Journal•ISSN: 0025-5718
Mathematics of Computation
About: Mathematics of Computation is an academic journal. The journal publishes majorly in the area(s): Finite element method & Boundary value problem. It has an ISSN identifier of 0025-5718. Over the lifetime, 7817 publication(s) have been published receiving 442111 citation(s). The journal is also known as: Math. Comp..
Topics: Finite element method, Boundary value problem, Numerical analysis, Partial differential equation, Discretization
Papers published on a yearly basis
Papers
More filters
TL;DR: Good generalized these methods and gave elegant algorithms for which one class of applications is the calculation of Fourier series, applicable to certain problems in which one must multiply an N-vector by an N X N matrix which can be factored into m sparse matrices.
Abstract: An efficient method for the calculation of the interactions of a 2' factorial ex- periment was introduced by Yates and is widely known by his name. The generaliza- tion to 3' was given by Box et al. (1). Good (2) generalized these methods and gave elegant algorithms for which one class of applications is the calculation of Fourier series. In their full generality, Good's methods are applicable to certain problems in which one must multiply an N-vector by an N X N matrix which can be factored into m sparse matrices, where m is proportional to log N. This results inma procedure requiring a number of operations proportional to N log N rather than N2. These methods are applied here to the calculation of complex Fourier series. They are useful in situations where the number of data points is, or can be chosen to be, a highly composite number. The algorithm is here derived and presented in a rather different form. Attention is given to the choice of N. It is also shown how special advantage can be obtained in the use of a binary computer with N = 2' and how the entire calculation can be performed within the array of N data storage locations used for the given Fourier coefficients. Consider the problem of calculating the complex Fourier series N-1 (1) X(j) = EA(k)-Wjk, j = 0 1, * ,N- 1, k=0
10,975 citations
9,152 citations
5,446 citations
TL;DR: The question of primitive points on an elliptic curve modulo p is discussed, and a theorem on nonsmoothness of the order of the cyclic subgroup generated by a global point is given.
Abstract: We discuss analogs based on elliptic curves over finite fields of public key cryptosystems which use the multiplicative group of a finite field. These elliptic curve cryptosystems may be more secure, because the analog of the discrete logarithm problem on elliptic curves is likely to be harder than the classical discrete logarithm problem, especially over GF(2'). We discuss the question of primitive points on an elliptic curve modulo p, and give a theorem on nonsmoothness of the order of the cyclic subgroup generated by a global point.
5,001 citations
4,700 citations