scispace - formally typeset
Search or ask a question

Showing papers in "Medical & Biological Engineering & Computing in 2007"


Journal ArticleDOI
TL;DR: The kinematics, the control and the therapy modes of the arm therapy robot ARMin are presented, assumed that the patient-cooperative therapy approach combined with a multimodal display can increase the patient’s motivation and activity and, therefore, the therapeutic progress.
Abstract: Task-oriented, repetitive and intensive arm training can enhance arm rehabilitation in patients with paralyzed upper extremities due to lesions of the central nervous system. There is evidence that the training duration is a key factor for the therapy progress. Robot-supported therapy can improve the rehabilitation allowing more intensive training. This paper presents the kinematics, the control and the therapy modes of the arm therapy robot ARMin. It is a haptic display with semi-exoskeleton kinematics with four active and two passive degrees of freedom. Equipped with position, force and torque sensors the device can deliver patient-cooperative arm therapy taking into account the activity of the patient and supporting him/her only as much as needed. The haptic display is combined with an audiovisual display that is used to present the movement and the movement task to the patient. It is assumed that the patient-cooperative therapy approach combined with a multimodal display can increase the patient's motivation and activity and, therefore, the therapeutic progress.

386 citations


Journal ArticleDOI
TL;DR: The pre-processing of ultrasound images of the carotid artery with normalization and speckle reduction, followed by the snakes segmentation algorithm can be used successfully in the measurement of IMT complementing the manual measurements.
Abstract: Ultrasound measurements of the human carotid artery walls are conventionally obtained by manually tracing interfaces between tissue layers. In this study we present a snakes segmentation technique for detecting the intima-media layer of the far wall of the common carotid artery (CCA) in longitudinal ultrasound images, by applying snakes, after normalization, speckle reduction, and normalization and speckle reduction. The proposed technique utilizes an improved snake initialization method, and an improved validation of the segmentation method. We have tested and clinically validated the segmentation technique on 100 longitudinal ultrasound images of the carotid artery based on manual measurements by two vascular experts, and a set of different evaluation criteria based on statistical measures and univariate statistical analysis. The results showed that there was no significant difference between all the snakes segmentation measurements and the manual measurements. For the normalized despeckled images, better snakes segmentation results with an intra-observer error of 0.08, a coefficient of variation of 12.5%, best Bland–Altman plot with smaller differences between experts (0.01, 0.09 for Expert1 and Expert 2, respectively), and a Hausdorff distance of 5.2, were obtained. Therefore, the pre-processing of ultrasound images of the carotid artery with normalization and speckle reduction, followed by the snakes segmentation algorithm can be used successfully in the measurement of IMT complementing the manual measurements. The present results are an expansion of data published earlier as an extended abstract in IFMBE Proceedings (Loizou et al. IEEE Int X Mediterr Conf Medicon Med Biol Eng POS-03 499:1–4, 2004).

230 citations


Journal ArticleDOI
TL;DR: The theoretical background of the LDF technique is described and novel approaches of velocity components are introduced, providing the determination of the velocities relative contribution in physiologically relevant units (mm/s).
Abstract: Laser Doppler flowmetry (LDF) is a non invasive method enabling the monitoring of microvascular blood flow, a very important marker of tissue health. This article gives an overview on the concept of LDF for microvascular perfusion monitoring and imaging. It first describes the theoretical background of the technique. Then, the benefits of LDF signal processing are shown through clinical examples: use of time–frequency representations and wavelets. Afterwards, the paper introduces novel approaches of velocity components. For that purpose, a work providing the determination of the velocities relative contribution in physiologically relevant units (mm/s) is presented. Imaging perfusion is also reviewed through methods based on laser speckle. The most prominent disadvantage of the latter devices being the time needed to produce a perfusion image, solutions are proposed in the last part of the paper.

174 citations


Journal ArticleDOI
TL;DR: Taking advantage of the safety and compact size of LED devices, it is expected that the UVA-LED sterilization device can be developed as a new type of water sterilization devices.
Abstract: Ultraviolet (UV) irradiation is an effective disinfection method. In sterilization equipment, a low-pressure mercury lamp emitting an effective germicidal UVC (254 nm) is used as the light source. However, the lamp, which contains mercury, must be disposed of at the end of its lifetime or following damage due to physical shock or vibration. We investigated the suitability of an ultraviolet light-emitting diode at an output wavelength of 365 nm (UVA-LED) as a sterilization device, comparing with the other wavelength irradiation such as 254 nm (a low-pressure mercury lam) and 405 nm (LED). We used a commercially available UVA-LED that emitted light at the shortest wavelength and at the highest output energy. The new sterilization system using the UVA-LED was able to inactivate bacteria, such as Escherichia coli DH5α, Enteropathogenic E. coli, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella enterica serovar Enteritidis. The inactivations of the bacteria were dependent on the accumulation of UVA irradiation. Taking advantage of the safety and compact size of LED devices, we expect that the UVA-LED sterilization device can be developed as a new type of water sterilization device

