scispace - formally typeset
Search or ask a question

Showing papers in "Mammalian Genome in 2008"


Journal ArticleDOI
TL;DR: Non-protein coding sequences increasingly dominate the genomes of multicellular organisms as their complexity increases, in contrast to protein-coding genes, which remain relatively static as mentioned in this paper, and there is mounting evidence that much of this transcription is involved in the regulation of differentiation and development.
Abstract: Non-protein-coding sequences increasingly dominate the genomes of multicellular organisms as their complexity increases, in contrast to protein-coding genes, which remain relatively static. Most of the mammalian genome and indeed that of all eukaryotes is expressed in a cell- and tissue-specific manner, and there is mounting evidence that much of this transcription is involved in the regulation of differentiation and development. Different classes of small and large noncoding RNAs (ncRNAs) have been shown to regulate almost every level of gene expression, including the activation and repression of homeotic genes and the targeting of chromatin-remodeling complexes. ncRNAs are involved in developmental processes in both simple and complex eukaryotes, and we illustrate this in the latter by focusing on the animal germline, brain, and eye. While most have yet to be systematically studied, the emerging evidence suggests that there is a vast hidden layer of regulatory ncRNAs that constitutes the majority of the genomic programming of multicellular organisms and plays a major role in controlling the epigenetic trajectories that underlie their ontogeny.

426 citations


Journal ArticleDOI
TL;DR: A progress report of the Collaborative Cross breeding program at ORNL is presented and a description of the kinds of investigations that this resource will support is presented.
Abstract: Complex traits and disease comorbidity in humans and in model organisms are the result of naturally occurring polymorphisms that interact with each other and with the environment. To ensure the availability of resources needed to investigate biomolecular networks and systems-level phenotypes underlying complex traits, we have initiated breeding of a new genetic reference population of mice, the Collaborative Cross. This population has been designed to optimally support systems genetics analysis. Its novel and important features include a high level of genetic diversity, a large population size to ensure sufficient power in high-dimensional studies, and high mapping precision through accumulation of independent recombination events. Implementation of the Collaborative Cross has been ongoing at the Oak Ridge National Laboratory (ORNL) since May 2005. Production has been systematically managed using a software-assisted breeding program with fully traceable lineages, performed in a controlled environment. Currently, there are 650 lines in production, and close to 200 lines are now beyond their seventh generation of inbreeding. Retired breeders enter a high-throughput phenotyping protocol and DNA samples are banked for analyses of recombination history, allele drift and loss, and population structure. Herein we present a progress report of the Collaborative Cross breeding program at ORNL and a description of the kinds of investigations that this resource will support.

263 citations


Journal ArticleDOI
TL;DR: Together these findings raise the spectre of Lamarckism and epigenetics is now being touted as an explanation for some intergenerational effects in human populations, termed transgenerational epigenetic inheritance.
Abstract: Work in the laboratory mouse has identified a group of genes, called metastable epialleles, that are informing us about the mechanisms by which the epigenetic state is established in the embryo. At these alleles, transcriptional activity is dependent on the epigenetic state and this can vary from cell to cell in the one tissue type. The decision to be active or inactive is probabilistic and sensitive to environmental influences. Moreover, in some cases the epigenetic state at these alleles can survive across generations, termed transgenerational epigenetic inheritance. Together these findings raise the spectre of Lamarckism and epigenetics is now being touted as an explanation for some intergenerational effects in human populations. In this review we will discuss the evidence so far.

138 citations


Journal ArticleDOI
TL;DR: A project funded by the Wellcome Trust to produce over 100 recombinant inbred mouse lines as part of the Collaborative Cross genetic reference panel to serve as a community resource for systems genetics studies is reported.
Abstract: We report on the progress of a project funded by the Wellcome Trust to produce over 100 recombinant inbred mouse lines as part of the Collaborative Cross (CC) genetic reference panel. These new strains of mice are being derived from a set of eight genetically diverse founders. The genomes of the finished strains will be mosaics of the founder strains’ genomes with a high density of independent recombination breakpoints. The CC mice will be available for distribution free of any intellectual property constraints to serve as a community resource for systems genetics studies.

116 citations


Journal ArticleDOI
TL;DR: In this review, the genetic variations that underlie several diseases of livestock (under monogenic and polygenic control) are analyzed and factors hampering research efforts toward identification of genetic influences on animal disease identification and control are highlighted.
Abstract: Increasing productivity is one of the main objectives in animal production. Traditional breeding methods have led to increased gains in some traits but gains are not easily attainable in traits with low heritabilities. Exploiting the genetic variations underlying desired phenotypes is the goal of today’s animal producers. Such positive genetic variants must, however, be known before possible application. Consequently, candidate genes of traits of interest have been searched for possible relationships with such traits or to explain reported quantitative trait loci (QTL) for such traits. DNA variants or polymorphisms have been identified in many such genes and their relationships with production traits determined. However, only a few genes have been evaluated, given the wealth of information on reported QTL for production traits, and in most cases genes are only partially investigated. This review presents available information on DNA variants for production traits and discusses steps that are required for effective utilization of this information for successful marker-assisted selection programs.

