scispace - formally typeset
Search or ask a question

Showing papers in "Materials in 2022"


Journal ArticleDOI
TL;DR: A comprehensive review about the most recent progress in the synthesis and applications of graphene-based composites is provided in this paper , where the difficulties and challenges in the current development of graphene are summarized and indicated.
Abstract: In the new era of modern flexible and bendable technology, graphene-based materials have attracted great attention. The excellent electrical, mechanical, and optical properties of graphene as well as the ease of functionalization of its derivates have enabled graphene to become an attractive candidate for the construction of flexible devices. This paper provides a comprehensive review about the most recent progress in the synthesis and applications of graphene-based composites. Composite materials based on graphene, graphene oxide (GO), and reduced graphene oxide (rGO), as well as conducting polymers, metal matrices, carbon–carbon matrices, and natural fibers have potential application in energy-harvesting systems, clean-energy storage devices, and wearable and portable electronics owing to their superior mechanical strength, conductivity, and extraordinary thermal stability. Additionally, the difficulties and challenges in the current development of graphene are summarized and indicated. This review provides a comprehensive and useful database for further innovation of graphene-based composite materials.

116 citations


Journal ArticleDOI
TL;DR: In this article , the authors reviewed the literature discussing the use of recycled glass waste in concrete as a partial or complete replacement for aggregates, focusing on the effect of recycling glass waste on the fresh and mechanical properties of concrete.
Abstract: The safe disposal of an enormous amount of waste glass (WG) in several countries has become a severe environmental issue. In contrast, concrete production consumes a large amount of natural resources and contributes to environmental greenhouse gas emissions. It is widely known that many kinds of waste may be utilized rather than raw materials in the field of construction materials. However, for the wide use of waste in building construction, it is necessary to ensure that the characteristics of the resulting building materials are appropriate. Recycled glass waste is one of the most attractive waste materials that can be used to create sustainable concrete compounds. Therefore, researchers focus on the production of concrete and cement mortar by utilizing waste glass as an aggregate or as a pozzolanic material. In this article, the literature discussing the use of recycled glass waste in concrete as a partial or complete replacement for aggregates has been reviewed by focusing on the effect of recycled glass waste on the fresh and mechanical properties of concrete.

84 citations


Journal ArticleDOI
TL;DR: In this article , the potential biomedical applications of green synthesized zinc oxide nanoparticles (ZnO-NPs) have been investigated, which shows that they have outstanding potential as a potent biological agent, as well as related hazardous properties.
Abstract: The field of nanotechnology is concerned with the creation and application of materials having a nanoscale spatial dimensioning. Having a considerable surface area to volume ratio, nanoparticles have particularly unique properties. Several chemical and physical strategies have been used to prepare zinc oxide nanoparticles (ZnO-NPs). Still, biological methods using green or natural routes in various underlying substances (e.g., plant extracts, enzymes, and microorganisms) can be more environmentally friendly and cost-effective than chemical and/or physical methods in the long run. ZnO-NPs are now being studied as antibacterial agents in nanoscale and microscale formulations. The purpose of this study is to analyze the prevalent traditional method of generating ZnO-NPs, as well as its harmful side effects, and how it might be addressed utilizing an eco-friendly green approach. The study’s primary focus is on the potential biomedical applications of green synthesized ZnO-NPs. Biocompatibility and biomedical qualities have been improved in green-synthesized ZnO-NPs over their traditionally produced counterparts, making them excellent antibacterial and cancer-fighting drugs. Additionally, these ZnO-NPs are beneficial when combined with the healing processes of wounds and biosensing components to trace small portions of biomarkers linked with various disorders. It has also been discovered that ZnO-NPs can distribute and sense drugs. Green-synthesized ZnO-NPs are compared to traditionally synthesized ones in this review, which shows that they have outstanding potential as a potent biological agent, as well as related hazardous properties.

72 citations


Journal ArticleDOI
TL;DR: In this paper , the structure and characterization of GO, graphene derivatives prepared from GO and GO applications, are described in environmental applications, medical and biological applications, freestanding membranes, and various composite systems.
Abstract: Thanks to the unique properties of graphite oxides and graphene oxide (GO), this material has become one of the most promising materials that are widely studied. Graphene oxide is not only a precursor for the synthesis of thermally or chemically reduced graphene: researchers revealed a huge amount of unique optical, electronic, and chemical properties of graphene oxide for many different applications. In this review, we focus on the structure and characterization of GO, graphene derivatives prepared from GO and GO applications. We describe GO utilization in environmental applications, medical and biological applications, freestanding membranes, and various composite systems.

