scispace - formally typeset
Search or ask a question
JournalISSN: 0300-8584

Medical Microbiology and Immunology 

Springer Science+Business Media
About: Medical Microbiology and Immunology is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Virus & Antigen. It has an ISSN identifier of 0300-8584. Over the lifetime, 6327 publications have been published receiving 69694 citations. The journal is also known as: MMI. Medical microbiology and immunology & Medical microbiology and immunology (Berlin. Print).


Papers
More filters
Journal ArticleDOI
TL;DR: The results of several recent proof-of-principle studies are reviewed that open the exciting perspective of using sdAbs for modulating immune functions and for targeting toxins and microbes.
Abstract: Antibodies are important tools for experimental research and medical applications. Most antibodies are composed of two heavy and two light chains. Both chains contribute to the antigen-binding site which is usually flat or concave. In addition to these conventional antibodies, llamas, other camelids, and sharks also produce antibodies composed only of heavy chains. The antigen-binding site of these unusual heavy chain antibodies (hcAbs) is formed only by a single domain, designated VHH in camelid hcAbs and VNAR in shark hcAbs. VHH and VNAR are easily produced as recombinant proteins, designated single domain antibodies (sdAbs) or nanobodies. The CDR3 region of these sdAbs possesses the extraordinary capacity to form long fingerlike extensions that can extend into cavities on antigens, e.g., the active site crevice of enzymes. Other advantageous features of nanobodies include their small size, high solubility, thermal stability, refolding capacity, and good tissue penetration in vivo. Here we review the results of several recent proof-of-principle studies that open the exciting perspective of using sdAbs for modulating immune functions and for targeting toxins and microbes.

565 citations

Journal ArticleDOI
TL;DR: These investigations confirm that it is possible to care for SARS patients and to conduct laboratory scientific studies on SARS-CoV safely, and should SARS re-emerge, increased efforts need to be devoted to questions of environmental hygiene.
Abstract: The SARS-coronavirus (SARS-CoV) is a newly emerged, highly pathogenic agent that caused over 8,000 human infections with nearly 800 deaths between November 2002 and September 2003. While direct person-to-person transmission via respiratory droplets accounted for most cases, other modes have not been ruled out. Faecal shedding is common and prolonged and has caused an outbreak in Hong Kong. We studied the stability of SARS-CoV under different conditions, both in suspension and dried on surfaces, in comparison with other human-pathogenic viruses, including human coronavirus HCoV-229E. In suspension, HCoV-229E gradually lost its infectivity completely while SARS-CoV retained its infectivity for up to 9 days; in the dried state, survival times were 24 h versus 6 days. Thermal inactivation at 56°C was highly effective in the absence of protein, reducing the virus titre to below detectability; however, the addition of 20% protein exerted a protective effect resulting in residual infectivity. If protein-containing solutions are to be inactivated, heat treatment at 60°C for at least 30 min must be used. Different fixation procedures, e.g. for the preparation of immunofluorescence slides, as well as chemical means of virus inactivation commonly used in hospital and laboratory settings were generally found to be effective. Our investigations confirm that it is possible to care for SARS patients and to conduct laboratory scientific studies on SARS-CoV safely. Nevertheless, the agent’s tenacity is considerably higher than that of HCoV-229E, and should SARS re-emerge, increased efforts need to be devoted to questions of environmental hygiene.

491 citations

Journal ArticleDOI
TL;DR: C. pneumoniae is present, viable, and transcriptionally active in areas of neuropathology in the AD brain, possibly suggesting that infection with the organism is a risk factor for late-onset Alzheimer's disease.
Abstract: We assessed whether the intracellular bacterium Chlamydia pneumoniae was present in post-mortem brain samples from patients with and without late-onset Alzheimer's disease (AD), since some indirect evidence seems to suggest that infection with the organism might be associated with the disease. Nucleic acids prepared from those samples were screened by polymerase chain reaction (PCR) assay for DNA sequences from the bacterium, and such analyses showed that brain areas with typical AD-related neuropathology were positive for the organism in 17/19 AD patients. Similar analyses of identical brain areas of 18/19 control patients were PCR-negative. Electron- and immunoelectron-microscopic studies of tissues from affected AD brain regions identified chlamydial elementary and reticulate bodies, but similar examinations of non-AD brains were negative for the bacterium. Culture studies of a subset of affected AD brain tissues for C. pneumoniae were strongly positive, while identically performed analyses of non-AD brain tissues were negative. Reverse transcription (RT)-PCR assays using RNA from affected areas of AD brains confirmed that transcripts from two important C. pneumoniae genes were present in those samples but not in controls. Immunohistochemical examination of AD brains, but not those of controls, identified C. pneumoniae within pericytes, microglia, and astroglia. Further immunolabelling studies confirmed the organisms' intracellular presence primarily in areas of neuropathology in the AD brain. Thus, C. pneumoniae is present, viable, and transcriptionally active in areas of neuropathology in the AD brain, possibly suggesting that infection with the organism is a risk factor for late-onset AD.

471 citations

Journal ArticleDOI
TL;DR: The natural history of hepatitis B virus infection including the viral biology, the clinical course of infection and the role of the immune response is discussed.
Abstract: Hepatitis B virus infection represents a major global health problem. Currently, there are more than 240 million chronically infected people worldwide. The development of chronic hepatitis B virus-mediated liver disease may lead to liver fibrosis, cirrhosis and eventually hepatocellular carcinoma. Recently, the discovery of the viral entry receptor sodium taurocholate cotransporting polypeptide has facilitated new approaches for a better understanding of viral physiopathology. Hopefully, these novel insights may give rise to the development of more effective antiviral therapy concepts during the next years. In this review, we will discuss the natural history of hepatitis B virus infection including the viral biology, the clinical course of infection and the role of the immune response.

459 citations

Journal ArticleDOI
TL;DR: Plaquing efficiency was comparable to the efficiency of infection in fertile eggs via allantoic route and inoculation into MDCK cells followed by incubation in the presence of trypsin was an isolation procedure as sensitive as the amniotic inoculations into fertile eggs.
Abstract: A wide variety of influenza A viruses, comprising human, equine, porcine, and avian strains, grew productively in an established line of canine kidney cells (MDCK) under an overlay medium containing trypsin, and formed well-defined plaques regardless of their prior passage history. Plaquing efficiency was comparable to the efficiency of infection in fertile eggs via allantoic route. MDCK cells have also been successfully employed for the primary isolation of influenza A virus from throat washings of patients. Parallel titration of several clinical specimens showed that the inoculation into MDCK cells followed by incubation in the presence of trypsin was an isolation procedure as sensitive as the amniotic inoculation into fertile eggs.

412 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202314
202240
202127
202060
201975
201831