrication and in soft tissue friction (i.e., human eye) and document what has been achieved so far in transforming this biomedical knowledge into new polymer design for advanced engineering tribology. It is hoped that this review will catalyze research and development efforts in obtaining very stable and high load-bearing polymer-based ultra-low-friction surfaces via biomimicry.

Journal ArticleDOI
TL;DR: In this article, the performance of the protic ionic liquid tri-[bis(2-hydroxyethylammonium)] citrate (DCi) as a neat lubricant and as an additive in a mineral oil (MO) at various sliding velocities and constant load on an aluminum-steel contact using a pin-on-disk tribometer was investigated.
Abstract: Contact friction between moving components leads to severe wear and failure of engineering parts, resulting in large economic losses. The lubricating ability of the protic ionic liquid, tri-[bis(2-hydroxyethylammonium)] citrate (DCi), was studied as a neat lubricant and as an additive in a mineral oil (MO) at various sliding velocities and constant load on an aluminum–steel contact using a pin-on-disk tribometer. Tribological tests were also performed at different concentrations of DCi. When DCi was used as an additive in MO, friction coefficient and wear volume were reduced for each sliding velocity, with a maximum friction and wear reduction of 16% and 40%, respectively, when 2 wt % DCi was added to MO at a sliding velocity of 0.15 m/s. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were also applied to analyze the wear mechanism of the interface lubricated by MO and DCi as additive.

Journal ArticleDOI
TL;DR: In this article, the authors provide molecular insight into the mechanisms underlying energy dissipation and lubrication of a smooth contact lubricated by an ionic liquid and demonstrate that the velocity dependence of the friction force reveals two different regimes of lubrication, boundary-film and fluid-film lubrication above a transition velocity V∗.
Abstract: The present study provides molecular insight into the mechanisms underlying energy dissipation and lubrication of a smooth contact lubricated by an ionic liquid. We have performed normal and lateral force measurements with a surface forces apparatus and by colloidal probe atomic force microscopy on the following model systems: 1-ethyl-3-methyl imidazolium bis-(trifluoro-methylsulfonyl) imide, in dry state and in equilibrium with ambient (humid) air; the surface was either bare mica or functionalized with a polymer brush. The velocity-dependence of the friction force reveals two different regimes of lubrication, boundary-film lubrication, with distinct characteristics for each model system, and fluid-film lubrication above a transition velocity V∗. The underlying mechanisms of energy dissipation are evaluated with molecular models for stress-activated slip and flow, respectively. The stress-activated slip assumes that two boundary layers (composed of ions/water strongly adsorbed to the surface) slide past each other; the dynamics of interionic interactions at the slip plane and the strength of the interaction dictate the change in friction -decreasing, increasing or remaining constant- with velocity in the boundary-film lubrication regime. Above a transition velocity V∗, friction monotonically increases with velocity in the three model systems. Here, multiple layers of ions slide past each other (“flow”) under a shear stress and friction depends on a shear-activation volume that is significantly affected by confinement. The proposed friction model provides a molecular perspective of the lubrication of smooth contacts by ionic liquids and allows identifying the physical parameters that control friction.

Journal ArticleDOI
TL;DR: A review of the historical research performed in North America in this area reveals that there are many factors to consider in order to demonstrate the effectiveness of advanced lubricants as discussed by the authors, and the proper vehicle or system level test needs to be selected to properly assess the benefits of new advanced fuel-efficient lubricants.
Abstract: The development of advanced lubricants to improve vehicle fuel efficiency can appear to be as simple as lowering the viscosity and frictional properties of a fluid. However, applied research studies have shown that it is quite difficult to quantify the fuel efficiency properties of advanced lubricants in vehicles. A review of the historical research predominantly performed in North America in this area reveals that there are many factors to consider in order to demonstrate the effectiveness of advanced lubricants. First, the methodology used to measure vehicle fuel efficiency will impact the results since there are many factors not related to the lubricant which will influence vehicle fuel efficiency. Second, developing advanced fuel-efficient lubricants under well controlled conditions overlooks the issue that lubricant properties such as viscosity and friction affect the operating conditions encountered by the lubricant in the vehicle. Finally, the physical properties of lubricants that historically control fuel economy do not have the same effect on fuel efficiency in all vehicles. The proper vehicle or system level test needs to be selected to properly assess the benefits of new advanced lubricants.