65 citations


Journal ArticleDOI
TL;DR: In this article , the effect of waste glass on the mechanical properties of concrete was examined by conducting a series of compressive strength, splitting tensile strength and flexural strength tests, where waste glass powder was first used as a partial replacement for cement and six different ratios of WGP were utilized in concrete production.
Abstract: In this study, the effect of waste glass on the mechanical properties of concrete was examined by conducting a series of compressive strength, splitting tensile strength and flexural strength tests. According to this aim, waste glass powder (WGP) was first used as a partial replacement for cement and six different ratios of WGP were utilized in concrete production: 0%, 10%, 20%, 30%, 40%, and 50%. To examine the combined effect of different ratios of WGP on concrete performance, mixed samples (10%, 20%, 30%) were then prepared by replacing cement, and fine and coarse aggregates with both WGP and crashed glass particles. Workability and slump values of concrete produced with different amounts of waste glass were determined on the fresh state of concrete, and these properties were compared with those of plain concrete. For the hardened concrete, 150 mm × 150 mm × 150 mm cubic specimens and cylindrical specimens with a diameter of 100 mm and a height of 200 mm were tested to identify the compressive strength and splitting tensile strength of the concrete produced with waste glass. Next, a three-point bending test was carried out on samples with dimensions of 100 × 100 × 400 mm, and a span length of 300 mm to obtain the flexure behavior of different mixtures. According to the results obtained, a 20% substitution of WGP as cement can be considered the optimum dose. On the other hand, for concrete produced with combined WGP and crashed glass particles, mechanical properties increased up to a certain limit and then decreased owing to poor workability. Thus, 10% can be considered the optimum replacement level, as combined waste glass shows considerably higher strength and better workability properties. Furthermore, scanning electron microscope (SEM) analysis was performed to investigate the microstructure of the composition. Good adhesion was observed between the waste glass and cementitious concrete. Lastly, practical empirical equations have been developed to determine the compressive strength, splitting tensile strength, and flexure strength of concrete with different amounts of waste glass. Instead of conducting an experiment, these strength values of the concrete produced with glass powder can be easily estimated at the design stage with the help of proposed expressions.

63 citations


Journal ArticleDOI
TL;DR: The promising application, and recent trends of combined nanotechnology and phytomedicine for the treatment of neurological disorders (ND) as compared to conventional therapies, have been addressed.
Abstract: The strategies involved in the development of therapeutics for neurodegenerative disorders are very complex and challenging due to the existence of the blood-brain barrier (BBB), a closely spaced network of blood vessels and endothelial cells that functions to prevent the entry of unwanted substances in the brain. The emergence and advancement of nanotechnology shows favourable prospects to overcome this phenomenon. Engineered nanoparticles conjugated with drug moieties and imaging agents that have dimensions between 1 and 100 nm could potentially be used to ensure enhanced efficacy, cellular uptake, specific transport, and delivery of specific molecules to the brain, owing to their modified physico-chemical features. The conjugates of nanoparticles and medicinal plants, or their components known as nano phytomedicine, have been gaining significance lately in the development of novel neuro-therapeutics owing to their natural abundance, promising targeted delivery to the brain, and lesser potential to show adverse effects. In the present review, the promising application, and recent trends of combined nanotechnology and phytomedicine for the treatment of neurological disorders (ND) as compared to conventional therapies, have been addressed. Nanotechnology-based efforts performed in bioinformatics for early diagnosis as well as futuristic precision medicine in ND have also been discussed in the context of computational approach.

58 citations


Journal ArticleDOI
TL;DR: In this article , the fracture mechanics parameters of new concrete composites based on quaternary blended cements (QBC) have been investigated and a composition of the two most commonly used mineral additives, i.e., fly ash (FA) and silica fume (SF), in combination with nanosilica (nS), has been proposed as a partial replacement for ordinary Portland cement (OPC) binder.
Abstract: This study presents test results and in-depth discussion regarding the measurement of the fracture mechanics parameters of new concrete composites based on quaternary blended cements (QBC). A composition of the two most commonly used mineral additives, i.e., fly ash (FA) and silica fume (SF), in combination with nanosilica (nS), has been proposed as a partial replacement for ordinary Portland cement (OPC) binder. Four series of concrete were made, one of which was the reference concrete (REF) and the remaining three were QBC. During the research, the main mechanical parameters of compressive strength (fcm) and splitting tensile strength (fctm), as well as fracture mechanics parameters and the critical stress intensity factor KIcS, along with critical crack-tip opening displacements (CTODc) were investigated. Based on the tests, it was found that the total addition of siliceous materials, i.e., SF + nS without FA, increases the strength and fracture parameters of concrete by approximately 40%. On the other hand, supplementing the composition of the binder with SF and nS with 5% of FA additive causes an increase in all mechanical parameters by approximately 10%, whereas an increase by another 10% in the FA content in the concrete mix causes a significant decrease in all the analyzed factors by 10%, compared to the composite with the addition of silica modifiers only.