159 citations


Journal ArticleDOI
TL;DR: The latest tissue engineering approaches used to give the favourable properties of mechanical strength, arterial compliance, low thrombogenicity, long-term resistance towards biodegradation as well as technological advances which shorten the time required for production of an implantable graft are reviewed.
Abstract: The multiple demands placed on small calibre cardiovascular bypass grafts have meant that a synthetic prosthesis with good long-term patency has not been developed. A tissue-engineered graft could fulfil the ideal characteristics present in an artery. However, the great disadvantage of such a conduit is the time necessary for maturation leading to unacceptable delays once the decision to intervene surgically has been made. This maturation process is essential to produce a graft which can withstand haemodynamic stress. Once implanted, the tissue-engineered graft can contract in response to immediate haemodynamic conditions and remodel in the long term. We review the latest tissue engineering approaches used to give the favourable properties of mechanical strength, arterial compliance, low thrombogenicity, long-term resistance towards biodegradation as well as technological advances which shorten the time required for production of an implantable graft.

141 citations


Journal ArticleDOI
TL;DR: It is postulate that the approach, applied during the acute post-stroke phase, facilitates motor re-learning and improves functional recovery.
Abstract: We present a virtual reality (VR)-based motor neurorehabilitation system for stroke patients with upper limb paresis. It is based on two hypotheses: (1) observed actions correlated with self-generated or intended actions engage cortical motor observation, planning and execution areas (“mirror neurons”); (2) activation in damaged parts of motor cortex can be enhanced by viewing mirrored movements of non-paretic limbs. We postulate that our approach, applied during the acute post-stroke phase, facilitates motor re-learning and improves functional recovery. The patient controls a first-person view of virtual arms in tasks varying from simple (hitting objects) to complex (grasping and moving objects). The therapist adjusts weighting factors in the non-paretic limb to move the paretic virtual limb, thereby stimulating the mirror neuron system and optimizing patient motivation through graded task success. We present the system’s neuroscientific background, technical details and preliminary results.

115 citations


Journal ArticleDOI
TL;DR: Distinction between normal pressure hydrocephalus and differential diagnoses, prediction of clinical response to shunting and the possibility of assessment of shunt function in vivo are the three most important applications of infusion studies in clinical practice.
Abstract: The brain and the spinal cord are contained in a cavity and are surrounded by cerebrospinal fluid (CSF), which provides physical support for the brain and a cushion against external pressure. Hydrocephalus is a disease, associated with disturbances in the CSF dynamics, which can be surgically treated by inserting a shunt or third ventriculostomy. This review describes the physiological background, modeling and mathematics, and the investigational methods for determining the CSF dynamic properties, with specific focus on the CSF outflow resistance, R out. A model of the cerebrospinal fluid dynamic system, with a pressure-independent R out, a pressure-dependent compliance and a constant formation rate of CSF is widely accepted. Using mathematical expressions calculated from the model, along with active infusion of artificial CSF and observation of corresponding change in ICP allows measurements of CSF dynamics. Distinction between normal pressure hydrocephalus and differential diagnoses, prediction of clinical response to shunting and the possibility of assessment of shunt function in vivo are the three most important applications of infusion studies in clinical practice.

115 citations


Journal ArticleDOI
TL;DR: The electrical properties of conductive yarns and textile electrodes in contact with human skin, thus representing a real ECG-registration situation, are investigated and electrodes of type A are recommended to use in intelligent textile medical applications.
Abstract: Clothing with conductive textiles for health care applications has in the last decade been of an upcoming research interest. An advantage with the technique is its suitability in distributed and home health care. The present study investigates the electrical properties of conductive yarns and textile electrodes in contact with human skin, thus representing a real ECG-registration situation. The yarn measurements showed a pure resistive characteristic proportional to the length. The electrodes made of pure stainless steel (electrode A) and 20% stainless steel/80% polyester (electrode B) showed acceptable stability of electrode potentials, the stability of A was better than that of B. The electrode made of silver plated copper (electrode C) was less stable. The electrode impedance was lower for electrodes A and B than that for electrode C. From an electrical properties point of view we recommend to use electrodes of type A to be used in intelligent textile medical applications.

