scispace - formally typeset
Search or ask a question

Showing papers in "Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science in 2018"


Journal ArticleDOI
TL;DR: In this article, the inclusions in the as-cast plain EH36 are almost Al-Ca-S-O-(Mn) complex oxides with sizes ranging from 1.0 to 2.0 μm.
Abstract: Inclusion evolution behaviors, in terms of composition, size, and number density, and associated influence on the microstructures of the as-cast slabs, rolled plates, and simulated welded samples of plain EH36 and EH36-Mg shipbuilding steels have been systematically investigated. The results indicate that the inclusions in the as-cast plain EH36 are almost Al-Ca-S-O-(Mn) complex oxides with sizes ranging from 1.0 to 2.0 μm. After Mg addition, a large amount of individually fine MnS precipitates and Mg-containing Ti-Al-Mg-O-(Mn-S) complex inclusions are generated, which significantly refine the microstructure and are conducive to the nucleation of acicular ferrite in the rolled and welded sample. Moreover, after rolling and welding thermal simulation, the number of individual MnS decreases gradually due to its precipitation on the surface of Ti-Al-Mg-O oxides.

84 citations


Journal ArticleDOI
TL;DR: In this paper, the formation behaviors of complex inclusions of TiN, MnS, and MgO precipitation were investigated based on the thermodynamic calculations of single-particle TiN and multiparticle polymerized TiN.
Abstract: There are many types of non-metallic TiN-based inclusions observed in GCr15 bearing steel, including single-particle TiN, multi-particle polymerized TiN, and complex inclusions like TiN-MnS, TiN-MgO-MgAl2O4 (TiN-MgO-MA), and TiN-MgAl2O4-MnS (TiN-MA-MnS). Thermodynamic calculations suggest that single-particle TiN precipitates dominate the mushy zone of GCr15 bearing steel. Kinetic calculations regarding TiN growth suggest that the final size of the single-particle TiN ranges between 1 and 6 μm in the initial concentration range of [pct Ti] = 0.0060 to 0.0079 and [pct N] = 0.0049 to 0.0070, at 1620 to 1640 K and a local cooling rate of 0.5 to 10 K/s. The multi-particle polymerized TiN are formed by single TiN particles in three stages: single-particle TiN inclusions approach each other drawn by the cavity bridge force (CBF), local active angles consolidate, and neck region sintering occurs. Based on the thermodynamic calculations of TiN, MnS, and MgO precipitation, the formation behaviors of complex inclusions of TiN-MnS, TiN-MgO-MA, and TiN-MA-MnS were investigated.

59 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of diffusible hydrogen content on the flexural strength, lower critical stress, and tensile strength of P91 steel welds were also determined with respect to different electrode conditions.
Abstract: P91 steel weld joint was prepared using the shielded metal arc welding process and four different conditions of weld consumable that provide the different levels of diffusible hydrogen in deposited metal. In the present research, the effects of diffusible hydrogen content on the flexural strength, lower critical stress, and tensile strength of P91 steel welds were also determined with respect to different electrode conditions. To investigate the effect of diffusible hydrogen on multipass welding, top and root side flexural tests were performed. The residual stresses (axial stress and transverse stress) were also measured using the blind hole drilling method for different conditions of welding consumable. The peak value of residual stresses was measured at the center of the weld fusion zone. The maximum value of transverse stress was measured to be 355 MPa for case II (6.21 mL/100 g of diffusible hydrogen), while the maximum axial stress was about 218 MPa for case IV (12.43 mL/100 g of diffusible hydrogen). A three-dimensional finite element simulation was also performed to predict the residual stress distribution and thermal profile along the welded joint. The experimentally determined residual stresses correlated well with the numerically estimated residual stresses. The diffusible hydrogen content was not observed to have any significant effect on the residual stresses. The corrected residual stress values were also predicted by considering the plasticity-induced error. However, the flexural performance of the welded joint was affected by the diffusible hydrogen content. The top and root flexural strength was measured to be optimum for the low level of diffusible hydrogen content, and the values decreased with an increase in diffusible hydrogen content.

52 citations


Journal ArticleDOI
TL;DR: In this paper, the deformation of oxide inclusions in tire cord steels during hot rolling was analyzed, and the factors influencing their deformability at high and low temperatures were evaluated and discussed.
Abstract: The deformation of oxide inclusions in tire cord steels during hot rolling was analyzed, and the factors influencing their deformability at high and low temperatures were evaluated and discussed. The aspect ratio of oxide inclusions decreased with the increasing reduction ratio of the steel during hot rolling owing to the fracture of the inclusions. The aspect ratio obtained after the first hot-rolling process was used to characterize the high-temperature deformability of the inclusions. The deformation first increased and then decreased with the increasing (MgO + Al2O3)/(SiO2 + MnO) ratio of the inclusions. It also increased with the decreasing melting temperatures of the inclusions. Young’s modulus was used to evaluate the low-temperature deformability of the inclusions. An empirical formula was fitted to calculate the Young’s moduli of the oxides using the mean atomic volume. The moduli values of the inclusions causing wire fracture were significantly greater than the average. To reduce fracture in tire cord steel wires during cold drawing, it is proposed that inclusions be controlled to those with high SiO2 content and extremely low Al2O3 content. This proposal is based on the hypothesis that the deformabilities of oxides during cold drawing are inversely proportional to their Young’s moduli. The future study thus proposed includes an experimental confirmation for the abovementioned predictions.