53 citations


Journal ArticleDOI
TL;DR: In this paper , ground glass powder and crushed waste glass were used to replace coarse and fine aggregates, and significant progress in the tensile strength of the concrete was achieved by 14%, while the waste glass used as a fractional replacement for the fine aggregate.
Abstract: In this study, ground glass powder and crushed waste glass were used to replace coarse and fine aggregates. Within the scope of the study, fine aggregate (FA) and coarse aggregate (CA) were changed separately with proportions of 10%, 20%, 40%, and 50%. According to the mechanical test, including compression, splitting tensile, and flexural tests, the waste glass powder creates a better pozzolanic effect and increases the strength, while the glass particles tend to decrease the strength when they are swapped with aggregates. As observed in the splitting tensile test, noteworthy progress in the tensile strength of the concrete was achieved by 14%, while the waste glass used as a fractional replacement for the fine aggregate. In samples where glass particles were swapped with CA, the tensile strength tended to decrease. It was noticed that with the adding of waste glass at 10%, 20%, 40%, and 50% of FA swapped, the increase in flexural strength was 3.2%, 6.3%, 11.1%, and 4.8%, respectively, in amount to the reference one (6.3 MPa). Scanning electron microscope (SEM) analysis consequences also confirm the strength consequences obtained from the experimental study. While it is seen that glass powder provides better bonding with cement with its pozzolanic effect and this has a positive effect on strength consequences, it is seen that voids are formed in the samples where large glass pieces are swapped with aggregate and this affects the strength negatively. Furthermore, simple equations using existing data in the literature and the consequences obtained from the current study were also developed to predict mechanical properties of the concrete with recycled glass for practical applications. Based on findings obtained from our study, 20% replacement for FA and CA with waste glass is recommended.

51 citations


Journal ArticleDOI
TL;DR: Silver nanoparticles provides an excellent, dependable, and effective solution for seven major concerns: as antibacterial, antiviral, anticancer, bone healing, bone cement, dental applications and wound healing.
Abstract: Silver nanoparticles (AgNPs) have been employed in various fields of biotechnology due to their proven properties as an antibacterial, antiviral and antifungal agent. AgNPs are generally synthesized through chemical, physical and biological approaches involving a myriad of methods. As each approach confers unique advantages and challenges, a trends analysis of literature for the AgNPs synthesis using different types of synthesis were also reviewed through a bibliometric approach. A sum of 10,278 publications were analyzed on the annual numbers of publication relating to AgNPs and biological, chemical or physical synthesis from 2010 to 2020 using Microsoft Excel applied to the Scopus publication database. Furthermore, another bibliometric clustering and mapping software were used to study the occurrences of author keywords on the biomedical applications of biosynthesized AgNPs and a total collection of 224 documents were found, sourced from articles, reviews, book chapters, conference papers and reviews. AgNPs provides an excellent, dependable, and effective solution for seven major concerns: as antibacterial, antiviral, anticancer, bone healing, bone cement, dental applications and wound healing. In recent years, AgNPs have been employed in biomedical sector due to their antibacterial, antiviral and anticancer properties. This review discussed on the types of synthesis, how AgNPs are characterized and their applications in biomedical field.

46 citations


Journal ArticleDOI
TL;DR: In this article , waste glass (WG) was used as a filler material that filled the voids between RCA to offset its negative impact on concrete performance, and a step towards sustainable concrete was made by utilizing recycled concrete aggregate (RCA) as a coarse aggregate.
Abstract: The current practice of concrete is thought to be unsuitable because it consumes large amounts of cement, sand, and aggregate, which causes depletion of natural resources. In this study, a step towards sustainable concrete was made by utilizing recycled concrete aggregate (RCA) as a coarse aggregate. However, researchers show that RCA causes a decrease in the performance of concrete due to porous nature. In this study, waste glass (WG) was used as a filler material that filled the voids between RCA to offset its negative impact on concrete performance. The substitution ratio of WG was 10, 20, or 30% by weight of cement, and RCA was 20, 40, and 60% by weight of coarse aggregate. The slump cone test was used to assess the fresh property, while compressive, split tensile, and punching strength were used to assess the mechanical performance. Test results indicated that the workability of concrete decreased with substitution of WG and RCA while mechanical performance improved up to a certain limit and then decreased due to lack of workability. Furthermore, a statical tool response surface methodology was used to predict various strength properties and optimization of RCA and WG.

43 citations


Journal ArticleDOI
TL;DR: This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules, quantum dots, noble metal NPs, and stimuli-responsive polymers and highlights the recent technological advances achieved from such integrated multifunctional platforms.
Abstract: Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in biomedicine, most practical applications require IONP-based platforms that can perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs with different classes of organic and inorganic materials can produce multifunctional nanoplatforms that can perform several functions simultaneously, allowing their application in a broad spectrum of biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers, and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight the recent technological advances achieved from such integrated multifunctional platforms and their potential use in biomedical applications, including dual-mode imaging for biomolecule detection, targeted drug delivery, photodynamic therapy, chemotherapy, and magnetic hyperthermia therapy.