Journal ArticleDOI
TL;DR: In this paper, the effect of surface texturing on the coefficient of friction in parallel sliding lubricated surfaces is investigated, and it is shown that textured surface textures can improve film formation and, as a result, the load-carrying capacity as well as a reduction in the coefficient-of-friction.
Abstract: In many industrial applications, a modification of the surface geometry can enhance the tribological behaviour of lubricated sliding contacts. In this paper, the effect of surface texturing on the coefficient of friction in parallel sliding lubricated surfaces is investigated. It is shown that surface texturing can improve film formation and, as a result, the load-carrying capacity as well as a reduction in the coefficient of friction. With the numerical model developed, and by considering cavitation, the effects of shape, depth, size, and the textured area fraction on the frictional behaviour of parallel sliding lubricated contacts under conditions of mixed lubrication is studied. In this article it is shown that the surface texturing can have a beneficial effect, in order to decrease friction.

Journal ArticleDOI
TL;DR: In this article, numerical simulations of particle migration in lubricating grease flow are presented, and it is shown that the change in flow characteristics due to the influence of the pocket lateral boundaries when going from the wide to the narrow pocket leads to significantly shorter migration time.
Abstract: In this paper, numerical simulations of particle migration in lubricating grease flow are presented. The rheology of three lithium greases with NLGI (National Lubricating Grease Institute) grades 00, 1 and 2 respectively are considered. The grease is modeled as a single-phase Herschel–Bulkley fluid, and the particle migration has been considered in two different grease pockets formed between two concentric cylinders where the inner cylinder is rotating and driving the flow. In the wide grease pocket, the width of the gap is much smaller compared to the axial length scale, enabling a one-dimensional flow. In the narrow pocket, the axial and radial length is of the same order, yielding a three-dimensional flow. It was found that the change in flow characteristics due to the influence of the pocket lateral boundaries when going from the wide to the narrow pocket leads to a significantly shorter migration time. Comparing the results with an existing migration model treating the radial component contribution, it was concluded that a solution to the flow in the whole domain is needed together with a higher order numerical scheme to obtain a full solution to the particle migration. This result is more pronounced in the narrow pocket due to gradients in the flow induced by the lateral boundaries.

Journal ArticleDOI
TL;DR: In this article, the authors identify a maximum contact area A c above which a superexponential decay of n ( A ) becomes apparent if the contact pressure is below the pressure p cp at which contact percolates.
Abstract: True contact between solids with randomly rough surfaces tends to occur at a large number of microscopic contact patches. Thus far, two scaling regimes have been identified for the number density n ( A ) of contact-patch sizes A in elastic, non-adhesive, self-affine contacts. At small A, n ( A ) is approximately constant, while n ( A ) decreases as a power law at large A. Using Green’s function molecular dynamics, we identify a characteristic (maximum) contact area A c above which a superexponential decay of n ( A ) becomes apparent if the contact pressure is below the pressure p cp at which contact percolates. We also find that A c increases with load relatively slowly far away from contact percolation. Results for A c can be estimated from the stress autocorrelation function G σ σ ( r ) with the following argument: the radius of characteristic contact patches, r c , cannot be so large that G σ σ ( r c ) is much less than p cp 2 . Our findings provide a possible mechanism for the breakdown of the proportionality between friction and wear with load at large contact pressures and/or for surfaces with a large roll-off wavelength.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the film formation of two different grease compositions, and the characteristic rotational speed leading to the onset of starvation was identified in dependence of the grease composition and the differences in the lubricating film formation for base oil, bleed oil, and grease lubricated EHD contacts.
Abstract: The service life of rolling bearings is significantly affected by the film formation in elastohydrodynamic (EHD) contacts, which depends on the operating conditions, like rotational speed or temperature. In grease lubricated EHD contacts, the film formation is determined by the grease consistency and composition, i.e., thickener and base oil type as well as properties of the bleed oil, which is released from the grease during operation. Thus, the film formation of grease lubricated contacts as compared to base oil lubricated contacts can be different. With increasing rolling speed, the film thickness of oil lubricated contacts usually grows. However, in case of grease lubricated contacts, which are not fully flooded, the film thickness remains constant or even decreases with further increasing rotational speed. This effect is referred to as starvation. Since the onset of starvation depends on the grease composition, the film formation of two different grease compositions is investigated in this study. The film thickness measurements are performed on a ball-on-disc tribometer for each grease, as well as the corresponding bleed and pure base oils. Thereby, the characteristic rotational speed leading to the onset of starvation has been identified in dependence of the grease composition and the differences in the lubricating film formation of base oil, bleed oil, and grease lubricated EHD contacts have been discussed. The investigations should help to establish an advanced understanding of the physical mechanisms leading to the onset of starvation to encourage future work with focus on a method to predict the film formation in grease lubricated EHD contacts.