46 citations


Journal ArticleDOI
Lejun Zhou1, Li Huan1, Wanlin Wang1, Dan Xiao1, Zhang Lei1, Yu Jie1 
TL;DR: In this paper, the effect of Li2O content on the behavior of melting, crystallization, and molten structure for CaO-Al2O3-based mold fluxes was investigated through use of single hot thermocouple technology (SHTT), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD).
Abstract: The effect of Li2O content on the behavior of melting, crystallization, and molten structure for CaO-Al2O3-based mold fluxes was investigated in this article, through use of single hot thermocouple technology (SHTT), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and X-ray diffraction (XRD). The SHTT results showed that the melting temperature range of the designed mold fluxes decreases and the crystallization of mold fluxes is inhibited first and then becomes enhanced when the Li2O content increases from 1 to 6 mass pct. The FTIR and Raman spectroscopy results suggested that Li2O could release O2− ions to break the complex Al-O-Al structural unit into Al-O− structure. Meanwhile, Li2O could also stabilize the structural unit of Si-O-Al by link aluminate and Q 0 Si structure through providing Li+ ions to merge into the network and compensate for the charges between Al3+ and Si4+. Besides, the XRD results indicated that the precipitation of LiAlO2 in molten slag would enhance the crystallization behavior of mold flux when Li2O content is over 4.5 mass pct.

45 citations


Journal ArticleDOI
TL;DR: In this article, a mathematical model based on multi-fluid theory is developed for describing the multiphase reacting flows considering the respective reacting burden layers of an iron-making blast furnace.
Abstract: The ironmaking blast furnace (BF) is an efficient chemical reactor for producing liquid iron from solid iron ore, where the solids of coke and iron ore are charged in alternative layers and different chemical reactions occur in the two solid layers as they descend. Such respective reacting burden layers have not been considered explicitly in the previous BF models. In this article, a mathematical model based on multi-fluid theory is developed for describing the multiphase reacting flows considering the respective reacting burden layers. Then, this model is applied to a BF, covering the area from the burden surface at the furnace top to the liquid surface above the hearth, to describe the inner states of a BF in terms of the multiphase flows, temperature distribution and reduction process. The results show that some key important features in the layered burden with respective chemical reactions are captured, including fluctuating iso-lines in terms of gas flow and thermochemical behaviours; particularly the latter cannot be well captured in the previous BF models. The temperature difference between gas–solid phases is found to be larger near the raceway, at the cohesive zone and at the furnace top, and the thermal reserved zone can be identified near the shaft. Three chemical reserve zones of hematite, magnetite and wustite can also be observed near the stockline, in the shaft near the wall and near centre, respectively. Inside each reserve zone, the corresponding ferrous oxides stay constantly high in alternative layers; the overall performance indicators including gas utilization efficiency and reduction degree also stay stable in an alternative-layered structure. This model provides a cost-effective tool to investigate the BF in-furnace process and optimize BF operation.

44 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluated the deoxidation limit for β-Ti using Y or light rare earth metals (La, Ce, Pr, or Nd) as a deoxidant.
Abstract: Oxygen removal from metallic Ti is extremely difficult and, currently, there is no commercial process for effectively deoxidizing Ti or its alloys. The oxygen concentration in Ti scraps is normally higher than that in virgin metals such as in Ti sponges produced by the Kroll process. When scraps are remelted with virgin metals for producing primary ingots of Ti or its alloys, the amount of scrap that can be used is limited owing to the accumulation of oxygen impurities. Future demands of an increase in Ti production and of mitigating environmental impacts require that the amount of scrap recycled as a feed material of Ti ingots should also increase. Therefore, it is important to develop methods for removing oxygen directly from Ti scraps. In this study, we evaluated the deoxidation limit for β-Ti using Y or light rare earth metals (La, Ce, Pr, or Nd) as a deoxidant. Thermodynamic considerations suggest that extra-low-oxygen Ti, with an oxygen concentration of 100 mass ppm or less can be obtained using a molten salt equilibrating with rare earth metals. The results presented herein also indicate that methods based on molten salt electrolysis for producing rare earth metals can be utilized for effectively and directly deoxidizing Ti scraps.