Journal ArticleDOI
TL;DR: A review of the current state-of-the-art in solid-lubricating materials operating under dry wear conditions can be found in this paper , where the mechanisms of formation and the nature of tribo-films during high-temperature wear are discussed in detail.
Abstract: Understanding the complex nature of wear behavior of materials at high-temperature is of fundamental importance for several engineering applications, including metal processing (cutting, forming, forging), internal combustion engines, etc. At high temperatures (up to 1000 °C), the material removal is majorly governed by the changes in surface reactivity and wear mechanisms. The use of lubricants to minimize friction, wear and flash temperature to prevent seizing is a common approach in engine tribology. However, the degradation of conventional liquid-based lubricants at temperatures beyond 300 °C, in addition to its harmful effects on human and environmental health, is deeply concerning. Solid lubricants are a group of compounds exploiting the benefit of wear diminishing mechanisms over a wide range of operating temperatures. The materials incorporated with solid lubricants are herein called ‘self-lubricating’ materials. Moreover, the possibility to omit the use of conventional liquid-based lubricants is perceived. The objective of the present paper is to review the current state-of-the-art in solid-lubricating materials operating under dry wear conditions. By opening with a brief summary of the understanding of solid lubrication at a high temperature, the article initially describes the recent developments in the field. The mechanisms of formation and the nature of tribo-films (or layers) during high-temperature wear are discussed in detail. The trends and ways of further development of the solid-lubricating materials and their future evolutions are identified.

Journal ArticleDOI
TL;DR: In this article , the authors evaluated the mechanical, durability, and microstructural properties of FA-based concrete and identified potential solutions to the constraints and directed future research toward the application of FA in higher amounts.
Abstract: This study aimed to expand the knowledge on the application of the most common industrial byproduct, i.e., fly ash, as a supplementary cementitious material. The characteristics of cement-based composites containing fly ash as supplementary cementitious material were discussed. This research evaluated the mechanical, durability, and microstructural properties of FA-based concrete. Additionally, the various factors affecting the aforementioned properties are discussed, as well as the limitations associated with the use of FA in concrete. The addition of fly ash as supplementary cementitious material has a favorable impact on the material characteristics along with the environmental benefits; however, there is an optimum level of its inclusion (up to 20%) beyond which FA has a deleterious influence on the composite’s performance. The evaluation of the literature identified potential solutions to the constraints and directed future research toward the application of FA in higher amounts. The delayed early strength development is one of the key downsides of FA use in cementitious composites. This can be overcome by chemical activation (alkali/sulphate) and the addition of nanomaterials, allowing for high-volume use of FA. By utilizing FA as an SCM, sustainable development may promote by lowering CO2 emissions, conserving natural resources, managing waste effectively, reducing environmental pollution, and low hydration heat.

Journal ArticleDOI
TL;DR: In this paper , the compressive and flexural strength of RAC were predicted using ensemble machine learning methods, including gradient boosting and random forest, and the models were validated and compared using correlation coefficients (R2), variance between predicted and experimental results, statistical tests, and k-fold analysis.
Abstract: Compressive and flexural strength are the crucial properties of a material. The strength of recycled aggregate concrete (RAC) is comparatively lower than that of natural aggregate concrete. Several factors, including the recycled aggregate replacement ratio, parent concrete strength, water–cement ratio, water absorption, density of the recycled aggregate, etc., affect the RAC’s strength. Several studies have been performed to study the impact of these factors individually. However, it is challenging to examine their combined impact on the strength of RAC through experimental investigations. Experimental studies involve casting, curing, and testing samples, for which substantial effort, price, and time are needed. For rapid and cost-effective research, it is critical to apply new methods to the stated purpose. In this research, the compressive and flexural strengths of RAC were predicted using ensemble machine learning methods, including gradient boosting and random forest. Twelve input factors were used in the dataset, and their influence on the strength of RAC was analyzed. The models were validated and compared using correlation coefficients (R2), variance between predicted and experimental results, statistical tests, and k-fold analysis. The random forest approach outperformed gradient boosting in anticipating the strength of RAC, with an R2 of 0.91 and 0.86 for compressive and flexural strength, respectively. The models’ decreased error values, such as mean absolute error (MAE) and root-mean-square error (RMSE), confirmed the higher precision of the random forest models. The MAE values for the random forest models were 4.19 MPa and 0.56 MPa, whereas the MAE values for the gradient boosting models were 4.78 MPa and 0.64 MPa, for compressive and flexural strengths, respectively. Machine learning technologies will benefit the construction sector by facilitating the evaluation of material properties in a quick and cost-effective manner.

Journal ArticleDOI
TL;DR: In this paper , the properties and applications of several bio-based polymers in food packaging are investigated, and several types of edible film and coating production technologies are also covered separately; the use of edible films and coatings in the food industry has been examined, and their advantages over traditional materials are also discussed.
Abstract: Food sectors are facing issues as a result of food scarcity, which is exacerbated by rising populations and demand for food. Food is ordinarily wrapped and packaged using petroleum-based plastics such as polyethylene, polyvinyl chloride, and others. However, the excessive use of these polymers has environmental and health risks. As a result, much research is currently focused on the use of bio-based materials for food packaging. Biodegradable polymers that are compatible with food products are used to make edible packaging materials. These can be ingested with food and provide consumers with additional health benefits. Recent research has shifted its focus to multilayer coatings and films-based food packaging, which can provide a material with additional distinct features. The aim of this review article is to investigate the properties and applications of several bio-based polymers in food packaging. The several types of edible film and coating production technologies are also covered separately. Furthermore, the use of edible films and coatings in the food industry has been examined, and their advantages over traditional materials are also discussed.