111 citations


Journal ArticleDOI
TL;DR: It is demonstrated that important metabolic, hematologic, and biochemical differences exist between these different inbred strains, and these genetic differences can furthermore be exploited to identify new genes/proteins that contribute to phenotypic abnormalities.
Abstract: To evaluate the contribution of genetic background to phenotypic variation, we compared a large range of biochemical and metabolic parameters at different ages of four inbred mice strains, C57BL/6J, 129SvPas, C3HeB/FeJ, and Balb/cByJ. Our results demonstrate that important metabolic, hematologic, and biochemical differences exist between these different inbred strains. Most of these differences are gender independent and are maintained or accentuated throughout life. It is therefore imperative that the genetic background is carefully defined in phenotypic studies. Our results also argue that certain backgrounds are more suited to study a given physiologic phenomenon, as distinct mouse strains have a different propensity to develop particular biochemical, hematologic, and metabolic abnormalities. These genetic differences can furthermore be exploited to identify new genes/proteins that contribute to phenotypic abnormalities. The choice of the genetic background in which to generate and analyze genetically engineered mutant mice is important as it is, together with environmental factors, one of the most important contributors to the variability of phenotypic results.

108 citations


Journal ArticleDOI
TL;DR: The establishment of an experimental genetic reference population, the Collaborative Cross, in which both genetic diversity and mapping power are maximized, is described, which will be a powerful resource for characterization of essentially any mouse phenotype that has a genetic basis.
Abstract: Identification of genes underlying complex traits presents a challenge to which geneticists have responded with many diverse approaches. A common feature of these approaches is that different research groups must, on a case-by-case basis, replicate similar efforts in recruitment, genetic characterization, and analyses. To avoid this expensive "churning," an alternative approach has been proposed: production of an experimental genetic reference population, the Collaborative Cross, in which both genetic diversity and mapping power are maximized. Since this population consists of inbred mouse strains, further advantages are that it is essentially infinitely reproducible; genetic characterization needs to be performed only once; and the founder strains' genomes have been or will be sequenced, allowing imputation of allele sequences of all members of the reference population. Here we describe the establishment of such a genetic reference population, which we dub "The Gene Mine." Over 1000 genetically distinct lines have been established, descended from eight diverse founder strains. Preliminary phenotypic ascertainment of these strains indicates unexpected variability arising from independent assortment of genetic variants. The Gene Mine will be a powerful resource for characterization of essentially any mouse phenotype that has a genetic basis.

87 citations


Journal ArticleDOI
TL;DR: A high-density SNP resource encompassing 7.87 million polymorphic loci across 49 inbred mouse strains of the laboratory mouse is created by combining data available from public databases and training a hidden Markov model to impute missing genotypes in the combined data.
Abstract: We have created a high-density SNP resource encompassing 7.87 million polymorphic loci across 49 inbred mouse strains of the laboratory mouse by combining data available from public databases and training a hidden Markov model to impute missing genotypes in the combined data. The strong linkage disequilibrium found in dense sets of SNP markers in the laboratory mouse provides the basis for accurate imputation. Using genotypes from eight independent SNP resources, we empirically validated the quality of the imputed genotypes and demonstrated that they are highly reliable for most inbred strains. The imputed SNP resource will be useful for studies of natural variation and complex traits. It will facilitate association study designs by providing high-density SNP genotypes for large numbers of mouse strains. We anticipate that this resource will continue to evolve as new genotype data become available for laboratory mouse strains. The data are available for bulk download or query at http://cgd.jax.org /.

86 citations


Journal ArticleDOI
TL;DR: This article reviews the emerging literature on how human genomic variation influences the outcome of microRNA targeting and the associated phenotypic effects and demonstrates the biological importance of functional polymorphisms affecting miRNA-mediated gene regulation.
Abstract: A large number of human protein-coding genes are finely regulated by one or more microRNAs. Members of this small noncoding RNA family have emerged as important post-transcriptional regulators of gene expression and are involved in a number of disease phenotypes. Variability in the human genome is extensive and includes the common and rare single nucleotide polymorphisms (SNPs) and copy number variations (CNVs). The functional significance of the genome’s variability is under intense investigation. In this article we review the emerging literature on how human genomic variation influences the outcome of microRNA targeting and the associated phenotypic effects. Illustrative examples are discussed that demonstrate the biological importance of functional polymorphisms affecting miRNA-mediated gene regulation.