Journal ArticleDOI
TL;DR: In this article, a comprehensive overview about the different types of controllable sliding bearings and principles used by several authors is presented, together with some conclusive remarks about advantages and drawbacks of the different design solutions for controllably sliding bearing and the main challenges to be overcome.
Abstract: Hydrodynamic and aerodynamic lubrication regimes in their controllable forms have been intensively investigated over the last two decades. With the aim of reducing friction and improving thermal, static, and dynamic characteristics of radial sliding bearings, different types of electro-mechanical actuators have been coupled to such bearings. Depending on (i) the actuator type; (ii) the actuation principle, i.e., hydraulic, pneumatic, piezoelectric or magnetic among others; and (iii) how such an actuator is coupled to the sliding bearings, different regulation and control actions of fluid film pressure and lubricant flow can be obtained. The most common actions are: (a) the control of the injection pressure to modify the fluid film pressure statically as well as dynamically; (b) the adjustment of the angle and direction of injection flow (mostly passive action); (c) the control of the sliding bearing gap and its preload via moveable and compliant sliding surfaces; and (d) the control of the lubricant viscosity. All four parameters, i.e., pressure, flow (velocity profiles), gap and viscosity, are explicit parameters in the modified form of Reynolds’ equations for active lubrication. In this framework, this paper gives one main original contribution to the state-of-the-art of radial sliding bearings and controllable lubrication: a comprehensive overview about the different types of controllable sliding bearings and principles used by several authors. The paper ends with some conclusive remarks about advantages and drawbacks of the different design solutions for controllable sliding bearings and the main challenges to be overcome towards industrial applications.

Journal ArticleDOI
TL;DR: In this article, high-speed data signals of a torque sensor, sampled with a frequency of 1000 hz in a time range of 2.5 s, obtained on a journal bearing test-rig under various operating conditions, are used to train machine learning models, such as neural networks and logistic regression.
Abstract: Hydrodynamic journal bearings are used within a wide range of machines, such as combustion engines, gas turbines, or wind turbines. For a safe operation, awareness of the lubrication regime, in which the bearing is currently operating, is of great importance. In the current study, highspeed data signals of a torque sensor, sampled with a frequency of 1000 hz in a time range of 2.5 s, obtained on a journal bearing test-rig under various operating conditions, are used to train machine learning models, such as neural networks and logistic regression. Results indicate that a fast Fourier transform (fft) of the highspeed torque signals enables accurate predictions of lubrication regimes. The trained models are analysed in order to identify distinctive frequencies for the respective lubrication regime.

