scispace - formally typeset
JournalISSN: 0885-6125

Machine Learning 

About: Machine Learning is an academic journal. The journal publishes majorly in the area(s): Cluster analysis & Reinforcement learning. It has an ISSN identifier of 0885-6125. Over the lifetime, 2179 publication(s) have been published receiving 314242 citation(s).
Papers
More filters

Journal ArticleDOI
15 Sep 1995-Machine Learning
TL;DR: High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated and the performance of the support- vector network is compared to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.
Abstract: The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to non-separable training data. High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.

35,157 citations


Journal ArticleDOI
25 Mar 1986-Machine Learning
Abstract: The technology for building knowledge-based systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such system, ID3, in detail. Results from recent studies show ways in which the methodology can be modified to deal with information that is noisy and/or incomplete. A reported shortcoming of the basic algorithm is discussed and two means of overcoming it are compared. The paper concludes with illustrations of current research directions.

16,062 citations


Journal ArticleDOI
11 Mar 2002-Machine Learning
Abstract: DNA micro-arrays now permit scientists to screen thousands of genes simultaneously and determine whether those genes are active, hyperactive or silent in normal or cancerous tissue. Because these new micro-array devices generate bewildering amounts of raw data, new analytical methods must be developed to sort out whether cancer tissues have distinctive signatures of gene expression over normal tissues or other types of cancer tissues. In this paper, we address the problem of selection of a small subset of genes from broad patterns of gene expression data, recorded on DNA micro-arrays. Using available training examples from cancer and normal patients, we build a classifier suitable for genetic diagnosis, as well as drug discovery. Previous attempts to address this problem select genes with correlation techniques. We propose a new method of gene selection utilizing Support Vector Machine methods based on Recursive Feature Elimination (RFE). We demonstrate experimentally that the genes selected by our techniques yield better classification performance and are biologically relevant to cancer. In contrast with the baseline method, our method eliminates gene redundancy automatically and yields better and more compact gene subsets. In patients with leukemia our method discovered 2 genes that yield zero leave-one-out error, while 64 genes are necessary for the baseline method to get the best result (one leave-one-out error). In the colon cancer database, using only 4 genes our method is 98% accurate, while the baseline method is only 86% accurate.

7,084 citations


Journal ArticleDOI
01 May 1992-Machine Learning
TL;DR: This paper presents and proves in detail a convergence theorem forQ-learning based on that outlined in Watkins (1989), showing that Q-learning converges to the optimum action-values with probability 1 so long as all actions are repeatedly sampled in all states and the action- values are represented discretely.
Abstract: \cal Q-learning (Watkins, 1989) is a simple way for agents to learn how to act optimally in controlled Markovian domains. It amounts to an incremental method for dynamic programming which imposes limited computational demands. It works by successively improving its evaluations of the quality of particular actions at particular states. This paper presents and proves in detail a convergence theorem for \cal Q-learning based on that outlined in Watkins (1989). We show that \cal Q-learning converges to the optimum action-values with probability 1 so long as all actions are repeatedly sampled in all states and the action-values are represented discretely. We also sketch extensions to the cases of non-discounted, but absorbing, Markov environments, and where many \cal Q values can be changed each iteration, rather than just one.

6,159 citations


Journal ArticleDOI
01 May 1992-Machine Learning
TL;DR: This article presents a general class of associative reinforcement learning algorithms for connectionist networks containing stochastic units that are shown to make weight adjustments in a direction that lies along the gradient of expected reinforcement in both immediate-reinforcement tasks and certain limited forms of delayed-reInforcement tasks, and they do this without explicitly computing gradient estimates.
Abstract: This article presents a general class of associative reinforcement learning algorithms for connectionist networks containing stochastic units. These algorithms, called REINFORCE algorithms, are shown to make weight adjustments in a direction that lies along the gradient of expected reinforcement in both immediate-reinforcement tasks and certain limited forms of delayed-reinforcement tasks, and they do this without explicitly computing gradient estimates or even storing information from which such estimates could be computed. Specific examples of such algorithms are presented, some of which bear a close relationship to certain existing algorithms while others are novel but potentially interesting in their own right. Also given are results that show how such algorithms can be naturally integrated with backpropagation. We close with a brief discussion of a number of additional issues surrounding the use of such algorithms, including what is known about their limiting behaviors as well as further considerations that might be used to help develop similar but potentially more powerful reinforcement learning algorithms.

6,035 citations


Network Information
Related Journals (5)
Journal of Machine Learning Research

3.1K papers, 519.3K citations

89% related
arXiv: Learning

45K papers, 837.1K citations

85% related
Data Mining and Knowledge Discovery

907 papers, 87.4K citations

84% related
arXiv: Machine Learning

12.4K papers, 260.6K citations

84% related
arXiv: Artificial Intelligence

13.6K papers, 186.5K citations

83% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2021174
2020100
2019104
201887
2017111
201693

Top Attributes

Show by:

Journal's top 5 most impactful authors

Pat Langley

15 papers, 1.5K citations

Masashi Sugiyama

13 papers, 487 citations

Sašo Džeroski

11 papers, 1.8K citations

Geoffrey I. Webb

10 papers, 1.9K citations

Samuel Kaski

9 papers, 145 citations