82 citations


Journal ArticleDOI
TL;DR: Because the dog presents with distinct, spontaneously occurring mammary tumors, it may serve as a model for genetic analysis and treatments of humans with malignant breast tumors and expression patterns of ten miRNAs known to be associated with human breast cancers were compared.
Abstract: MicroRNAs (miRNAs) are 18-22-nt noncoding RNAs that are involved in post-transcriptional regulation of genes. Oncomirs, a subclass of miRNAs, include genes whose expression, or lack thereof, are associated with cancers. Until the last decade, the domestic dog was an underused model for the study of various human diseases that have genetic components. The dog exhibits marked genetic and physiologic similarity to the human, thereby making it an excellent model for study and treatment of various hereditary diseases. Furthermore, because the dog presents with distinct, spontaneously occurring mammary tumors, it may serve as a model for genetic analysis and treatments of humans with malignant breast tumors. Because miRNAs have been found to act as both tumor suppressors and oncogenes in several different cancers, expression patterns of ten miRNAs (miR-15a, miR-16, miR-17-5p, miR-21, miR-29b, miR-125b, miR-145, miR-155, miR-181b, let-7f) known to be associated with human breast cancers were compared to malignant canine mammary tumors (n = 6) and normal canine mammary tissue (n = 10). Resulting data revealed miR-29b and miR-21 to have a statistically significant (p < 0.05 by MANOVA analysis) upregulation in cancerous samples. The ten canine miRNAs follow the same pattern of expression as in the human, except for miR-145 which does not show a difference in expression between the normal and cancerous canine samples. In addition, when analyzed according to specific cancer phenotypes, miR-15a and miR-16 show a significant downregulation in canine ductal carcinomas while miRsR-181b, -21, -29b, and let-7f show a significant upregulation in canine tubular papillary carcinomas.

82 citations


Journal ArticleDOI
TL;DR: This work has reviewed the literature pertaining to the epigenetic regulation of miRNA genes in the context of various cancers and speculated on the potential role of epigenetic modifications on the transcriptional regulation and expression of these genes.
Abstract: By virtue of having multiple targets, a microRNA (miRNA) can have variable effects on oncogenesis by acting as tumor suppressor or oncogene in a context-dependent manner. Genome-wide epigenetic changes that occur in various cancers affect the transcription of many genes. Since the transcriptional regulation of miRNAs remains an unexplored field, it is still unknown how epigenetic changes will affect the regulation of miRNAs. Many miRNAs are intron-bound within the body of a protein-coding gene. Any change to the transcription of the “host” gene affects the transcription and genesis of the resident miRNA. It is therefore reasonable to deduce that epigenetic changes brought on by transformation can potentially affect miRNA expression in both direct and indirect ways. We have reviewed the literature pertaining to the epigenetic regulation of miRNA genes in the context of various cancers and have speculated on the potential role of epigenetic modifications on the transcriptional regulation and expression of these genes.

Journal ArticleDOI
TL;DR: In 2008, several papers have been published in quick succession describing mutations in the TDP-43 gene, showing they can be a primary cause of amyotrophic lateral sclerosis.
Abstract: In 2006 the protein TDP-43 was identified as the major ubiquitinated component deposited in the inclusion bodies found in two human neurodegenerative diseases, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. The pathogenesis of both disorders is unclear, although they are related by having some overlap of symptoms and now by the shared histopathology of TDP-43 deposition. Now, in 2008, several papers have been published in quick succession describing mutations in the TDP-43 gene, showing they can be a primary cause of amyotrophic lateral sclerosis. There are many precedents in neurodegenerative disease in which rare single-gene mutations have given great insight into understanding disease processes, which is why the TDP-43 mutations are potentially very important.

Journal ArticleDOI
TL;DR: A meta-analysis across three types of mouse populations to correlate brain gene expression with levels of alcohol intake and produced a list of eight candidate genes with highly heritable expression, which could explain a significant amount of the variance in alcohol preference in mice.
Abstract: Searches for the identity of genes that influence the levels of alcohol consumption by humans and other animals have often been driven by presupposition of the importance of particular gene products in determining positively or negatively reinforcing effects of ethanol. We have taken an unbiased approach and performed a meta-analysis across three types of mouse populations to correlate brain gene expression with levels of alcohol intake. Our studies, using filtering procedures based on QTL analysis, produced a list of eight candidate genes with highly heritable expression, which could explain a significant amount of the variance in alcohol preference in mice. Using the Allen Brain Atlas for gene expression, we noted that the candidate genes’ expression was localized to the olfactory and limbic areas as well as to the orbitofrontal cortex. Informatics techniques and pathway analysis illustrated the role of the candidate genes in neuronal migration, differentiation, and synaptic remodeling. The importance of olfactory cues, learning and memory formation (Pavlovian conditioning), and cortical executive function, for regulating alcohol intake by animals (including humans), is discussed.