Journal ArticleDOI
TL;DR: In this paper, an experimental approach is proposed for measuring the frictional response and the propensity to generate stick-slip of different lining materials, coming from commercial brake pads, when sliding on a worn surface of a brake disc, under the same controlled boundary conditions.
Abstract: Frictional and dynamic responses of brake pad materials, when sliding on brake disc counterfaces, are at the origin of noise, vibration and harshness (NVH) issues such as brake noise emissions. In more detail, groan is a low frequency noise emission often associated to the stick-slip frictional response of the brake system. The instability of such contact is the result of the coupling between the system dynamics and the frictional response of the materials in contact. In this work, an experimental approach is proposed for measuring the frictional response and the propensity to generate stick-slip of different lining materials, coming from commercial brake pads, when sliding on a worn surface of a brake disc, under the same controlled boundary conditions. The proposed methodology allowed for comparing the propensity of the tested pad materials to stick-slip vibrations, which is in agreement with feedback from automotive industry on groan emission.

Journal ArticleDOI
TL;DR: In this paper, an ultra-thin water film plays the decisive role in steel-ice friction in bobsleighing, which results from the superposition of an existing quasi-liquid layer and additional surface water generated by frictional heat.
Abstract: An ultra-thin water film plays the decisive role in steel–ice friction in bobsleighing. The water film has a thickness on the order of nanometers and results from the superposition of an existing quasi-liquid layer and additional surface water generated by frictional heat. When friction is measured as function of sliding velocity, the coefficients decrease according to the typical Stribeck behavior. However, for highest sliding velocities, it is still unknown whether friction decreases further or shows an increase due to viscous drag. Both tendencies are essential for the construction of safe bobsleighs and bobsleigh tracks. This contribution presents results of high-speed experiments up to 240 km/h for a steel slider on a disk of ice at different ice temperatures. In addition, using the friction model of Makkonen, friction coefficients were calculated as function of sliding velocity and ice temperature. The significant correlation between experimental results and model calculation supports the model conception of frictional melting and viscous shearing.

Journal ArticleDOI
TL;DR: In this article, the main characteristics of a recently built facility for testing large tilting pad journal bearings with diameters from 150 to 300 mm are described, and the test rig is versatile and can be used to test bearings of different size, configurations and to investigate the influence of many parameters, even the effect of misalignment.
Abstract: Tilting pad journal bearings are usually employed in turbomachines for their stable behavior at high rotational speeds. Devoted test rigs have been realized to validate the predictions of theoretical models. However, the design of new high-performance and large-size bearings needs to be supported by experimental investigations on high-performance large test rigs. The main characteristics of a recently built facility for testing large tilting pad journal bearings with diameters from 150 to 300 mm are described in this work. The test rig is versatile and can be used to test bearings of different size, configurations and to investigate the influence of many parameters, even the effect of misalignment. Sample results of the static characterization of a four-pad high-performance tilting pad journal bearing are reported evidencing some transient effects. A few sample dynamic results are also reported. The presented experimental results demonstrated the capabilities of the rig for investigating the static and the dynamic characteristics of the bearings accurately measuring slow and fast variables.

Journal ArticleDOI
TL;DR: In this article, the influence of the contact area between tool and blank is investigated and the results indicate that while the effect of different test stands is negligible, a high dependency of the friction coefficient on the contact areas is shown.
Abstract: The precise knowledge of frictional behavior is highly relevant for accurate modelling in sheet metal forming simulations. This allows e.g., the precise prediction of restraining forces which, in turn, determines an optimal draw bead strategy and blank-texture-development for automotive components. As a result, tryout loops can be avoided and thus production costs can be reduced. Nevertheless, the benefit of this detailed friction description is often ignored by the use of a constant friction coefficient. Finding a practical solution has motivated numerous research projects in recent decades. In this context, many efforts have been made to develop test stands to gain a better understanding of friction and to determine load-dependent friction coefficients for simulations. However, different test stands for friction investigation show a big quantitative difference in friction value which makes the direct use of the values in finite element simulation questionable. Therefore, the focus of this paper is to compare two different common strip drawing tests and detect the sources of deviation. In particular, the influence of the contact area between tool and blank is investigated. The results indicate that while the effect of the different test stands is negligible, a high dependency of the friction coefficient on the contact area was shown. This phenomenon is caused by macroscopic lubricant distribution over the contact area, which varies according to the size of the tools. The results show a potential field of research in categorizing different friction test stands and resolving the issue of quantitative non-comparable coefficients of friction.