Journal ArticleDOI
TL;DR: In this article , the compressive strength and splitting tensile strength of concrete containing RCA were predicted using decision tree (DT) and AdaBoost machine learning (ML) techniques, and the data was validated using k-fold cross-validation and the coefficient correlation coefficient (R2), mean square error (MSE), mean absolute error (MAE), and root Mean Square Error values (RMSE).
Abstract: Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhile, construction waste continues to grow at a high rate as older buildings are destroyed and demolished. As a result, the use of recycled materials may contribute to improving the quality of life and preventing environmental damage. Additionally, the application of recycled coarse aggregate (RCA) in concrete is essential for minimizing environmental issues. The compressive strength (CS) and splitting tensile strength (STS) of concrete containing RCA are predicted in this article using decision tree (DT) and AdaBoost machine learning (ML) techniques. A total of 344 data points with nine input variables (water, cement, fine aggregate, natural coarse aggregate, RCA, superplasticizers, water absorption of RCA and maximum size of RCA, density of RCA) were used to run the models. The data was validated using k-fold cross-validation and the coefficient correlation coefficient (R2), mean square error (MSE), mean absolute error (MAE), and root mean square error values (RMSE). However, the model’s performance was assessed using statistical checks. Additionally, sensitivity analysis was used to determine the impact of each variable on the forecasting of mechanical properties.

Journal ArticleDOI
TL;DR: A scientometric review of rice husk ash (RHA) concrete to assess the various aspects of the literature was carried out by as discussed by the authors , where the sources with the most articles, co-occurrence of keywords, the most prolific authors in terms of publications and citations, and areas actively involved in RHA concrete research were identified during the analysis.
Abstract: This study aimed to carry out a scientometric review of rice husk ash (RHA) concrete to assess the various aspects of the literature. Conventional review studies have limitations in terms of their capacity to connect disparate portions of the literature in a comprehensive and accurate manner. Science mapping, co-occurrence, and co-citation are a few of the most difficult phases of advanced research. The sources with the most articles, co-occurrences of keywords, the most prolific authors in terms of publications and citations, and areas actively involved in RHA concrete research are identified during the analysis. The Scopus database was used to extract bibliometric data for 917 publications that were then analyzed using the VOSviewer (version: 1.6.17) application. This study will benefit academics in establishing joint ventures and sharing innovative ideas and strategies because of the statistical and graphical representation of contributing authors and countries.

Journal ArticleDOI
TL;DR: Modern trends in this arena of research are surveyed and the intricacies of new features to guide and prepare the sector for an Industry 5.0-ready healthcare system are summarised.
Abstract: Industry 4.0 in healthcare involves use of a wide range of modern technologies including digitisation, artificial intelligence, user response data (ergonomics), human psychology, the Internet of Things, machine learning, big data mining, and augmented reality to name a few. The healthcare industry is undergoing a paradigm shift thanks to Industry 4.0, which provides better user comfort through proactive intervention in early detection and treatment of various diseases. The sector is now ready to make its next move towards Industry 5.0, but certain aspects that motivated this review paper need further consideration. As a fruitful outcome of this review, we surveyed modern trends in this arena of research and summarised the intricacies of new features to guide and prepare the sector for an Industry 5.0-ready healthcare system.

Journal ArticleDOI
TL;DR: In this paper , the physicochemical properties of transition metal nanoparticles and their properties are discussed and the possible antimicrobial mechanism of these types of nanoparticles is discussed in-depth as well.
Abstract: Several pieces of research have been done on transition metal nanoparticles and their nanocomplexes as research on their physical and chemical properties and their relationship to biological features are of great importance. Among all their biological properties, the antibacterial and antimicrobial are especially important due to their high use for human needs. In this article, we will discuss the different synthesis and modification methods of silver (Ag) and gold (Au) nanoparticles and their physicochemical properties. We will also review some state-of-art studies and find the best relationship between the nanoparticles’ physicochemical properties and potential antimicrobial activity. The possible antimicrobial mechanism of these types of nanoparticles will be discussed in-depth as well.