44 citations


Journal ArticleDOI
Ang Zhang1, Jinglian Du1, Zhipeng Guo1, Qigui Wang, Shoumei Xiong1 
TL;DR: In this paper, the effects of convection (forced and natural) on dendritic evolution of the Al-Cu alloy were investigated using a phase-field lattice Boltzmann approach.
Abstract: Effects of convection (forced and natural) on dendritic evolution of the Al-Cu alloy were investigated using a phase-field lattice-Boltzmann approach. The non-linear coupled equations were solved by applying a parallel and adaptive mesh refinement algorithm. Important physical aspects including dendritic fragmentation, splitting, and formation of solute plumes were simulated. Results showed that the dendritic growth patterns under convection exhibited remarkable difference from those without convection. The presence of flow led to variation of solute diffusion and upstream–downstream dendritic growth difference, which further influenced the development of dendritic arms and multi-dendritic competitive growth. When the convection intensity was magnified, the convection-induced anisotropy became dominated, and the growth patterns changed accordingly to accommodate the local thermodynamic variation.

43 citations


Journal ArticleDOI
TL;DR: In this article, the relationship between microscopic structure and macroscopic thermophysical properties in a basic CaO-SiO2-MgO-Al2O3 quaternary system was identified using Fourier transformation infrared, Raman and 27Al magic angular spinning nuclear magnetic resonance (MAS-NMR) techniques.
Abstract: In the present work, the relationship between the microscopic structure and macroscopic thermophysical properties in a basic CaO-SiO2-MgO-Al2O3 quaternary system was identified using Fourier transformation infrared, Raman and 27Al magic angular spinning nuclear magnetic resonance (MAS-NMR) techniques The Raman spectra quantitatively proved that with increasing Al2O3 content, the concentrations of the symmetric units of Q0(Si) and Q2(Si) decreased, while those of the asymmetric units of Q1(Si) and Q3(Si) increased; consequently, the degree of polymerization of the networks increased, which resulted in an increase in slag viscosity The 27Al MAS-NMR spectra demonstrated that three structural units of Al atoms, namely, AlO4, AlO5, and AlO6, mainly existed in the networks With increasing Al2O3 content, the concentration of AlO4 slightly decreased, while those of AlO5 and AlO6 increased; overall, Al2O3 acted as a network former in the present system The increasing Al2O3 content led to additional AlO6 and Si-NBO-Ca-NBO-Al frameworks, which replaced Si-NBO-Ca-NBO-Si in the networks (NBO: non-bridging oxygen) and induced a change in the primarily precipitated crystalline phase from Ca2MgSi2O7 and Ca2Al2SiO7 to MgAlO4

41 citations


Journal ArticleDOI
Jing Wen1, Tao Jiang1, Yingzhe Xu1, Jiayi Liu1, Xiangxin Xue1 
TL;DR: In this article, a two-stage roasting-based method was proposed to separate and extract vanadium and chromium efficiently in high chromium vanadium slag (HCVS) slag.
Abstract: Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting–leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

36 citations


Journal ArticleDOI
TL;DR: The nucleation and growth behaviors of ferrite laths in the heat-affected zone (HAZ) of EH36-Mg shipbuilding steel with different heat inputs were observed in situ by high-temperature confocal scanning laser microscope (CSLM).
Abstract: The nucleation and growth behaviors of ferrite laths in the heat-affected zone (HAZ) of EH36-Mg shipbuilding steel with different heat inputs were observed in situ by high-temperature confocal scanning laser microscope (CSLM) It was found that ferrite laths prefer to nucleate on the surface of inclusions instead of grain boundaries under the heat input of 120 kJ/cm, while FSPs are easier to form in 210 kJ/cm due to a significantly reduced cooling rate

Journal ArticleDOI
TL;DR: In this paper, the transient evolution of nonmetallic inclusions after calcium addition in pipeline steels was investigated with a vacuum induction furnace with samples taken at 1, 5, 10, 15, and 20 minutes after calcium treatment in both MgO and Al2O3 crucibles.
Abstract: The transient evolution of nonmetallic inclusions after calcium addition in pipeline steels was investigated with a vacuum induction furnace. Samples were taken at 1, 5, 10, 15, and 20 minutes after calcium treatment in both MgO and Al2O3 crucibles. It was found that the total oxygen and the number density of inclusions were increased during calcium modification, while they were dropped to a low level in the last tapped sample. Due to the evaporation of calcium, inclusions were transferred from CaO-CaS to Al2O3-CaO-CaS, and then to Al2O3-CaO. The decomposition of CaS was highly dependent on the decrease of the total calcium and the increase of the total oxygen in the steel. Thermodynamic calculation was performed to predict the composition of inclusions considering the effect of the total oxygen and the total calcium and was validated by measurement. The relationship between the content of Al2O3 in inclusions and the ratio of the total calcium and the total oxygen in steels was measured and compared with the calculated one using thermodynamic software Factsage 7.0. The mass-transfer coefficient of the dissolved calcium in the steel was estimated in the range of 2.35 × 10−4 to 3.53 × 10−4 m/s.