110 citations


Journal ArticleDOI
TL;DR: The improved capability of this equation to model the experimental data compared to its previously disclosed isotropic version suggests that the assumption on the fourth invariant in the constitutive equation is probably correct and that anisotropy properties of liver tissue should be considered in surgical simulation.
Abstract: Knowledge of the biomechanical properties of soft tissue, such as liver, is important in modelling computer aided surgical procedures. Liver tissue does not bear mechanical loads, and, in numerical simulation research, is typically assumed to be isotropic. Nevertheless, a typical biological soft tissue is anisotropic. In vitro uniaxial tension and compression experiments were conducted on porcine cylindrical and cubical liver tissue samples respectively assuming a simplistic architecture of liver tissue with its constituent lobule and connective tissues components. With the primary axis perpendicular to the cross sectional surface of samples, the tissue is stiffer with tensile or compressive force in the axial direction compared to that of the transverse direction. At 20% strain, about twice as much force is required to elongate a longitudinal tissue sample than that of a transverse sample. Results of the study suggest that liver tissue is transversely isotropic. A combined strain energy based constitutive equation for transversely isotropic material is proposed. The improved capability of this equation to model the experimental data compared to its previously disclosed isotropic version suggests that the assumption on the fourth invariant in the constitutive equation is probably correct and that anisotropy properties of liver tissue should be considered in surgical simulation.

102 citations


Journal ArticleDOI
TL;DR: It is found that contouring the detection surface and adding a more adhesive double-sided tape were effective in increasing the forces needed to disrupt the electrical contact between the electrodes and the skin for both dry skin and wet skin conditions.
Abstract: This study compared the performance of surface electromyographic (sEMG) sensors for different detection conditions affecting the electro-mechanical stability between the sensor and its contact with the skin. These comparisons were made to gain a better understanding of how specific characteristics of sensor design and use may alter the ability of sEMG sensors to detect signals with high fidelity under conditions of vigorous activity. The first part of the study investigated the effect of different detection surface contours and adhesive tapes on the ability of the sensor to remain in electrical contact with the skin. The second part of the study investigated the effects of different skin preparations and hydrophilic gels on the production of movement artifact resulting from sinusoidal and impact mechanical perturbations. Both parts of the study evaluated sensor performance under dry skin and wet skin (from perspiration) conditions. We found that contouring the detection surface and adding a more adhesive double-sided tape were effective in increasing the forces needed to disrupt the electrical contact between the electrodes and the skin for both dry skin and wet skin conditions. The mechanical perturbation tests demonstrated that hydrophilic gel applied to the detection surface of the sensor produced greater movement artifacts compared to sensors without gel, particularly when the sensors were tested under conditions in which perspiration was present on the skin. The use of a surfactant skin preparation did not influence the amount of movement artifacts that resulted from either the sinusoidal or impact perturbations. The importance of these findings is discussed in terms of their implications for improving sEMG signal fidelity through sensor design modifications and procedures for interfacing them with the skin.

99 citations


Journal ArticleDOI
TL;DR: Details are presented of a low cost augmented-reality system for the simulation of ultrasound guided needle insertion procedures (tissue biopsy, abscess drainage, nephrostomy etc.) for interventional radiology education and training.
Abstract: Details are presented of a low cost augmented-reality system for the simulation of ultrasound guided needle insertion procedures (tissue biopsy, abscess drainage, nephrostomy etc.) for interventional radiology education and training. The system comprises physical elements; a mannequin, a mock ultrasound probe and a needle, and software elements; generating virtual ultrasound anatomy and allowing data collection. These two elements are linked by a pair of magnetic 3D position sensors. Virtual anatomic images are generated based on anatomic data derived from full body CT scans of live humans. Details of the novel aspects of this system are presented including; image generation, registration and calibration.

Journal ArticleDOI
TL;DR: In this review, an overview is given of the progress made in cardiac cell modelling, with particular emphasis on the development of sinoatrial (SA) nodal cell models.
Abstract: Over the past decades patch-clamp experiments have provided us with detailed information on the different types of ion channels that are present in the cardiac cell membrane. Sophisticated cardiac cell models based on these data can help us understand how the different types of ion channels act together to produce the cardiac action potential. In the field of biological pacemaker engineering, such models provide important instruments for the assessment of the functional implications of changes in density of specific ion channels aimed at producing stable pacemaker activity. In this review, an overview is given of the progress made in cardiac cell modelling, with particular emphasis on the development of sinoatrial (SA) nodal cell models. Also, attention is given to the increasing number of publicly available tools for non-experts in computer modelling to run cardiac cell models.