Journal ArticleDOI
TL;DR: In this article , the authors present a summary of research progress on coconut fiber reinforced concrete and the effects of coconut fibers on the properties of concrete are reviewed, and factors affecting the fresh, hardened, and durability properties of reinforced with coconut fiber are discussed.
Abstract: The push for sustainability in the construction sector has demanded the use of increasingly renewable resources. These natural fibers are biodegradable and non-toxic, and their mechanical capabilities are superior to those of synthetic fibers in terms of strength and durability. A lot of research recommends coconut fibers as an alternative to synthetic fibers. However, the knowledge is scattered, and no one can easily judge the suitability of coconut fibers in concrete. This paper presents a summary of research progress on coconut fiber (natural fibers) reinforced concrete. The effects of coconut fibers on the properties of concrete are reviewed. Factors affecting the fresh, hardened, and durability properties of concrete reinforced with coconut fiber are discussed. Results indicate that coconut fiber improved the mechanical performance of concrete due to crack prevention, similar to the synthetic fibers but decreased the flowability of concrete. However, coconut fibers improved flexure strength more effectively than compressive strength. Furthermore, improvement in some durability performance was also observed, but less information is available in this regard. Moreover, the optimum dose is an important parameter for high-strength concrete. The majority of researchers indicate that 3.0% coconut fiber is the optimum dose. The overall study demonstrates that coconut fibers have the creditability to be used in concrete instead of synthetic fibers.

Journal ArticleDOI
TL;DR: In this article , a back propagation neural network and a Gene Algorithm-Back Propagation (GA-BP) neural network were used to predict the torsional strength of reinforced concrete (RC) beams.
Abstract: Due to the limitation of sample size in predicting the torsional strength of Reinforced Concrete (RC) beams, this paper aims to discuss the feasibility of employing a novel machine learning approach with K-fold cross-validation in a small sample range, which combines the advantages of a Genetic Algorithm (GA) and a Neural Network (NN) to predict the torsional strength of RC beams. This research study not only utilizes the application of a Back Propagation (BP) neural network and the Gene Algorithm-Back Propagation (GA-BP) neural network in the prediction of the torsional strength of the RC beam, but it also investigates neural network parameter optimization, including connection weights and thresholds, using K-fold cross-validation. The root mean square error (RMSE), mean absolute error (MAE), mean square error (MSE), mean absolute percentage error (MAPE) and correlation coefficient (R2) are among the evaluation metrics used to assess the performance of the trained model. To elaborate on the superiority of the proposed network models in predicting the torsional strength of RC beams, a parametric study is conducted by comparing the proposed model to three commonly used empirical formulae from existing design codes. The comparative findings of this research study demonstrate that the performance of the BP neural network is highly similar to that of design codes; however, its accuracy is inadequate. After improving the weights and thresholds by k-fold cross-validation and GA, the prediction of the BP neural network shows higher consistency with the actual measured values. The outcome of this study can be used as a theoretical reference for the optimal design of RC beams in practical applications.

Journal ArticleDOI
TL;DR: In this article , the deformation and skid resistance of asphalt mixture with different content of steel slag was tested and analyzed, and it was found that a low content of slag can effectively improve the resistance to deformation.
Abstract: Steel slag is a main form of solid waste. Using this component to replace part of the aggregate in an asphalt mixture is an effectively way of treating solid waste. To study the performance degradation of asphalt mixture with various content of steel slag under heavy loading, some large-sized basalt hot mixed asphalt mixture (BHMA) and steel slag hot mixed asphalt mixture (SHMA) in a form of specimens were prepared and a heavy loading wheel tracking test was conducted. The aggregate characteristics of basalt and steel slag were measured. The deformation and skid resistance of the asphalt mixture with different content of steel slag was tested and analyzed. Due to the particle characteristics of steel slag aggregate, it was found that a low content of steel slag can effectively improve the resistance to deformation and skid resistance of the asphalt mixture under heavy loading. The response of SHMA can still meet the pavement technical requirement after long-term heavy loading service. The main change in the mixture under heavy loading is the crushing of the 9.5–16 mm aggregate, and the content of this part also significantly affects the deformation. This study explains the mechanism of degradation of SHMA under heavy loading: the large aggregate is crushed and forms a new aggregate skeleton structure.

Journal ArticleDOI
TL;DR: In this article , the authors present a multi-perspective approach to industrial hemp as a resource delivering textile fibres and extensively explore the current development of hemp fibre processes including methods of fibre extraction and processing and comprehensive fibre characteristics to indicate the challenges and opportunities regarding Cannabis sativa L.
Abstract: Over the last several decades, Cannabis sativa L. has become one of the most fashionable plants. To use the hemp potential for the development of a sustainable textile bio-product sector, it is necessary to learn about the effect of the processes creating hemp's value chain on fibre properties. This review presents a multi-perspective approach to industrial hemp as a resource delivering textile fibres. This article extensively explores the current development of hemp fibre processes including methods of fibre extraction and processing and comprehensive fibre characteristics to indicate the challenges and opportunities regarding Cannabis sativa L. Presented statistics prove the increasing interest worldwide in hemp raw material and hemp-based bio-products. This article discusses the most relevant findings in terms of the effect of the retting processes on the composition of chemical fibres resulting in specific fibre properties. Methods of fibre extraction include dew retting, water retting, osmotic degumming, enzymatic retting, steam explosion and mechanical decortication to decompose pectin, lignin and hemicellulose to remove them from the stem with varying efficiency. This determines further processes and proves the diversity of ways to produce yarn by employing different spinning systems such as linen spinning, cotton and wool spinning technology with or without the use of the decortication process. The aim of this study is to provide knowledge for better understanding of the textile aspects of hemp fibres and their relationship to applied technological processes.