Journal ArticleDOI
TL;DR: In this article, the Euler-Lagrange approach was applied to study the effects of the free surface setup, injected bubble size, gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer behavior.
Abstract: In this study, the Euler-Euler and Euler-Lagrange modeling approaches were applied to simulate the multiphase flow in the water model and gas-stirred ladle systems. Detailed comparisons of the computational and experimental results were performed to establish which approach is more accurate for predicting the gas-liquid multiphase flow phenomena. It was demonstrated that the Euler-Lagrange approach is more accurate than the Euler-Euler approach. The Euler-Lagrange approach was applied to study the effects of the free surface setup, injected bubble size, gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer behavior. Detailed discussions on the flat/non-flat free surface assumption were provided. Significant inaccuracies in the prediction of the surface fluid flow characteristics were found when the flat free surface was assumed. The variations in the main controlling parameters (bubble size, gas flow rate, and slag layer thickness) and their potential impact on the multiphase fluid flow and mass transfer characteristics (turbulent intensity, mass transfer rate, slag-steel interfacial area, flow patterns, etc.,) in gas-stirred ladles were quantitatively determined to ensure the proper increase in the ladle refining efficiency. It was revealed that by injecting finer bubbles as well as by properly increasing the gas flow rate and the slag layer thickness, the ladle refining efficiency can be enhanced significantly.

Journal ArticleDOI
TL;DR: In this paper, the phase equilibria of the Pb-Fe-Si-O system have been investigated at 943 K to 1773 K (670°C to 1500°C) for oxide liquid in equilibrium with liquid Pb metal.
Abstract: Phase equilibria of the Pb-Fe-Si-O system have been investigated at 943 K to 1773 K (670 °C to 1500 °C) for oxide liquid in equilibrium with liquid Pb metal and solid oxide phases: (a) quartz, tridymite, or cristobalite; (b) (fayalite + tridymite) or (fayalite + spinel); (c) spinel (Fe3O4); (d) complex lead-iron silicates (melanotekite PbO·FeO1.5·SiO2, barysilite 8PbO·FeO·6SiO2, 5PbO·FeO1.5·SiO2, and 6PbO·FeO1.5·SiO2); (e) lead silicates (Pb2SiO4, Pb11Si3O17); (f) lead ferrites (magnetoplumbite Pb1+x Fe12−x O19−x solid solution range); and (g) lead oxide (PbO, massicot). High-temperature equilibration on primary phase or iridium substrates, followed by quenching and direct measurement of Pb, Fe, and Si concentrations in the phases with the electron probe X-ray microanalysis, has been used to accurately characterize the system in equilibrium with Pb metal. All results are projected onto the PbO-“FeO”-SiO2 plane for presentation purposes. The present study is the first systematic characterization of liquidus over a wide range of compositions in this system in equilibrium with metallic Pb.

Journal ArticleDOI
TL;DR: In this article, the softening and melting reduction behaviors of ferrous burden in a gas-injection blast furnace (BF) have been investigated experimentally with the assistance of H2.
Abstract: The softening and melting reduction behaviors of ferrous burden in a gas-injection blast furnace (BF) have been investigated experimentally with the assistance of H2. The results indicate that the initial softening temperature of the burden in the BF is lower than that in the traditional BF, while the opposite trend is observed for its melting and dripping temperatures, thus widening the softening range and narrowing the melting zone. As a result, the permeability of the stock column is apparently improved, owing to the decreased amount of the produced melt. After H2 gas is added, the thickness of the iron shell of the burden pellet increases, and the quantity of its liquid wustite core decreases due to the higher reduction degree. The reduction rate of iron oxides is much faster than the carburization rate with the H2 addition, and the dripping behavior of the ferrous burden is determined by the carburization with a high reduction potential. After taking into account the effects of H2 addition on the iron oxide reduction rate, melt quantity, burden microstructure, and energy consumed by the gas-injection BF, it has been concluded that the optimal H2 content lies in the range between 10 and 15 pct.

Journal ArticleDOI
TL;DR: In this article, an efficient recycling process for rare earth elements (REEs) from neodymium-iron-boron (Nd-Fe-B) permanent magnet scrap was proposed.
Abstract: Fundamental experiments are conducted with the aim of developing an efficient recycling process for rare earth elements (REEs) from neodymium-iron-boron (Nd-Fe-B) permanent magnet scrap. Molten magnesium dichloride (MgCl2) was chosen as an extraction medium, which can selectively chlorinate and extract REEs in magnet alloys. Dysprosium-containing Nd-Fe-B magnet alloy was immersed in molten MgCl2 at 1273 K (1000 °C) for 3 to 12 hours. The results of the experiments clearly show that the REEs in the magnetic alloy were successfully extracted into the molten salt, while the Fe-B alloy remained in a solid form. The extraction ratios of Nd and Dy were at most 87 and 78 mass pct, respectively. After the extraction experiment, excess MgCl2 and Mg were removed by vacuum distillation and the rare earth chlorides were recovered. Thus, the feasibility of this method for efficient recovery of rare earths using molten MgCl2 is demonstrated.