Journal ArticleDOI
TL;DR: Functional testing has shown that long noncoding RNAs can be crucial imprinting elements and act in cis throughout the cluster to silence protein-coding genes, and knowledge of imprinted nonc coding RNAs and models for how they function are reviewed.
Abstract: Imprinted genes are silenced in a parental-specific manner and tend to occur in clusters. All well-characterised imprinted clusters contain noncoding RNAs that are silenced according to parental origin. These can be broadly classified into long noncoding RNAs and short regulatory RNAs. Functional testing has shown that long noncoding RNAs can be crucial imprinting elements and act in cis throughout the cluster to silence protein-coding genes. Whether silencing occurs via transcription of the noncoding RNA or the actual transcript is not clear. The short regulatory RNAs, both small nucleolar RNAs and microRNAs, act in trans, generally outside the cluster from which they arise. As these RNAs are expressed according to parental origin, the regulation of their targets is also parental-specific. We review knowledge of imprinted noncoding RNAs and models for how they function.

Journal ArticleDOI
TL;DR: It is demonstrated that AKC breed standards are rigorously adhered to for most domestic breeds with little variation observed within breeds, suggesting that individual measurements may not be needed for genetic studies of morphologic traits, particularly in the case of breed-defining traits that are typically under strong selection.
Abstract: Using 27 body measurements, we have identified 13 breed-defining metrics for 109 of 159 domestic dog breeds, most of which are recognized by the American Kennel Club (AKC). The data set included 1,155 dogs at least 1 year old (average 5.4 years), and for 53 breed populations, complete measurement data were collected from at least three males and three females. We demonstrate, first, that AKC breed standards are rigorously adhered to for most domestic breeds with little variation observed within breeds. Second, Rensch’s rule, which describes a scaling among taxa such that sexual dimorphism is greater among larger species if males are the larger sex, with less pronounced differences in male versus female body size in smaller species, is not maintained in domestic dog breeds because the proportional size difference between males and females of small and large breeds is essentially the same. Finally, principal components (PCs) analysis describes both the overall body size (PC1) and the shape (length versus width) of the skeleton (PC2). That the integrity of the data set is sufficiently rich to discern PCs has strong implications for mapping studies, suggesting that individual measurements may not be needed for genetic studies of morphologic traits, particularly in the case of breed-defining traits that are typically under strong selection. Rather, phenotypes derived from data sets such as these, collected at a fraction of the effort and cost, may be used to direct whole-genome association studies aimed at understanding the genetic basis of fixed morphologic phenotypes defining distinct dog breeds.

Journal ArticleDOI
TL;DR: An updated catalog of miRNAs and UCRs located at fragile sites or at cancer susceptibility loci is provided, and these types of studies are the first step toward discoveries leading to novel approaches for cancer therapies.
Abstract: MicroRNAs (miRNAs) are small noncoding RNAs (ncRNAs, RNAs that do not code for proteins) that regulate the expression of target genes at the posttranscriptional or posttranslational level. Many miRNAs have conserved sequences between distantly related organisms, suggesting that these molecules participate in essential developmental and physiologic processes. miRNAs can act as tumor suppressor genes or oncogenes in human cancers. Mutations, deletions, or amplifications have been found in human cancers and shown to alter expression levels of mature and/or precursor miRNA transcripts. Moreover, a large fraction of genomic ultraconserved regions (UCRs) encode a particular set of ncRNAs whose expression is altered in human cancers. Both miRNAs and UCRs are frequently located at fragile sites and genomic regions affected in various cancers, named cancer-associated genomic regions (CAGRs). Bioinformatics studies are emerging as important tools to identify associations and/or correlations between miRNAs/ncRNAs and CAGRs. ncRNA profiling has allowed the identification of specific signatures associated with diagnosis, prognosis, and response to treatment of human tumors. Several abnormalities could contribute to the alteration of miRNA expression profiles in each kind of tumor and in each kind of tissue. This review is focused on the miRNAs and ncRNAs as genes affecting cancer risk, and we provided an updated catalog of miRNAs and UCRs located at fragile sites or at cancer susceptibility loci. These types of studies are the first step toward discoveries leading to novel approaches for cancer therapies.