Journal ArticleDOI
TL;DR: In this paper , the essential physical and mechanical properties of polylactic acid (PLA) have been examined for the development of composites, biocomposites, films, porous gels, and so on.
Abstract: Composite materials are emerging as a vital entity for the sustainable development of both humans and the environment. Polylactic acid (PLA) has been recognized as a potential polymer candidate with attractive characteristics for applications in both the engineering and medical sectors. Hence, the present article throws lights on the essential physical and mechanical properties of PLA that can be beneficial for the development of composites, biocomposites, films, porous gels, and so on. The article discusses various processes that can be utilized in the fabrication of PLA-based composites. In a later section, we have a detailed discourse on the various composites and nanocomposites-based PLA along with the properties’ comparisons, discussing our investigation on the effects of various fibers, fillers, and nanofillers on the mechanical, thermal, and wear properties of PLA. Lastly, the various applications in which PLA is used extensively are discussed in detail.

Journal ArticleDOI
TL;DR: A review of recent developments in research and design practice related to Fe-SMA can be found in this paper , where basic mechanical properties are presented and compared with conventional structural steel, and some necessary explanations are given on the metallographic transformation mechanism.
Abstract: As a promising candidate in the construction industry, iron-based shape memory alloy (Fe-SMA) has attracted lots of attention in the engineering and metallography communities because of its foreseeable benefits including corrosion resistance, shape recovery capability, excellent plastic deformability, and outstanding fatigue resistance. Pilot applications have proved the feasibility of Fe-SMA as a highly efficient functional material in the construction sector. This paper provides a review of recent developments in research and design practice related to Fe-SMA. The basic mechanical properties are presented and compared with conventional structural steel, and some necessary explanations are given on the metallographic transformation mechanism. Newly emerged applications, such as Fe-SMA-based prestressing/strengthening techniques and seismic-resistant components/devices, are discussed. It is believed that Fe-SMA offers a wide range of applications in the construction industry but there still remains problems to be addressed and areas to be further explored. Some research needs at material-level, component-level, and system-level are highlighted in this paper. With the systematic information provided, this paper not only benefits professionals and researchers who have been working in this area for a long time and wanting to gain an in-depth understanding of the state-of-the-art, but also helps enlighten a wider audience intending to get acquainted with this exciting topic.

Journal ArticleDOI
TL;DR: In this paper , a 10% weight replacement of class F fly ash was used in the place of cement to reduce the high cement content of lightweight concrete, and the impact of steel fiber addition on the compressive strength and flexural features of sustainable concrete was investigated.
Abstract: The construction industry relies heavily on concrete as a building material. The coarse aggregate makes up a substantial portion of the volume of concrete. However, the continued exploitation of granite rock for coarse aggregate results in an increase in the future generations’ demand for natural resources. In this investigation, coconut shell was used in the place of conventional aggregate to produce coconut shell lightweight concrete. Class F fly ash was used as a partial substitute for cement to reduce the high cement content of lightweight concrete. The impact of steel fiber addition on the compressive strength and flexural features of sustainable concrete was investigated. A 10% weight replacement of class F fly ash was used in the place of cement. Steel fiber was added at 0.25, 0.5, 0.75, and 1.0% of the concrete volume. The results revealed that the addition of steel fibers enhanced the compressive strength by up to 39%. The addition of steel fiber to reinforced coconut shell concrete beams increased the ultimate moment capacity by 5–14%. Flexural toughness was increased by up to 45%. The span/deflection ratio of all fiber-reinforced coconut shell concrete beams met the IS456 and BS 8110 requirements. Branson’s and the finite element models developed in this study agreed well with the experimental results. As a result, coconut shell concrete with steel fiber could be considered as a viable and environmentally-friendly construction material.

Journal ArticleDOI
TL;DR: In this paper , the essential properties of 2D photocatalysts and the recent advances in the theoretical engineering of two-dimensional materials for the improvement in photocatalysis overall water-splitting are summarized.
Abstract: Splitting of water with the help of photocatalysts has gained a strong interest in the scientific community for producing clean energy, thus requiring novel semiconductor materials to achieve high-yield hydrogen production. The emergence of 2D nanoscale materials with remarkable electronic and optical properties has received much attention in this field. Owing to the recent developments in high-end computation and advanced electronic structure theories, first principles studies offer powerful tools to screen photocatalytic systems reliably and efficiently. This review is organized to highlight the essential properties of 2D photocatalysts and the recent advances in the theoretical engineering of 2D materials for the improvement in photocatalytic overall water-splitting. The advancement in the strategies including (i) single-atom catalysts, (ii) defect engineering, (iii) strain engineering, (iv) Janus structures, (v) type-II heterostructures (vi) Z-scheme heterostructures (vii) multilayer configurations (viii) edge-modification in nanoribbons and (ix) the effect of pH in overall water-splitting are summarized to improve the existing problems for a photocatalytic catalytic reaction such as overcoming large overpotential to trigger the water-splitting reactions without using cocatalysts. This review could serve as a bridge between theoretical and experimental research on next-generation 2D photocatalysts.