Journal ArticleDOI
TL;DR: Results show that 3D reconstructions obtained with the new system using uncalibrated X-ray images yield geometrically accurate models with insignificant differences for 2D and 3D clinical indexes commonly used in the evaluation of spinal deformities.
Abstract: This paper presents a three-dimensional (3D) reconstruction system of the human spine for the routine evaluation of musculoskeletal pathologies like idiopathic scoliosis. The main objective of this 3D reconstruction system is to offer a versatile and robust tool for the 3D analysis of spines in any healthcare centre with standard clinical setup using standard uncalibrated radiographic images. The novel system uses a self-calibration algorithm and a weak-perspective method to reconstruct the 3D coordinates of anatomical landmarks from bi-planar radiographic images of a patient’s trunk. Additionally, a small planar object of known dimensions is proposed to warrant an accurately scaled model of the spine. In order to assess the validity of the 3D reconstructions yielded by the proposed system, a clinical study using 60 pairs of digitized X-rays of adolescents was conducted. The subject cohort in the study group was composed of 51 scoliotic and 9 non-scoliotic patients, with an average Cobb angle on the frontal plane of 25°. For each case, a 3D reconstruction of the spine and pelvis was obtained with the previous system used at our hospital (which requires a positioning apparatus and a calibration jacket), and with the proposed method. Results show that 3D reconstructions obtained with the new system using uncalibrated X-ray images yield geometrically accurate models with insignificant differences for 2D and 3D clinical indexes commonly used in the evaluation of spinal deformities. This demonstrates the system to be a viable and accurate tool for clinical studies and biomechanical analysis purposes, with the added advantage of versatility to any clinical setup for routine follow-ups and surgical planning.

Journal ArticleDOI
TL;DR: A genetic algorithm has been used to find the best combination of the features with the aforementioned classifiers and led to dramatic reduction of the classification error and also best results in the four subjects.
Abstract: In this paper, a comparative evaluation of state-of-the art feature extraction and classification methods is presented for five subjects in order to increase the performance of a cue-based Brain-Computer interface (BCI) system for imagery tasks (left and right hand movements). To select an informative feature with a reliable classifier features containing standard bandpower, AAR coefficients, and fractal dimension along with support vector machine (SVM), Adaboost and Fisher linear discriminant analysis (FLDA) classifiers have been assessed. In the single feature-classifier combinations, bandpower with FLDA gave the best results for three subjects, and fractal dimension and FLDA and SVM classifiers lead to the best results for two other subjects. A genetic algorithm has been used to find the best combination of the features with the aforementioned classifiers and led to dramatic reduction of the classification error and also best results in the four subjects. Genetic feature combination results have been compared with the simple feature combination to show the performance of the Genetic algorithm.

Journal ArticleDOI
TL;DR: A portable patient unit and a wearable shirt to monitor electrocardiogram, respiration, and activity for high-risk cardiovascular patients and an emergency call will be automatically established with a medical service center when life-threatening arrhythmias or falls are detected.
Abstract: This paper describes a wearable mobihealth care system aiming at providing long-term continuous monitoring of vital signs for high-risk cardiovascular patients. We use a portable patient unit (PPU) and a wearable shirt (WS) to monitor electrocardiogram (ECG), respiration (acquired with respiratory inductive plethysmography, RIP), and activity. Owing to integrating fabric sensors and electrodes endowed with electro-physical properties into the WS, long-term continuous monitoring can be realized without making patients feel uncomfortable and restricting their mobility. The PPU analyzes physiological signals in real time and determines whether the patient is in danger or needs external help. The PPU will alert the patient and an emergency call will be automatically established with a medical service center (MSC) when life-threatening arrhythmias or falls are detected. With advanced gpsOne technology, the patient can be located and rescued immediately whether he/she is indoors or outdoors in case of emergency.