Journal ArticleDOI
TL;DR: In this paper, a transient mathematical model is developed for simulating the bubble-steel-slag-top gas four-phase flow in a bottom-blown argon-stirred ladle with a 70-ton capacity.
Abstract: A transient mathematical model is developed for simulating the bubble-steel-slag-top gas four-phase flow in a bottom-blown argon-stirred ladle with a 70-ton capacity. The Lagrangian discrete phase model (DPM) is used for describing the moving behavior of bubbles in the steel and slag. To observe the formation process of slag eye, the volume of fluid (VOF) model is used to track the interfaces between three incompressible phases: metal/slag, metal/gas, and slag/gas. The complex multiphase turbulent flow induced by bubble-liquid interactions is solved by a large eddy simulation (LES) model. Slag eye area and slag droplet dispersion are investigated under different gas flow rates. The results show that the movement of bubbles, formation and collapse of slag eye, volatility of steel/slag interface and behavior of slag entrapment can be properly predicted in the current model. When the gas flow rate is 300 L/min, the circulation driven by the bubble plume will stir the entire ladle adequately and form a slag eye of the right size. At the same time, it will not cause strong erosion to the ladle wall, and the fluctuation of the interface is of adequate intensity, which will be helpful for improving the desulfurization efficiency; the slag entrapment behavior can also be decreased. Interestingly, with the motion of liquid steel circulation, the collision and coalescence of dispersed slag droplets occur during the floating process in the vicinity of the wall.

Journal ArticleDOI
TL;DR: In this paper, a GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture, and the drag coefficient on the bubbles is modified to account for the effects of the magnetic field.
Abstract: In continuous casting of steel, argon gas is often injected to prevent clogging of the nozzle, but the bubbles affect the flow pattern, and may become entrapped to form defects in the final product. Further, an electromagnetic field is frequently applied to induce a braking effect on the flow field and modify the inclusion transport. In this study, a previously validated GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture. Well-resolved large eddy simulations are combined with two-way coupled Lagrangian computations of the bubbles. The drag coefficient on the bubbles is modified to account for the effects of the magnetic field. The distribution of the argon bubbles, capture, and escape rates, are presented and compared with and without the magnetic field. The bubble capture patterns are also compared with results of a previous RANS model as well as with plant measurements.

Journal ArticleDOI
TL;DR: In this article, the liquid composition change during the solidification process at different cooling rates was investigated by differential scanning calorimetry (DSC), confocal laser scanning microscopy (CLSM), optical microscopy, field-emission scanning electron microscopy and electron-probe microanalysis (EPMA).
Abstract: The solidification sequence, microstructural evolution, solid-liquid interface variation, interdendritic segregation, and elemental distribution of as-cast IN718 alloy at three slow-cooling rates (5, 10, and 20 °C/min) were investigated by differential scanning calorimetry (DSC), confocal laser scanning microscopy (CLSM), optical microscopy (OM), field-emission scanning electron microscopy (FESEM), and electron-probe microanalysis (EPMA) techniques. The results indicate that as the cooling rate decreases, the constitutional supercooling at the solidification front affects the solid-liquid interface more significantly, and the size and quantity of the Laves phase increase. However, the composition of the Laves phase is insensitive to the cooling rate in the range of conditions studied here. In dendrite core, the contents of Ni, Cr, Fe, and Al follow a slight downward trend with an increasing cooling rate, whereas the Nb, Mo, and Ti contents show an upward trend. Additionally, Mo shows a stronger propensity to segregate under slow-cooling conditions because its effective partition coefficient almost linearly decreased with decreasing cooling rate, which is same as Nb. Using the parameters experimentally determined in this study and the Clyne–Kurz equation, we achieved reasonable agreement between the calculated and measured liquid composition change during the solidification process at different cooling rates. All experimental and theoretical programs in this research were undertaken with the aim of gaining further understanding of the microsegregation behaviors in large-scale IN718 ingots, whose cooling rates are within a lower range.