Journal ArticleDOI
TL;DR: The results indicate that implementation of a series of model-based framework is not only beneficial to detect QTL, but also provides a new and more robust interpretation from which further methodology could be developed.
Abstract: A Duroc-Pietrain resource population was built to detect quantitative trait loci (QTL) that affect growth, carcass composition, and pork quality. The data were analyzed by applying three least-squares Mendelian models: a line-cross (LC) model, a half-sib (HS) model, and a combined LC and HS model (CB), which enabled the detection of QTL that had fixed, equal, and different allele frequencies for alternate breed alleles, respectively. Permutation tests were performed to determine 5% chromosome-wide and 5% genome-wide threshold values. A total of 40 (137) QTL were detected at the 5% genome-wide (chromosome-wide) level for the 35 traits analyzed. Of the 137 QTL detected, 62 were classified as the LC type (LC-QTL), 47 as the HS type (HS-QTL), and 28 as the CB type (CB-QTL). The results indicate that implementation of a series of model-based framework is not only beneficial to detect QTL, but also provides us with a new and more robust interpretation from which further methodology could be developed.

Journal ArticleDOI
TL;DR: An in silico correlation analysis of the expression of these differentially expressed miRNAs with phenotype data and mRNA expression was conducted to better characterise the effects of these mi RNAs on both phenotype and the regulation of mRNA expression.
Abstract: Micro-RNAs (miRNAs) are short, single-stranded, noncoding RNAs that are involved in the regulation of protein-coding genes at the level of messenger RNA (mRNA). They are involved in the regulation of numerous traits, including developmental timing, apoptosis, immune function, and neuronal development. To better understand how the expression of the miRNAs themselves is regulated, we looked for miRNA expression differences among four mouse inbred strains, A/J, BALB/cJ, C57BL/6J, and DBA/2J, in one tissue, the hippocampus. A total of 166 miRNA RT-PCR assays were used to screen RNA pools for each strain. Twenty miRNA species that were markedly different between strains were further investigated using eight individual samples per strain, and 11 miRNAs showed significant differences across strains (p < 0.05). This is the first observation of miRNA expression differences across inbred mice strains. We conducted an in silico correlation analysis of the expression of these differentially expressed miRNAs with phenotype data and mRNA expression to better characterise the effects of these miRNAs on both phenotype and the regulation of mRNA expression. This approach has allowed us to nominate miRNAs that have potential roles in anxiety, exploration, and learning and memory.

Journal ArticleDOI
TL;DR: This work describes the first experimental identification of porcine miRNAs by sequence analysis of a cDNA library of small RNAs from Porcine fibroblast cells, and identifies 25 distinct porcines, of which 19 are previously unreported, and defines 14 new miRNA families in pig.
Abstract: MicroRNAs (miRNAs) are small regulatory RNAs that direct the posttranscriptional repression of cognate messenger RNAs. Despite increasing evidence for diverse roles of miRNAs in biological processes, little is known about miRNAs in pig. We describe the first experimental identification of porcine miRNAs by sequence analysis of a cDNA library of small RNAs from porcine fibroblast cells. We identified 25 distinct porcine miRNAs, of which 19 are previously unreported, and define 14 new miRNA families in pig. Most of the cloned miRNAs are expressed ubiquitously in all porcine tissues examined, whereas some miRNAs are expressed preferentially in specific tissues. Our results enrich the porcine miRNA database and provide useful information for investigating biological functions of miRNAs in pig.

Journal ArticleDOI
TL;DR: This review focuses on the roles of miRNAs in the gene regulation of the nervous system and shows the involvement of RNA-mediated gene silencing in neurogenesis, neural differentiation, synaptic plasticity, and neurologic and psychiatric diseases.
Abstract: MicroRNAs (miRNAs) are a recently discovered class of small RNA molecules implicated in a wide range of diverse gene regulatory mechanisms. Interestingly, numerous miRNAs are expressed in a spatially and temporally controlled manner in the nervous system. This suggests that gene regulation networks based on miRNA activities may be particularly relevant in neurons. Recent studies show the involvement of RNA-mediated gene silencing in neurogenesis, neural differentiation, synaptic plasticity, and neurologic and psychiatric diseases. This review focuses on the roles of miRNAs in the gene regulation of the nervous system.

