scispace - formally typeset
Search or ask a question
JournalISSN: 0021-4434

Materials Transactions 

Japan Institute of Metals and Materials
About: Materials Transactions is an academic journal. The journal publishes majorly in the area(s): Alloy & Microstructure. It has an ISSN identifier of 0021-4434. It is also open access. Over the lifetime, 8360 publications have been published receiving 109617 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the atomic size difference, heat of mixing (H mix), and period of the constituent elements in the periodic table were classified according to the atomic sizes of the BMGs discovered to date.
Abstract: Bulk metallic glasses (BMGs) have been classified according to the atomic size difference, heat of mixing (� H mix ) and period of the constituent elements in the periodic table. The BMGs discovered to date are classified into seven groups on the basis of a previous result by Inoue. The seven groups are as follows: (G-I) ETM/Ln-LTM/BM-Al/Ga, (G-II) ETM/Ln-LTM/BM-Metalloid, (G-III) Al/Ga-LTM/BMMetalloid, (G-IV) IIA-ETM/Ln-LTM/BM, (G-V) LTM/BM-Metalloid, (G-VI) ETM/Ln-LTM/BM and (G-VII) IIA-LTM/BM, where ETM, Ln, LTM, BM and IIA refer to early transition, lanthanide, late transition, group IIIB–IVB and group IIA-group metals, respectively. The main alloying element of ternary G-I, G-V and G-VII, ternary G-II and G-IV, and ternary G-VI BMGs is the largest, intermediate and smallest atomic radius compared to the other alloying elements, respectively. The main alloying element of ternary BMGs belonging to G-I, G-V, G-VI and G

2,983 citations

Journal ArticleDOI
TL;DR: In this paper, the RS P/M alloys exhibited excellent elevated-temperature yield strength that was 510 MPa at 423 K. The specific tensile yield strength was four times as high as that of a commercial AZ91-T6 alloy, and was higher than those of conventional titanium (Ti-6Al-4V) and aluminum (7075-T 6) alloys.
Abstract: Nanocrystalline magnesium alloys having high tensile strength, high elevated-temperature tensile strength, high-strain-rate superplasticity and high thermal stability have been developed in Mg 97 Zn 1 Y 2 (at% I alloy by rapidly solidified powder metallurgy (RS P/M) processing. The tensile yield strength and elongation that were dependent on the consolidation temperature were in the ranges of 480 to 610MPa and 5 to 16%, respectively. Young's modulus of the RS P/M alloy was 45 GPa. The specific tensile yield strength was four times as high as that of a commercial AZ91-T6 alloy, and was higher than those of conventional titanium (Ti-6Al-4V) and aluminum (7075-T6) alloys. The RS P/M alloys exhibited excellent elevated-temperature yield strength that was 510 MPa at 423 K. The RS P/M alloy also exhibited high-strain-rate superplasticity at a wide strain-rate range from I × 10 - to I × 10 0 s -1 and at a low temperature of 623 K. It is expected that the Mg 97 Zn 1 Y 2 RS P/M alloy can he applied in some fields that requires simultaneously the high specific strength at ambient and elevated temperatures and high workability.

908 citations

Journal ArticleDOI
TL;DR: The aged-rejuvenation-glue-liquid (ARGL) shear band model has been proposed for metallic glasses based on small-scale molecular dynamics simulations up to 20,000 atoms and thermomechanical analysis as mentioned in this paper.
Abstract: The aged-rejuvenation-glue-liquid (ARGL) shear band model has been proposed for metallic glasses (Acta Mater. 54 (2006) 4293), based on small-scale molecular dynamics simulations up to 20,000 atoms and thermomechanical analysis. The model predicts the existence of a critical lengthscale � 10 nm, above which melting could occur in shear-alienated glass. Large-scale molecular dynamics simulations with up to 5 million atoms have directly verified this prediction. When the applied stress exceeds the glue traction (computed separately before in a shear cohesive zone, or an amorphous-amorphous ‘‘generalized stacking fault energy’’ calculation), we indeed observe maturation of the shear band embryo into bona fide shear crack, accompanied by melting. In contrast, when the applied stress is below the glue traction, the shear band embryo does not propagate, becomes diffuse, and eventually dies. Thus this all-important quantity, the glue traction which is a property of shearalienated glass, controls the macroscopic yield point of well-aged glass. We further suggest that the disruption of chemical short-range order (‘‘chemical softening’’) governs the glue traction microscopically. Catastrophic thermal softening occurs only after chemical alienation and softening in our simulation, after the shear band embryo has already run a critical length. [doi:10.2320/matertrans.MJ200769]

843 citations

Journal ArticleDOI
TL;DR: In this paper, the formation and mechanical properties of Mg 97 Zn 1 RE 2 alloys with long-period stacking ordered (LPSO) structures were investigated by examining RE = Y, La, Ce, Pr, Sm, Nd, Dy, Ho, Er, Gd, Tb and Tm LPSO structures.
Abstract: We investigated the formation and mechanical properties of Mg 97 Zn 1 RE 2 alloys with long-period stacking ordered (LPSO) structures by examining RE = Y, La, Ce, Pr, Sm, Nd, Gd, Dy, Ho, Er, Tb, Tm and Yb The LPSO phase developed for RE = Y, Dy, Ho, Er, Gd, Tb and Tm LPSO Mg-Zn-RE alloys are either type I, in which the LPSO phase forms during solidification: Mg-Zn-Y, Mg-Zn-Dy, Mg-Zn-Ho, Mg-Zn-Er and Mg-Zn-Tm, or type II, in which the LPSO phase is nonexistent in as-cast ingots but precipitates with soaking at 773 K: Mg-Zn-Gd and Mg-Zn-Tb The criteria for REs that form an LPSO phase in Mg-Zn-RE alloys are discussed Mg-Zn-RE alloys with an LPSO phase, which were worked by hot extrusion, include high strength both at ambient and elevated temperatures, and good ductility Their tensile yield strength, ultimate strength and elongation were 342-377 MPa, 372-410MPa and 3-9%, respectively at ambient temperature, and 292-310MPa, 322-345 MPa and 4-13% at 473 K The LPSO Mg-Zn-RE alloys are promising candidates for lightweight structural materials

427 citations

Journal ArticleDOI
TL;DR: The main Aluminium applications as state-of-the-art in European cars are presented in this article and new studies and innovative multi-material concepts are discussed where Aluminium light-weight solutions are compared with that of other materials, like new steels, magnesium, plastics and composites.
Abstract: The main Aluminium applications as state-of-the-art in European cars are presented. The main established Aluminium alloys and their application in automotive parts are presented together with recent developments. Also new studies and innovative multi-material concepts are discussed where Aluminium light-weight solutions are compared with that of other materials, like new steels, magnesium, plastics and composites. In the “SLC” (Super-Light-Car) project these new concepts were tested in a multi-material body-in-white prototype for a VW Golf V car, reaching a 34% weight reduction within a cost increment of 7,8 €/kg saved, with suitable technologies for high volume assembly cycles. In the final SLC concept Aluminium is the material of choice, proving its leading role in innovative light-weighting of cars. Aluminium achieves weight savings of parts up to 50% while maintaining safety and performance in a cost efficient way, competing efficiently with other light-weight materials.

380 citations

Network Information
Related Journals (5)
Scripta Materialia
14.1K papers, 542.8K citations
88% related
Isij International
10K papers, 188.2K citations
86% related
Acta Materialia
17.2K papers, 1.1M citations
85% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202180
2020209
2019280
2018256
2017305
2016345