Journal ArticleDOI
TL;DR: In this paper, the authors presented three novel Oxygen blast furnace (OBF) processes, featuring by belly injection of reformed coke oven gas, burden hot-charge operation, and their combination, respectively.
Abstract: Oxygen blast furnace (OBF) ironmaking process has the potential to realize “zero carbon footprint” production, but suffers from the “thermal shortage” problem. This paper presents three novel OBF processes, featured by belly injection of reformed coke oven gas, burden hot-charge operation, and their combination, respectively. These processes were studied by a multifluid process model. The applicability of the model was confirmed by comparing the numerical results against the measured key performance indicators of an experimental OBF operated with or without injection of reformed coke oven gas. Then, these different OBF processes together with a pure OBF were numerically examined in aspects of in-furnace states and global performance, assuming that the burden quality can be maintained during the hot-charge operation. The numerical results show that under the present conditions, belly injection and hot charge, as auxiliary measures, are useful for reducing the fuel rate and increasing the productivity for OBFs but in different manners. Hot charge should be more suitable for OBFs of different sizes because it improves the thermochemical states throughout the dry zone rather than within a narrow region in the case of belly injection. The simultaneous application of belly injection and hot charge leads to the best process performance, at the same time, lowering down hot-charge temperature to achieve the same carbon consumption and hot metal temperature as that achieved when applying the hot charge alone. This feature will be practically beneficial in the application of hot-charge operation. In addition, a systematic study of hot-charge temperature reveals that optimal hot-charge temperatures can be identified according to the utilization efficiency of the sensible heat of hot burden.

Journal ArticleDOI
TL;DR: In this article, a computational fluid dynamics model of coherent jets with COMI was built with the overall and detailed chemical kinetic mechanisms (GRI-Mech 3.0), which consists of 325 elementary reactions with 53 components and can predict more accurate results.
Abstract: As an efficient oxygen supplying technology, coherent jets are widely applied in electric arc furnace (EAF) steelmaking processes to strengthen chemical energy input, speed up smelting rhythm, and promote the uniformity of molten bath temperature and compositions. Recently, the coherent jet with CO2 and O2 mixed injection (COMI) was proposed and demonstrated great application potentiality in reducing the dust production in EAF steelmaking. In the present study, based on the eddy dissipation concept model, a computational fluid dynamics model of coherent jets with COMI was built with the overall and detailed chemical kinetic mechanisms (GRI-Mech 3.0). Compared with one-step combustion reaction, GRI-Mech 3.0 consists of 325 elementary reactions with 53 components and can predict more accurate results. The numerical simulation results were validated by the combustion experiment data. The jet behavior and the fluid flow characteristics of coherent jets with COMI under 298 K and 1700 K (25 °C and 1427 °C) were studied and the results showed that for coherent jets with COMI, the chemical effect of CO2 significantly weakened the shrouding combustion reactions of CH4 and the relative importance of the chemical effect of CO2 increases with CO2 concentration increasing. The potential core length of coherent jet decreases with the volume fraction of CO2 increasing. Moreover, it also can be found that the potential core length of coherent jets was prolonged with higher ambient temperature.

Journal ArticleDOI
TL;DR: In this article, a review of solid-state deformation, reheating to semisolid state and isothermal holding within solidus-liquidus range, and solidification of thixotropic slurries is presented.
Abstract: Thermomechanical processing of cast structures is an effective solid working route of generating thixotropic morphologies after subsequent partial melting and is in use for decades to manufacture the bulk billet feedstock for thixoforming from a variety of alloys. The solid-state deformation is also critical for coarse particulate feedstock, utilized for semisolid forming either directly or after compaction into billets. Although the original concept, called strain-induced melt activation (SIMA), defined the specific procedure, the term became generally recognized synonym for a variety of thermomechanical treatments offering an opportunity of controlling the solidification microstructure. This review covers transformations during solid-state deformation, reheating to semisolid state and isothermal holding within solidus–liquidus range, and solidification of thixotropic slurries. Essentials of semisolid metal processing, necessary to understand the subject, are supported by details related to specific implementation techniques and alloys. Application examples at laboratory and commercial levels and properties achieved with conventional and severe plastic deformation techniques, for different alloys along with present limitations, are described. The link between solid-state deformation-enhanced melting and liquid metal engineering is emphasized throughout the paper in terms of the common goal of controlling the solidification outcome in order to develop technology for mass-scale production of net-shape components having performance characteristics superior to conventional castings.