Journal ArticleDOI
TL;DR: The Mouse Disease Information System is a data capture system for pathology data from laboratory mice designed to support phenotyping studies and provides reference definitions for disease terms and access to photomicrographic images of similar diagnoses in other mutants.
Abstract: The Mouse Disease Information System (MoDIS) is a data capture system for pathology data from laboratory mice designed to support phenotyping studies. The system integrates the mouse anatomy (MA) and mouse pathology (MPATH) ontologies into a Microsoft Access database facilitating the coding of organ, tissue, and disease process to recognized semantic standards. Grading of disease severity provides scores for all lesions that can then be used for quantitative trait locus (QTL) analyses and haplotype association gene mapping. Direct linkage to the Pathbase online database provides reference definitions for disease terms and access to photomicrographic images of similar diagnoses in other mutant mice. MoDIS is an open source and freely available program (http://research.jax.org/faculty/sundberg/index.html). This provides a valuable tool for setting up a mouse pathology phenotyping program.

Journal ArticleDOI
TL;DR: The role of miRNAs in the eye is beginning to be explored following their recent detection by miRNA expression analyses, and many of the target genes for these ocular mi RNAs remain undefined.
Abstract: MiRNAs are a newly discovered class of small noncoding RNAs that regulate gene expression by translational repression and mRNA degradation It has become evident that miRNAs are involved in many important biological processes, including tissue differentiation and development The role of miRNAs in the eye is beginning to be explored following their recent detection by miRNA expression analyses Many of the target genes for these ocular miRNAs remain undefined This review summarizes the current information about ocular miRNA expression Future research should focus on the function of ocular miRNAs in eye development

Journal ArticleDOI
TL;DR: There is a set of eUploid genes that shows greater variance of expression in human trisomy 21 tissues than in euploid tissues, which may contribute to producing the variable phenotypic abnormalities observed in Down syndrome.
Abstract: Congenital development disorders with variable severity occur in trisomy 21. However, how these phenotypic abnormalities develop with variations remains elusive. We hypothesize that the differences in euploid gene expression variation among trisomy 21 tissues are caused by the presence of an extra copy of chromosome 21 and may contribute to the phenotypic variations in Down syndrome. We used DNA microarray to measure the differences in gene expression variance between four human trisomy 21 and six euploid amniocytes. The three publicly available data sets of fetal brains, adult brains, and fetal hearts were also analyzed. The numbers of euploid genes with greater variance were significantly higher in all four kinds of trisomy 21 tissues (p < 0.01) than in the corresponding euploid tissues. Seventeen euploid genes with significantly different variance between trisomy 21 and euploid amniocytes were found using the F test. In summary, there is a set of euploid genes that shows greater variance of expression in human trisomy 21 tissues than in euploid tissues. This change may contribute to producing the variable phenotypic abnormalities observed in Down syndrome.

Journal ArticleDOI
TL;DR: Results show that alcohol-naïve HAP1 mice exhibited lower levels of Drd2 mRNA expression in the nucleus accumbens and the hippocampus compared to LAP1 dogs, suggesting that the SNP may play a role in the differential expression ofDrd2 between the HAP and LAP mice and that the polymorphism in Drd 2 may contribute to alcohol preference.
Abstract: The high alcohol-preferring (HAP) and low alcohol-preferring (LAP) mice were selectively bred for differences in alcohol preference and consumption. Recently, a large-effect QTL was identified on chromosome 9. The peak for this QTL is near the Drd2 (dopamine receptor 2) locus. The present study examined Drd2 mRNA expression differences between the HAP1 and LAP1 mice in brain regions important in the dopaminergic-reward pathway, including the nucleus accumbens, hippocampus, amygdala, and septum. Results show that alcohol-naive HAP1 mice exhibited lower levels of Drd2 mRNA expression in the nucleus accumbens and the hippocampus compared to LAP1 mice. No differences were found in the amygdala or septum. To determine if a sequence difference might underlie the expression difference, the Drd2 cDNA was sequenced in each line and one single nucleotide polymorphism (SNP) was identified in the 3′ UTR. Both HAP and LAP 3′ UTR were cloned in the luc-pGL3-promoter-luc vector. The polymorphism in the Drd2 3′ UTR was assessed to determine its functional significance in modulating expression. In vitro expression analysis using neuroblastoma SK-N-SH cells resulted in a significant decrease in expression of the HAP 3′ UTR luc construct compared with the LAP 3′ UTR construct. This decreased expression is consistent with lower levels of Drd2 expression in the nucleus accumbens and the hippocampus as evidenced by qRT-PCR. These results suggest that the SNP may play a role in the differential expression of Drd2 between the HAP and LAP mice and that the polymorphism in Drd2 may contribute to alcohol preference.