Journal ArticleDOI
TL;DR: This paper investigates in detail the characteristics of microbubbling by co-axial electrohydrodynamic atomization using a model glycerol-air system and constructs a parametric plot to identify a liquid and gas flow rate regime, which allows continuous microbubbles.
Abstract: The preparation of microbubble suspensions is an important feature of medical engineering research. Recently, co-axial electrohydrodynamic atomization was used in our laboratory for the first time to prepare microbubble suspensions. In this paper, using a model glycerol-air system, we investigate in detail the characteristics of this microbubbling process. Modes of microbubbling are elucidated with respect to applied voltage and liquid and air flow rates. Thus, a parametric plot is constructed to identify a liquid and gas flow rate regime, which allows continuous microbubbling. This map provides a basis for the selection of a suitable combination of liquid and gas flow rates particularly in relation to yield and bubble size. The mechanism of microbubbling in microfluidic systems is compared with that of microbubbling by co-axial electrohydrodynamic atomization to identify the advantages and the limiting factors of the latter. Stability of microbubbles prepared by this method in terms of variation of diameter as a function of time is compared with previous literature on the dissolution of microbubbles with an air core and suggests the need for further work to stabilize the bubbles.

Journal ArticleDOI
TL;DR: It is demonstrated that the proposed RACAL performs better than the KNN in case of abnormal images as it succeeds in segmenting small and low contrast blood vessels, while it achieves comparable results for normal images.
Abstract: In this paper, segmentation of blood vessels from colour retinal images using a novel clustering algorithm with a partial supervision strategy is proposed. The proposed clustering algorithm, which is a RAdius based Clustering ALgorithm (RACAL), uses a distance based principle to map the distributions of the data by utilising the premise that clusters are determined by a distance parameter, without having to specify the number of clusters. Additionally, the proposed clustering algorithm is enhanced with a partial supervision strategy and it is demonstrated that it is able to segment blood vessels of small diameters and low contrasts. Results are compared with those from the KNN classifier and show that the proposed RACAL performs better than the KNN in case of abnormal images as it succeeds in segmenting small and low contrast blood vessels, while it achieves comparable results for normal images. For automation process, RACAL can be used as a classifier and results show that it performs better than the KNN classifier in both normal and abnormal images.

Journal ArticleDOI
TL;DR: The results suggest that aspirin does not affect blood rheological properties, while acenocoumarol may slightly alter red cell deformability and rouleaux formation.
Abstract: Quantitative analysis of blood viscosity was performed on the basis of mathematical models of non-Newtonian fluid shear flow behavior (Casson, Ree-Eyring and Quemada). A total of 100 blood samples were drawn from clinically stable survivors of myocardial infarction, treated with aspirin or acenocoumarol and controls to these drugs. Whole blood and plasma viscosity were measured at a broad range of shear rates using a rotary-oscillating viscometer Contraves LS40. Numerical analysis of the experimental data was carried out by means of linear (for Casson) and non-linear regression for the remaining models. In the evaluation of the results, both the fit quality and physical interpretation of the models’ parameters were considered. The Quemada model fitted most precisely with the experimental findings and, despite the controversies concerning the relationship between in vivo tissue perfusion and in vitro rheological measurements, seemed to be a valuable method enhancing investigation possibilities of cardiovascular patients. Our results suggest that aspirin does not affect blood rheological properties, while acenocoumarol may slightly alter red cell deformability and rouleaux formation.

Journal ArticleDOI
TL;DR: An algorithm to optimize stent design is developed, allowing for consideration of competing solid mechanical concerns (wall stress, lumen gain, and cyclic deflection) and the variety of stent designs identified provides general guidelines that have potential clinical use.
Abstract: The deployment of a vascular stent aims to increase lumen diameter for the restoration of blood flow, but the accompanied alterations in the mechanical environment possibly affect the long-term patency of these devices. The primary aim of this investigation was to develop an algorithm to optimize stent design, allowing for consideration of competing solid mechanical concerns (wall stress, lumen gain, and cyclic deflection). Finite element modeling (FEM) was used to estimate artery wall stress and systolic/diastolic geometries, from which single parameter outputs were derived expressing stress, lumen gain, and cyclic artery wall deflection. An optimization scheme was developed using Lagrangian interpolation elements that sought to minimize the sum of these outputs, with weighting coefficients. Varying the weighting coefficients results in stent designs that prioritize one output over another. The accuracy of the algorithm was confirmed by evaluating the resulting outputs of the optimized geometries using FEM. The capacity of the optimization algorithm to identify optimal geometries and their resulting mechanical measures was retained over a wide range of weighting coefficients. The variety of stent designs identified provides general guidelines that have potential clinical use (i.e., lesion-specific stenting).

