scispace - formally typeset
Search or ask a question
JournalISSN: 0024-9297

Macromolecules 

American Chemical Society
About: Macromolecules is an academic journal published by American Chemical Society. The journal publishes majorly in the area(s): Polymerization & Polymer. It has an ISSN identifier of 0024-9297. Over the lifetime, 47080 publications have been published receiving 2417784 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors proposed a reversible additive-fragmentation chain transfer (RAFT) method for living free-radical polymerization, which can be used with a wide range of monomers and reaction conditions and in each case it provides controlled molecular weight polymers with very narrow polydispersities.
Abstract: mechanism involves Reversible Addition-Fragmentation chain Transfer, and we have designated the process the RAFT polymerization. What distinguishes RAFT polymerization from all other methods of controlled/living free-radical polymerization is that it can be used with a wide range of monomers and reaction conditions and in each case it provides controlled molecular weight polymers with very narrow polydispersities (usually <1.2; sometimes <1.1). Living polymerization processes offer many benefits. These include the ability to control molecular weight and polydispersity and to prepare block copolymers and other polymers of complex architecturesmaterials which are not readily synthesized using other methodologies. Therefore, one can understand the current drive to develop a truly effective process which would combine the virtues of living polymerization with versatility and convenience of free-radical polymerization.2-4 However, existing processes described under the banner “living free-radical polymerization” suffer from a number of disadvantages. In particular, they may be applicable to only a limited range of monomers, require reagents that are expensive or difficult to remove, require special polymerization conditions (e.g. high reaction temperatures), and/or show sensitivity to acid or protic monomers. These factors have provided the impetus to search for new and better methods. There are three principal mechanisms that have been put forward to achieve living free-radical polymerization.2,5 The first is polymerization with reversible termination by coupling. Currently, the best example in this class is alkoxyamine-initiated or nitroxidemediated polymerization as first described by Rizzardo et al.6,7 and recently exploited by a number of groups in syntheses of narrow polydispersity polystyrene and related materials.4,8 The second mechanism is radical polymerization with reversible termination by ligand transfer to a metal complex (usually abbreviated as ATRP).9,10 This method has been successfully applied to the polymerization of various acrylic and styrenic monomers. The third mechanism for achieving living character is free-radical polymerization with reversible chain transfer (also termed degenerative chain transfer2). A simplified mechanism for this process is shown in

4,561 citations

Journal ArticleDOI
TL;DR: In this article, a review of polymer nanocomposites with single-wall or multi-wall carbon nanotubes is presented, and the current challenges to and opportunities for efficiently translating the extraordinary properties of carbon-nanotubes to polymer matrices are summarized.
Abstract: We review the present state of polymer nanocomposites research in which the fillers are single-wall or multiwall carbon nanotubes. By way of background we provide a brief synopsis about carbon nanotube materials and their suspensions. We summarize and critique various nanotube/polymer composite fabrication methods including solution mixing, melt mixing, and in situ polymerization with a particular emphasis on evaluating the dispersion state of the nanotubes. We discuss mechanical, electrical, rheological, thermal, and flammability properties separately and how these physical properties depend on the size, aspect ratio, loading, dispersion state, and alignment of nanotubes within polymer nanocomposites. Finally, we summarize the current challenges to and opportunities for efficiently translating the extraordinary properties of carbon nanotubes to polymer matrices in hopes of facilitating progress in this emerging area.

3,239 citations

Journal ArticleDOI
TL;DR: Graphene has emerged as a subject of enormous scientific interest due to its exceptional electron transport, mechanical properties, and high surface area, and when incorporated appropriately, these atomically thin carbon sheets can significantly improve physical properties of host polymers at extremely small loading.
Abstract: Graphene has emerged as a subject of enormous scientific interest due to its exceptional electron transport, mechanical properties, and high surface area. When incorporated appropriately, these atomically thin carbon sheets can significantly improve physical properties of host polymers at extremely small loading. We first review production routes to exfoliated graphite with an emphasis on top-down strategies starting from graphite oxide, including advantages and disadvantages of each method. Then solvent- and melt-based strategies to disperse chemically or thermally reduced graphene oxide in polymers are discussed. Analytical techniques for characterizing particle dimensions, surface characteristics, and dispersion in matrix polymers are also introduced. We summarize electrical, thermal, mechanical, and gas barrier properties of the graphene/polymer nanocomposites. We conclude this review listing current challenges associated with processing and scalability of graphene composites and future perspectives f...

2,979 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023506
20221,122
20211,014
20201,080
2019960
20181,027