Journal ArticleDOI
TL;DR: The results suggest that mutations occur with equal frequency in LCNS but are eliminated by natural selection during the course of evolution.
Abstract: Comparative sequence analyses have identified highly conserved genomic DNA sequences, including noncoding sequences, between humans and other species. By performing whole-genome comparisons of human and mouse, we have identified 611 conserved noncoding sequences longer than 500 bp, with more than 95% identity between the species. These long conserved noncoding sequences (LCNS) include 473 new sequences that do not overlap with previously reported ultraconserved elements (UCE), which are defined as aligned sequences longer than 200 bp with 100% identity in human, mouse, and rat. The LCNS were distributed throughout the genome except for the Y chromosome and often occurred in clusters within regions with a low density of coding genes. Many of the LCNS were also highly conserved in other mammals, chickens, frogs, and fish; however, we were unable to find orthologous sequences in the genomes of invertebrate species. In order to examine whether these conserved sequences are functionally important or merely mutational cold spots, we directly measured the frequencies of ENU-induced germline mutations in the LCNS of the mouse. By screening about 40.7 Mb, we found 35 mutations, including mutations at nucleotides that were conserved between human and fish. The mutation frequencies were equivalent to those found in other genomic regions, including coding sequences and introns, suggesting that the LCNS are not mutational cold spots at all. Taken together, these results suggest that mutations occur with equal frequency in LCNS but are eliminated by natural selection during the course of evolution.

Journal ArticleDOI
TL;DR: Results demonstrate that animals fed a high-fat diet are not only more likely to experience decreased mammary cancer latency but increased tumor growth and pulmonary metastases occurrence over an equivalent time.
Abstract: High dietary fat intake and obesity may increase the risk of susceptibility to certain forms of cancer. To study the interactions of dietary fat, obesity, and metastatic mammary cancer, we created a population of F(2) mice cosegregating obesity QTL and the MMTV-PyMT transgene. We fed the F(2) mice either a very high-fat or a matched-control-fat diet, and we measured growth, body composition, age at mammary tumor onset, tumor number and severity, and formation of pulmonary metastases. SNP genotyping across the genome facilitated analyses of QTL and QTL x diet interaction effects. Here we describe effects of diet on mammary tumor and metastases phenotypes, mapping of tumor/metastasis modifier genes, and the interaction between dietary fat levels and effects of cancer modifiers. Results demonstrate that animals fed a high-fat diet are not only more likely to experience decreased mammary cancer latency but increased tumor growth and pulmonary metastases occurrence over an equivalent time. We identified 25 modifier loci for mammary cancer and pulmonary metastasis, likely representing 13 unique loci after accounting for pleiotropy, and novel QTL x diet interactions at a majority of these loci. These findings highlight the importance of accurately modeling not only the human cancer characteristics in mice but also the environmental exposures of human populations.

Journal ArticleDOI
TL;DR: The results suggest that there are several genes that are likely to act in the same or parallel pathway as NR2E3 that can rescue the Nr2e3rd7/rd7 phenotype and may serve as potential therapeutic targets.
Abstract: The retinal degeneration 7 (rd7) mouse, lacking expression of the Nr2e3 gene, exhibits retinal dysplasia and a slow, progressive degeneration due to an abnormal production of blue opsin-expressing cone cells. In this study we evaluated three strains of mice to identify alleles that would slow or ameliorate the retinal degeneration observed in Nr2e3 rd7/rd7 mice. Our studies reveal that genetic background greatly influences the expression of the Nr2e3 rd7/rd7 phenotype and that the inbred mouse strains CAST/EiJ, AKR/J, and NOD.NON-H2 nb1 carry alleles that confer resistance to Nr2e3 rd7/rd7 -induced retinal degeneration. B6.Cg-Nr2e3 rd7/rd7 mice were outcrossed to each strain and the F1 progeny were intercrossed to produce F2 mice. In each intercross, 20–24% of the total F2 progeny were homozygous for the Nr2e3 rd7/rd7 mutation in a mixed genetic background; approximately 28–48% of the Nr2e3 rd7/rd7 homozygotes were suppressed for the degenerative retina phenotype in a mixed genetic background. The suppressed mice had no retinal spots and normal retinal morphology with a normal complement of blue opsin-expressing cone cells. An initial genome scan revealed a significant association of the suppressed phenotype with loci on chromosomes 8 and 19 with the CAST/EiJ background, two marginal loci on chromosomes 7 and 11 with the AKR/J background, and no significant QTL with the NOD.NON-H2 nb1 background. We did not observe any significant epistatic effects in this study. Our results suggest that there are several genes that are likely to act in the same or parallel pathway as NR2E3 that can rescue the Nr2e3 rd7/rd7 phenotype and may serve as potential therapeutic targets.