Journal ArticleDOI
TL;DR: In this article, the performance of electroless Ni-B, Ni-Mo, and Ni-W coatings is investigated on AISI 1040 steel substrates. And the worn surface of the coatings at 500 °C is characterized by lubricious oxide glazes, which lead to enhanced tribological behavior compared with that at 100 °C.
Abstract: Ni–B alloys deposited by the electroless method are considered to be hard variants of the electroless nickel family. Inclusion of Mo or W to form ternary alloys improves the thermal stability of electroless nickel coatings. Therefore, in the present work, Ni–B, Ni–B–Mo, and Ni–B–W coatings are deposited; and their tribological behavior at room and high temperatures are investigated. Electroless Ni–B, Ni–B–Mo, and Ni–B–W coatings are deposited on AISI 1040 steel substrates. The coatings are heat treated to improve their mechanical properties and crystallinity. Tribological behavior of the coatings is determined on a pin-on-disc type tribological test setup using various applied normal loads (10–50 N) and sliding speeds (0.25–0.42 m/s) to measure wear and coefficient of friction at different operating temperatures (25 °C–500 °C). Ni–B–W coatings are observed to have higher wear resistance than Ni–B or Ni–B–Mo coatings throughout the temperature range considered. Although for coefficient of friction, no such trend is observed. The worn surface of the coatings at 500 °C is characterized by lubricious oxide glazes, which lead to enhanced tribological behavior compared with that at 100 °C. A study of the coating characteristics such as composition, phase transformations, surface morphology, and microhardness is also carried out prior to tribological tests.

Journal ArticleDOI
TL;DR: In this paper, the results of preliminary tribological ball-on-flat tests performed with WS2 nanoparticles functionalized by a humin-like conformal shell, as additives to polyalphaolefin-4 (PAO-4) oil were presented.
Abstract: Nanoparticles of transition metal dichalcogenides (TMDC) have been known to reduce friction and wear when added to oil-type liquid lubricants. Aggregation limits the ability of the nanoparticles to penetrate into the interface between the two rubbing surfaces—an important factor in friction reduction mechanisms. Doping has been successfully used to reduce agglomeration, but it must be done in the production process of the nanoparticles. The use of surface-functionalized nanoparticles is less common than doping. Nonetheless, it has the potential to reduce agglomeration and thereby improve the reduction of friction and wear. In this study, we present the results of preliminary tribological ball-on-flat tests performed with WS2 nanoparticles functionalized by a humin-like conformal shell, as additives to polyalphaolefin-4 (PAO-4) oil. We tested WS2 inorganic nanotubes (INTs) and two grades of inorganic fullerene-like nanoparticles (IFs). The shell/coating was found to improve friction reduction for IFs but not for INTs through better dispersion in the oil. The thicker the coating on the IFs, the less agglomerated they were. Coated industrial-grade IFs were found, by far, to be the best additive for friction reduction. We suggest the combination between reduced agglomeration and poor crystallinity as the reason for this result.

Journal ArticleDOI
TL;DR: In this paper, direct laser interference patterning was used to create well-defined line-like surface textures in TiAl multilayers with differing lateral feature sizes in the micron range.
Abstract: Laser surface texturing is an efficient way to control the friction and wear properties of materials. Although described in many papers, most previous work relates to a pure topographic view of laser-textured surfaces. As lasers are heat sources, their thermal impact during treatment can be high enough to modify the material’s microstructure or surface chemistry and affect tribological properties as well. This research took a closer look at the microstructure of laser-textured TiAl multilayers, besides topographic aspects. Direct laser interference patterning was used to create well-defined line-like surface textures in TiAl multilayers with differing lateral feature sizes in the micron range. High-resolution techniques such as TEM and XRD highlighted the effect of this method on microstructure, and in particular, the phase situation of the TiAl multilayer. Thermal simulations demonstrated that the maximum achievable temperatures were around 2000 K, thus being high enough to melt Ti and Al. Cooling rates on the order of 109 K/s depended on the lateral feature size, potentially leading to metastable microstructures. Finally, ball-on-disk tests on as-textured TiAl specimens showed a reduction in wear under dry conditions depending on the periodicity of the line-like textures used.