Journal ArticleDOI
TL;DR: The results show that when there is a shape difference or a misalignment between the reference EOG and the EOG artifact in the EEG, the adaptive filtering method can be more accurate in recovering the true EEG by using an M larger than one.
Abstract: We recently proposed an adaptive filtering (AF) method for removing ocular artifacts from EEG recordings. The method employs two parameters: the forgetting factor λ and the filter length M. In this paper, we first show that when λ = M = 1, the adaptive filtering method becomes equivalent to the widely used time-domain regression method. The role of λ (when less than one) is to deal with the possible non-stationary relationship between the reference EOG and the EOG component in the EEG. To demonstrate the role of M, a simulation study is carried out that quantitatively evaluates the accuracy of the adaptive filtering method under different conditions and comparing with the accuracy of the regression method. The results show that when there is a shape difference or a misalignment between the reference EOG and the EOG artifact in the EEG, the adaptive filtering method can be more accurate in recovering the true EEG by using an M larger than one (e.g. M = 2 or 3).

Journal ArticleDOI
Amit Gefen1
TL;DR: The susceptibility to sitting-acquired deep tissue injury strongly depends on the geometrical and biomechanical characteristics of the bone–muscle interface, and, particularly, on the radius of curvature of the IT which mostly influenced the size of the wound, and on the muscle stiffness which dominantly affected the time for injury onset.
Abstract: Pressure-related deep tissue injury is the term recommended by the United States National Pressure Ulcer Advisory Panel to describe a potentially life-threatening form of pressure ulcers, characterized by the presence of necrotic tissue under intact skin, and associated with prolonged compression of muscle tissue under bony prominences. In this study, a theoretical model was used to determine the relative contributions of the backrest inclination angle during prolonged wheelchair sitting, the muscle tissue stiffness and curvature of the ischial tuberosities (ITs) to the risk for injury in the gluteus muscles that pad the IT bones during sitting. The model is based on Hertz’s theory for analysis of contact pressures between a rigid half-sphere (bone) and an elastic half-space (muscle). Hertz’s theory is coupled with an injury threshold and damage law for muscle—both obtained in previous studies in rats. The simulation outputs the time-dependent bone–muscle contact pressures and the injured area in the gluteus. We calculated the full-size (asymptotic) injured area in the gluteus and the time for injury onset for different sitting angles α( (90–150°), muscle tissue long-term shear moduli G (250–1,200 Pa) and bone diameters D (8–18 mm). We then evaluated the sensitivity of model results to variations in these parameters, in order to determine how injury predictions are affected. In reclined sitting (α = 150°) the full-size injured area was ∼2.1-fold smaller and the time for injury onset was ∼1.3-fold longer compared with erect sitting (α = 90°). For greater G the full-size injured area was smaller but the time for injury onset was shorter, e.g., increasing G from 250 to 1200 Pa decreased the full-size injured area ∼2.5-fold, but shortened the time for injury onset 6.2-fold. For smaller D the time for injury onset dropped, e.g., decreased ∼1.5-fold when D decreased from 18 to 8 mm. Interestingly, the full-size injured area maximized at D of about 12 mm but decreased for smaller or larger D. The susceptibility to sitting-acquired deep tissue injury strongly depends on the geometrical and biomechanical characteristics of the bone–muscle interface, and, particularly, on the radius of curvature of the IT which mostly influenced the size of the wound, and on the muscle stiffness which dominantly affected the time for injury onset.

Journal ArticleDOI
TL;DR: A finite element (FE) model of the lumbar spine and their connective tissues including the growth plate was developed, which allowed a personalization of the geometry based on patients’ bi-planar radiographs to study the effect of mechanical stresses on bone growth.
Abstract: Very few computer models of the spine integrate vertebral growth plates to investigate their mechanical behavior and potential impacts on bone growth. An approach was developed to generate a finite element (FE) model of the lumbar spine and their connective tissues including the growth plate, which allowed a personalization of the geometry based on patients’ bi-planar radiographs. The geometrical validation was performed by deforming meshed vertebrae to reference vertebral specimens and comparing geometrical indices. No significant difference was found between the measured parameters, with errors under 1% in 83% of the geometrical parameters. Mechanical validation was done by simulating loading cases on a functional unit representing experimental testing on cadaveric spines. The flexibility of the functional unit remained between expected ranges of motion, but was more linear than experimental data. The mechanical behavior of the growth plate was evaluated under various loading cases: greater stresses were located in the proliferative zone for the different spinal loading cases tested. This modeling approach is a useful tool to study the effect of mechanical stresses on bone growth.