Journal ArticleDOI
TL;DR: The results confirm the previously proposed polygenic inheritance of the inverted teat defect and, for the first time, point to genomic regions harboring relevant genes.
Abstract: The mothering ability of a sow largely depends on the shape and function of the mammary gland. The aim of this study was to identify QTL for the heritable inverted teat defect, a condition characterized by disturbed development of functional teats. A QTL analysis was conducted in a porcine experimental population based on Duroc and Berlin Miniature pigs (DUMI). The significant QTL were confirmed by linkage analysis in commercial pigs according to the affected sib pair design and refined by family-based association test (FBAT). Nonparametric linkage (NPL) analysis revealed five significant and seven suggestive QTL for the inverted teat defect in the porcine experimental population. In commercial dam lines five significant NPL values were detected. QTL regions in overlapping marker intervals or close proximity in both populations were found on SSC3, SSC4, SSC6, and SSC11. SSC6 revealed QTL in both populations at different positions, indicating the segregation of at least two QTL. The results confirm the previously proposed polygenic inheritance of the inverted teat defect and, for the first time, point to genomic regions harboring relevant genes. The investigation revealed variation of the importance of QTL in the various populations due to either differences in allele frequencies and statistical power or differences in the genetic background that modulates the impact of the liability loci on the expression of the disease. The QTL study enabled us to name a number of plausible positional candidate genes. The correspondence of QTL regions for the inverted teat defect and previously mapped QTL for teat number are in line with the etiologic relationship of these traits.

Journal ArticleDOI
TL;DR: It is shown that both Dac1j and Dac2j are caused by insertions of MusD retroelements that share 98% sequence identity, and argue against models proposed so far that either envisioned SHFM3 as a local trisomy or Dac as a mutant allele of Fbxw4.
Abstract: SHFM3 is a limb malformation characterized by the absence of central digits. It has been shown that this condition is associated with tandem duplications of about 500 kb at 10q24. The Dactylaplasia mice display equivalent limb defects and the two corresponding alleles (Dac1j and Dac2j) map in the region syntenic with the duplications in SHFM3. Dac1j was shown to be associated with an insertion of an unspecified ETn-like mouse endogenous transposon upstream of the Fbxw4 gene. Dac2j was also thought to be an insertion or a small inversion in intron 5 of Fbxw4, but the breakpoints and the exact molecular lesion have not yet been characterized. Here we report precise mapping and characterization of these alleles. We failed to identify any copy number differences within the SHFM3 orthologous genomic locus between Dac mutant and wild-type littermates, showing that the Dactylaplasia alleles are not associated with duplications of the region, in contrast with the described human SHFM3 cases. We further show that both Dac1j and Dac2j are caused by insertions of MusD retroelements that share 98% sequence identity. The differences between the nature of the human and mouse genomic abnormalities argue against models proposed so far that either envisioned SHFM3 as a local trisomy or Dac as a mutant allele of Fbxw4. Instead, both genetic conditions might lead to complex alterations of gene regulation mechanisms that would impair limb morphogenesis. Interestingly, the Dac2j mutation occurs within a highly conserved element that may represent a regulatory sequence for a neighboring gene.

Journal ArticleDOI
TL;DR: The observation that Mvwf1 is present in multiple wild-derived strains suggests that this locus may be retained in wild mouse populations due to positive selection, and could contribute to the high prevalence of von Willebrand disease in humans.
Abstract: Mvwf1 is a cis-regulatory mutation previously identified in the RIIIS/J mouse strain that causes a unique tissue-specific switch in the expression of an N-acetylgalactosaminyltransferase, B4GALNT2, from intestinal epithelium to vascular endothelium. Vascular B4galnt2 expression results in aberrant glycosylation of von Willebrand Factor (VWF) and accelerated VWF clearance from plasma. We now report that 13 inbred mouse strains share the Mvwf1 tissue-specific switch and low VWF phenotype, including five wild-derived strains. Genomic sequencing identified a highly conserved 97-kb Mvwf1 haplotype block shared by these strains that encompasses a 30-kb region of high nucleotide sequence divergence from C57BL6/J flanking B4galnt2 exon 1. The analysis of a series of bacterial artificial chromosome (BAC) transgenes containing B4galnt2 derived from the RIIIS/J or C57BL6/J inbred mouse strains demonstrates that the corresponding sequences are sufficient to confer the vessel (RIIIS/J) or intestine (C57BL6/J)-specific expression patterns. Taken together, our data suggest that the region responsible for the Mvwf1 regulatory switch lies within an approximately 30-kb genomic interval upstream of the B4galnt2 gene. The observation that Mvwf1 is present in multiple wild-derived strains suggests that this locus may be retained in wild mouse populations due to positive selection. Similar selective pressures could contribute to the high prevalence of von Willebrand disease in humans.