Journal ArticleDOI
TL;DR: In this paper, the combined effects of varying SiO2 contents in slag and reoxidation of liquid steel on the chemistry evolution of inclusions and the alloying element content in steel during ESR were investigated.
Abstract: Electroslag remelting (ESR) is increasingly used to produce some varieties of special steels and alloys, mainly because of its ability to provide extreme cleanliness and an excellent solidification structure simultaneously. In the present study, the combined effects of varying SiO2 contents in slag and reoxidation of liquid steel on the chemistry evolution of inclusions and the alloying element content in steel during ESR were investigated. The inclusions in the steel before ESR refining were found to be oxysulfides of patch-type (Ca,Mn)S adhering to a CaO-Al2O3-SiO2-MgO inclusion. The oxide inclusions in both the liquid metal pool and remelted ingots are CaO-Al2O3-MgO and MgAl2O4 together with CaO-Al2O3-SiO2-MgO inclusions (slightly less than 30 pct of the total inclusions), which were confirmed to originate from the reduction of SiO2 from the original oxide inclusions by dissolved Al in liquid steel during ESR. CaO-Al2O3-MgO and MgAl2O4 are newly formed inclusions resulting from the reactions taking place inside liquid steel in the liquid metal pool caused by reoxidation of liquid steel during ESR. Increasing the SiO2 content in slag not only considerably reduced aluminum pickup in parallel with silicon loss during ESR, but also suppressed the decrease in SiO2 content in oxide inclusions. (Ca,Mn)S inclusions were fully removed before liquid metal droplets collected in the liquid metal pool.

Journal ArticleDOI
TL;DR: In this article, a review of existing literature on the interactions of important refractories with iron melts and relevant slags with an emphasis on two of the most commonly used refractors in ironmaking and steelmaking applications is presented.
Abstract: A novel flash ironmaking technology (FIT) based on the direct reduction of iron ore concentrate with a reductant gas (such as hydrogen, natural gas, coal gas, or a combination thereof) in a flash furnace is being developed at the University of Utah. This technology which is undergoing large-scale laboratory testing aims at overcoming the limitations of blast furnace ironmaking by bypassing the problematic pelletization/sintering and cokemaking steps.[1–5] Refractory selection is expected to play an important step in the development of FIT and its proposed scale-up. For nominating an appropriate refractory for the FIT, understanding the interactions of candidate refractories with iron/iron oxide and slags under H2/CO/CO2/H2O environments is necessary. This work is undertaken to review the existing literature on the interactions of important refractories with iron melts and relevant slags with an emphasis on two of the most commonly used refractories in ironmaking and steelmaking applications: the alumina-based refractories (used widely in blast furnace operations) and the magnesia-based refractories (used extensively in primary as well as secondary steelmaking). First, a comprehensive review on the interactions of alumina-based refractories with iron melts and slags has been done. Next the existing literature on the interactions of magnesia-based refractories with iron melts and relevant slags has been reviewed. Summaries have been included after each section and sub-section along with comments and critical insights from the authors. Finally, in the concluding remarks the differences in operating conditions between existing iron and steelmaking practices and the novel FIT have been highlighted. On the basis of these differences, it has been argued that the results and conclusions available from previous studies on refractory–metal–slag interactions are of little significance to flash ironmaking. Thus, there exists a need to carry out laboratory experiments for evaluating refractory performance in flash ironmaking under conditions relevant to the current process (FIT).

Journal ArticleDOI
TL;DR: In this paper, a multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation.
Abstract: A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation. The three reaction zones (i) jet impact zone, (ii) slag–bulk metal zone, (iii) slag–metal–gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag–metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, and dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post-combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process.

Journal ArticleDOI
TL;DR: In this article, the effect of S content in the molten steel on inclusions during calcium treatment was studied using an induction furnace, and a reaction model was proposed for the formation of CaO and CaS, which considered the reaction between calcium vapor bubbles in the zone and the dissolved oxygen and sulfur in molten steel.
Abstract: In the current study, the effect of S content in the molten steel on inclusions during calcium treatment was studied using an induction furnace. The calcium in steel decreased from 48 to 2 ppm, and the sulfur in steel changed a little with time. When sulfur content in steel was as low as 25 ppm during calcium treatment, inclusions shifted from CaO-Al2O3-CaS to Al2O3-CaO with about 35 pct CaO. When the sulfur increased over 90 ppm, more CaS-CaO formed just after the addition of calcium, and then the CaS content decreased from over 45 pct to lower than 15 pct and inclusions were mostly Al2O3-CaO-CaS and Al2O3-CaO with a high Al2O3 content. Thermodynamic calculation predicted the variation of the composition of inclusions, indicating good agreement with the measurement, while a certain deviation existed, especially for heats with 90 and 180 ppm sulfur. A reaction model was proposed for the formation of CaO and CaS, which considered the reaction between calcium vapor bubbles in the zone and the dissolved oxygen and sulfur in the molten steel, as described by a Langmuir-type adsorption isotherm with a reaction occurring on the remaining vacant sites. The variation of transient CaS inclusions was discussed based on the thermodynamic calculation and the morphology evolution of typical inclusions containing CaS.