Journal ArticleDOI
TL;DR: A review of the state-of-the-art related to the synthesis and applications of popular nanoparticles in medicine, with a focus on their use, e.g., in COVID-19 vaccines is presented in this paper .
Abstract: Currently, carriers of active ingredients in the form of particles of a size measured in nanometers are the focus of interest of research centers worldwide. So far, submicrometer emulsions, liposomes, as well as microspheres, and nanospheres made of biodegradable polymers have been used in medicine. Recent studies show particular interest in nanoparticles based on lipids, and at the present time, are even referred to as the “era of lipid carriers”. With the passage of time, lipid nanoparticles of the so-called first and second generation, SLN (Solid Lipid Nanoparticles) and nanostructured lipid carriers and NLC (Nanostructured Lipid Carriers), respectively, turned out to be an alternative for all imperfections of earlier carriers. These carriers are characterized by a number of beneficial functional properties, including, among others, structure based on lipids well tolerated by the human body, high stability, and ability to carry hydro- and lipophilic compounds. Additionally, these carriers can enhance the distribution of the drug in the target organ and alter the pharmacokinetic properties of the drug carriers to enhance the medical effect and minimize adverse side effects. This work is focused on the current review of the state-of-the-art related to the synthesis and applications of popular nanoparticles in medicine, with a focus on their use, e.g., in COVID-19 vaccines.

Journal ArticleDOI
TL;DR: In this paper , the authors explore various scenarios of the related mechanism in the case of metallized perovskite solar cells, which operate as hybrid chemical cells without p-n junctions, in contrast to conventional cells such as Si, CIGS or thin-layer semiconductor cells.
Abstract: The application of metallic nanoparticles leads to an increase in the efficiency of solar cells due to the plasmonic effect. We explore various scenarios of the related mechanism in the case of metallized perovskite solar cells, which operate as hybrid chemical cells without p-n junctions, in contrast to conventional cells such as Si, CIGS or thin-layer semiconductor cells. The role of metallic nano-components in perovskite cells is different than in the case of p-n junction solar cells and, in addition, the large forbidden gap and a large effective masses of carriers in the perovskite require different parameters for the metallic nanoparticles than those used in p-n junction cells in order to obtain the increase in efficiency. We discuss the possibility of activating the very poor optical plasmonic photovoltaic effect in perovskite cells via a change in the chemical composition of the perovskite and through special tailoring of metallic admixtures. Here we show that it is possible to increase the absorption of photons (optical plasmonic effect) and simultaneously to decrease the binding energy of excitons (related to the inner electrical plasmonic effect, which is dominant in perovskite cells) in appropriately designed perovskite structures with multishell elongated metallic nanoparticles to achieve an increase in efficiency by means of metallization, which is not accessible in conventional p-n junction cells. We discuss different methods for the metallization of perovskite cells against the background of a review of various attempts to surpass the Shockley-Queisser limit for solar cell efficiency, especially in the case of the perovskite cell family.

Journal ArticleDOI
TL;DR: In this article , the mainstay of corrosion inhibitors studies involved, including the corrosion and inhibition mechanism of carbon steel/HCl solution systems, evaluation methods of corrosion inhibition efficiency, adsorption isotherm models, adaption thermodynamic parameters QC calculations, MD/MC simulations, and the main characterization techniques used.
Abstract: Most studies on the corrosion inhibition performance of organic molecules and (nano)materials were conducted within “carbon steel/1.0 M HCl” solution system using similar experimental and theoretical methods. As such, the numerous research findings in this system are sufficient to conduct comparative studies to select the best-suited inhibitor type that generally refers to a type of inhibitor with low concentration/high inhibition efficiency, nontoxic properties, and a simple and cost-economic synthesis process. Before data collection, to help readers have a clear understanding of some crucial elements for the evaluation of corrosion inhibition performance, we introduced the mainstay of corrosion inhibitors studies involved, including the corrosion and inhibition mechanism of carbon steel/HCl solution systems, evaluation methods of corrosion inhibition efficiency, adsorption isotherm models, adsorption thermodynamic parameters QC calculations, MD/MC simulations, and the main characterization techniques used. In the classification and statistical analysis section, organic compounds or (nano)materials as corrosion inhibitors were classified into six types according to their molecular structural characteristics, molecular size, and compound source, including drug molecules, ionic liquids, surfactants, plant extracts, polymers, and polymeric nanoparticles. We outlined the important conclusions obtained from recent literature and listed the evaluation methods, characterization techniques, and contrastable experimental data of these types of inhibitors when used for carbon steel corrosion in 1.0 M HCl solution. Finally, statistical analysis was only performed based on these data from carbon steel/1.0 M HCl solution system, from which some conclusions can contribute to reducing the workload of the acquisition of useful information and provide some reference directions for the development of new corrosion inhibitors.