Journal ArticleDOI
TL;DR: A theoretical model of the ankle joint, i.e. tibio-talar articulation, is presented, which shows how the articular surfaces and the ligaments, acting together as a mechanism, can control the passive kinematics of the joint.
Abstract: The paper presents a theoretical model of the ankle joint, i.e. tibio-talar articulation, which shows how the articular surfaces and the ligaments, acting together as a mechanism, can control the passive kinematics of the joint. The authors had previously shown that, in virtually unloaded conditions, the ankle behaves as a single degree-of-freedom system, and that two ligament fibres remain nearly isometric throughout the flexion arc. Two different equivalent spatial parallel mechanisms together with corresponding kinematic models were formulated. These assumed isometricity of fibres within the calcaneal-fibular and tibio-calcaneal ligaments and rigidity of the articulating surfaces, taken as three sphere-plane contacts in one model, and as a single spherical pair in the other. Geometry parameters for the models were obtained from three specimens. Motion predictions compare quite well with the measured motion of the specimens. The differences are accounted for by the simplifications adopted to represent the complex anatomical structures, and might be reduced by future more realistic representations of the natural articular surfaces.

Journal ArticleDOI
TL;DR: The largest Lyapunov exponent (LLE) was estimated to quantify the chaotic behaviour of postural sway and values were found to be positive although close to zero, suggesting that postural swayed derives from a process exhibiting weakly chaotic dynamics.
Abstract: The aim of this work is to determine whether postural sway can be well described by nonlinear deterministic modelling. Since the results of nonlinear analysis depend on experimental data processing, emphasis was given to the assessment of a proper methodology to process posturographic data. Centre of Pressure (CoP) anterior-posterior (AP) displacements (stabilogram) were obtained by static posturography tests performed on control subjects. A nonlinear determinism test was applied to investigate the nature of data. A nonlinear filtering method allowed us to estimate properly the parameters of the nonlinear model without altering signal dynamics. The largest Lyapunov exponent (LLE) was estimated to quantify the chaotic behaviour of postural sway. LLE values were found to be positive although close to zero. This suggests that postural sway derives from a process exhibiting weakly chaotic dynamics.

Journal ArticleDOI
TL;DR: A recessed electrode design is proposed which enabled current injection with an acceptable skin sensation to be increased from 100 μA using EEG electrodes, to 1 mA in 16 normal volunteers.
Abstract: For the novel application of recording of resistivity changes related to neuronal depolarization in the brain with electrical impedance tomography, optimal recording is with applied currents below 100 Hz, which might cause neural stimulation of skin or underlying brain. The purpose of this work was to develop a method for application of low frequency currents to the scalp, which delivered the maximum current without significant stimulation of skin or underlying brain. We propose a recessed electrode design which enabled current injection with an acceptable skin sensation to be increased from 100 μA using EEG electrodes, to 1 mA in 16 normal volunteers. The effect of current delivered to the brain was assessed with an anatomically realistic finite element model of the adult head. The modelled peak cerebral current density was 0.3 A/m2, which was 5 to 25-fold less than the threshold for stimulation of the brain estimated from literature review.

Journal ArticleDOI
TL;DR: A simple inertial measurement unit (IMU) incorporating rate gyroscopes and accelerometers has been tested to investigate the trunk kinematics during the sit-to-stand and showed better performance than the system based on the Fast Video Camera.
Abstract: A simple inertial measurement unit (IMU) incorporating rate gyroscopes and accelerometers has been tested to investigate the trunk kinematics during the sit-to-stand. It was affixed at trunk L5 level and used for sit-to-stand position and orientation reconstruction. The method was validated with standard optoelectronic equipment and results were also compared to the ones obtained by means of a Fast Video Camera. Comparative results showed for the IMU better performance than the system based on the Fast Video Camera. During the rising the mean pitch error was always lower than 5.2 x 10(-1) degrees and the mean Euclidean error lower than 5.9 x 10(-3) m in the sagittal plane.

Journal ArticleDOI
TL;DR: An assistive technology developed for “hands free” control of electrical devices to be used by severely impaired people within their environment, relies upon using signal processing techniques for analyzing eyes closed and eyes open states in the electroencephalography signal to investigate differences in the EEG time series.
Abstract: An assistive technology developed for “hands free” control of electrical devices to be used by severely impaired people within their environment, relies upon using signal processing techniques for analyzing eyes closed (EC) and eyes open (EO) states in the electroencephalography (EEG) signal. Here, we apply a signal processing technique used in continuous chaotic modeling to investigate differences in the EEG time series between EC and EO states. This method is used to detect the degree of variability from a second-order difference plot, and quantifying this using a central tendency measures. The study used EEG time series of EO and EC states from 33 able-bodied and 17 spinal cord injured participants. The results found an increased EEG variability in brain activity during EC compared to EO. This increased EEG variability occurred in the O2 electrode, which overlays the primary visual cortex V1, and could be a result of the replacement of the coherent information obtained during EO by noise. A continuous measure of the variability was then used to demonstrate that this technique has the potential to be used as a switching mechanism for assistive technologies.