Journal ArticleDOI
TL;DR: In this article, the influence of sliding speed and applied pressure on the friction and wear behavior of self-lubricated bearing materials was investigated systematically for dry sliding conditions in hydropower turbines.
Abstract: Nowadays, hydropower plants are forced to have more frequent power control and the self-lubricated bearings used in the applications are one of the most critical components affected by the continuously changing operating conditions. In this study, microstructure and composition of two commercially available bearing materials (Orkot TXM Marine and Thordon ThorPlas) used in hydropower turbines were studied. In addition, the influence of sliding speed and applied pressure on the friction and wear behavior of the materials was investigated systematically for dry sliding conditions. The bearing materials were characterized using X-ray microtomography, Nuclear Magnetic Resonance (NMR) spectroscopy and Inductively Coupled Plasma–Sector Field Mass Spectrometry (ICP-SFMS) techniques. Friction and wear tests were carried out with a polymer pin sliding against a stainless steel (SS2333) plate with a linear reciprocating motion. Test conditions were: room temperature, 9–28 MPa pressure and 10–40 mm/s sliding speed ranges. Surface analysis of the polymer pins and the wear tracks were performed by optical profilometry, Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) techniques. Test results show that, for both materials, the coefficient of friction (COF) is decreasing at higher pressures. Surface analysis reveals higher concentrations of solid lubricants in the transfer layers formed at higher pressures, explaining the decrease in COF. Furthermore, the specific wear rate coefficients are increasing at higher sliding speeds, especially at lower pressures. Results of this study demonstrate that, under dry sliding conditions, changes in sliding speed and pressure have a significant influence on the tribological behavior of these bearing materials.

Journal ArticleDOI
TL;DR: The rheological and friction results indicate that the HA-phospholipid medium is superior to the control cell culture medium in emulating the shear thinning and lubricative properties of natural synovial fluid, making it more clinically relevant for in vitro wear and friction testing with live cartilage.
Abstract: Introduction: Pre-clinical testing of hemiarthroplasty devices requires that the tribological conditions present in vivo with live cartilage be closely duplicated. A current limitation in the tribological testing of live cartilage involves the use of cell-culture media as lubricant. Study Aim: to develop and test a new hyaluronan-phospholipid based medium (HA–phospholipid medium) that combines the rheological and frictional properties of synovial fluid with the nourishing properties of culture media to keep cells alive. Materials and Methods: The HA–phospholipid medium consisted of culture medium with added phospholipid dipalmitoylphosphatidylcholine (0.3 mg/mL), and hyaluronic acid (2.42 mg/mL). A standard cell culture medium was used as the control. The rheology of each medium was determined using a flat plate configuration. Bovine calf cartilage was used to assess cell viability and friction in each medium. For friction measurements, a cobalt-chrome alloy ball was articulated against cartilage disks immersed in medium. Results: Lipid vesicles 0.1 to 50 μm in diameter were identified in the HA–phospholipid medium. Cartilage cell viability was significantly higher in the HA–phospholipid medium (62% ± 8%, 95% CI) than in control medium (49.5% ± 5%) (p = 0.009). The HA–phospholipid medium exhibited strong shear-thinning behavior, similar to synovial fluid, with viscosities ~100-fold higher at 10 s−1 and 5-fold higher at 20,000 s−1 than the approximately Newtonian control medium. The HA–phospholipid medium also yielded 20% lower friction values than the control medium after one hour of testing. Conclusions: The rheological and friction results indicate that the HA–phospholipid medium is superior to the control cell culture medium in emulating the shear thinning and lubricative properties of natural synovial fluid, making it more clinically relevant for in vitro wear and friction testing with live cartilage.