Journal ArticleDOI
TL;DR: By using an explicit brace model and a contact interface, a more realistic simulation of orthotic treatment of scoliosis can be achieved and the stabilization of the brace on the patient can be represented and less restrictive boundary conditions can be applied.
Abstract: Based on a three-dimensional patient-specific finite element model of the spine, rib cage, pelvis and abdomen, a parametric model of a thoraco-lumbo-sacral orthosis (TLSO) was built. Its geometry is custom-fit to the patient. The rigid shell, pads and openings are all represented. The interaction between the trunk and the brace is modeled by a point-to-surface contact interface. During the nonlinear simulation process, the brace is opened, positioned on the patient and strap tension is applied. A TLSO similar to Boston brace system was built for a right-thoracic scoliotic patient. The influences of the trochanter pad and strap tension on the 3-D geometrical corrections and on the forces generated by the brace were evaluated. The role of the trochanter pad as a lever arm is confirmed by the model. The brace induces a reduction of the lordosis and pelvic tilt. The reduction of the frontal curvature is about 20% for a strap tension of 60 N. Axial rotation does not significantly change and rib hump is worsened. By using an explicit brace model and a contact interface, a more realistic simulation of orthotic treatment of scoliosis can be achieved. The stabilization of the brace on the patient can be represented and less restrictive boundary conditions can be applied. This model could be used to study the effect of design parameters on the brace efficiency.

Journal ArticleDOI
TL;DR: A novel model for SRS as the response of a mixed-phase system (total airways response, TAR) to a source excitation at the input is proposed, and it is shown that the TAR could be used to detect speech segments embedded in snores, and derive features to diagnose OSA via non-contact, low-cost instrumentation holding potential for a community screening device.
Abstract: Obstructive sleep apnea (OSA) is a highly prevalent disease in which upper airways are collapsed during sleep, leading to serious consequences. The gold standard of diagnosis, called Polysomnography (PSG), requires a full-night hospital stay connected to over 15 channels of measurements requiring physical contact with sensors. PSG is expensive and unsuited for community screening. Snoring is the earliest symptom of OSA, but its potential in OSA diagnosis is not fully recognized yet. In this paper, we propose a novel model for SRS as the response of a mixed-phase system (total airways response, TAR) to a source excitation at the input. The TAR/source model is similar to the vocal tract/source model in speech synthesis, and is capable of capturing acoustical changes brought about by the collapsing upper airways in OSA. We propose an algorithm based on higher-order-spectra (HOS) to jointly estimate the source and TAR, preserving the true phase characteristics of the latter. Working on a clinical database of signals, we show that TAR is indeed a mixed-phased signal and second-order statistics cannot fully characterize it. Night-time speech sounds can corrupt snore recordings and pose a challenge to snore based OSA diagnosis. We show that the TAR could be used to detect speech segments embedded in snores, and derive features to diagnose OSA via non-contact, low-cost instrumentation holding potential for a community screening device.

Journal ArticleDOI
TL;DR: The result reveals that the carpal features can effectively reduce classification errors when age is less than 9 years old and become the significant parameters to depict the bone maturity from 10 years old to adult stage.
Abstract: The proposed automatic bone age estimation system was based on the phalanx geometric characteristics and carpals fuzzy information. The system could do automatic calibration by analyzing the geometric properties of hand images. Physiological and morphological features are extracted from medius image in segmentation stage. Back-propagation, radial basis function, and support vector machine neural networks were applied to classify the phalanx bone age. In addition, the proposed fuzzy bone age (BA) assessment was based on normalized bone area ratio of carpals. The result reveals that the carpal features can effectively reduce classification errors when age is less than 9 years old. Meanwhile, carpal features will become less influential to assess BA when children grow up to 10 years old. On the other hand, phalanx features become the significant parameters to depict the bone maturity from 10 years old to adult stage. Owing to these properties, the proposed novel BA assessment system combined the phalanxes and carpals assessment. Furthermore, the system adopted not only neural network classifiers but fuzzy bone age confinement and got a result nearly to be practical clinically.