Journal ArticleDOI
Kai Hu1, Xuewei Lv1, Shengping Li1, Wei Lv1, Bing Song, Kexi Han 
TL;DR: In this article, the dependence of viscosity on chemical composition and temperature of high-titania slag, a very important raw material for producing titanium dioxide, was demonstrated.
Abstract: The present study demonstrates the dependence of viscosity on chemical composition and temperature of high-titania slag, a very important raw material for producing titanium dioxide. The results indicated that completely molten high-titania slag exhibits a viscosity of less than 1 dPa s with negligible dependence on temperature. However, it increases dramatically with decreasing temperature slightly below the critical temperature, i.e., the solidus temperature of the slag. Above the critical temperature, the slag samples displayed the same order of viscosity at 0.6 dPa s, regardless of their compositional variation. However, the FeO, CaO, and MgO were confirmed to decrease viscosity, while SiO2 and Ti2O3 increase it. The apparent activation energy for viscosity-temperature relation and liquidus temperature based on experiments and thermodynamic calculations are also presented. Conclusively, the critical temperatures of the slags are on average 15 K below their corresponding calculated liquidus temperatures. The increase in FeO content was found to considerably lower the critical temperature, while the increase in both Ti2O3 and TiO2 contents increases it. The main phases of the slag in solid state, as indicated by X-ray diffraction, are (Fe, Mg)xTiyO5 (x + y = 3, pseudobrookite) and rutile.

Journal ArticleDOI
TL;DR: In this paper, the effects of processing parameters such as tool rotation and traverse speeds, tool position, material position, and tool geometry on the weld quality are also presented, as well as future research directions in friction stir welding and future high-integrity applications.
Abstract: Friction stir welding is a solid-state welding technique that has many advantages over traditional fusion welding, and has been widely adopted in the aerospace and automotive industries. This article reviews research developments in friction stir welding of dissimilar alloys systems, including combinations of aluminum alloys with Mg alloys, Cu, and steel. Microstructural evolution, hardness, tensile and fatigue properties, residual stresses, and corrosion behavior of dissimilar welds will be reported. The effects of processing parameters such as tool rotation and traverse speeds, tool position, material position, and tool geometry on the weld quality are also presented. Discussions on future research directions in friction stir welding will also be provided in the context of existing literature and future high-integrity applications.

Journal ArticleDOI
TL;DR: In this paper, the multiphase fluid flow in argon-stirred steel ladles is simulated using an Eulerian-Lagrangian two-phase approach.
Abstract: In the current study, the multiphase fluid flow in argon-stirred steel ladles is simulated using an Eulerian–Lagrangian two-phase approach. The momentum source and the turbulent kinetic energy source due to the motion of the bubble are considered for the liquid phase. Argon bubbles are treated as discrete phase particles, and the interfacial forces between the bubbles and the liquid phase; the dependence of the gas density and the bubble diameter on the temperature and the static pressure; and the bubble size distribution are considered. When the fluid flow reaches the quasi-steady state, the ferroalloy melting and mixing phenomena is also modeled. The melting time and the trajectory length of each ferroalloy particle are recorded using a user-defined function (UDF). Local mixing time is predicted in the entire computational domain by checking the mixing criteria in every cell. The effects of gas flow rate, porous plug location, and separation angle of two porous plugs on the fluid flow and the mixing phenomena are investigated. The results show that the flow intensity increases, and the mixing time decreases with the increasing gas flow rate. The optimal porous plug’s radial position with one porous plug is 0.50R for its best mixing condition. When two porous plugs are adopted, the separation angle of 90 deg is recommended to improve the flow field and mixing phenomena.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the precipitation, aggregation, and dissolution behaviors of TiN inclusions on the surface of liquid GCr15 bearing steel by combining the observations of confocal laser scanning microscope (CLSM) and field emission scanning electron microscope (FE-SEM) with those obtained from energy dispersive spectrometer (EDS) and theoretical analysis.
Abstract: In this study, the precipitation, aggregation, and dissolution behaviors of TiN inclusions on the surface of liquid GCr15 bearing steel have been investigated by combining the observations of confocal laser scanning microscope (CLSM) and field emission scanning electron microscope (FE-SEM) with those obtained from energy dispersive spectrometer (EDS) and theoretical analysis. The kinetic results show that the initial concentration of Ti and N are 0.0078 and 0.0049, respectively, the precipitation temperature is between 1640 K and 1680 K (1367 °C and 1407 °C), and the local cooling rate is between 0.5 and 10 K/s; TiN inclusion can precipitate only when the solid fraction is higher than 0.847 and its precipitation radius is between 1 and 6 μm. The precipitation radius of a TiN inclusion in the GCr15 bearing steel sheet can be reduced by decreasing the N content and increasing the cooling strength. The aggregation and densification of multi-particle aggregated TiN inclusions are verified by CLSM observation and theoretical analysis. The inclusions are aggregated by the cavity bridge force (CBF), and the aggregated TiN is formed by solid-phase sintering. The results of force analysis show that CBF plays a dominant role in the aggregation process of the inclusions. The atomic ratio of Ti and V obtained by EDS is 18:1, which may melt TiN and form the liquid inclusion at 1688 K (1415 °C) observed by CLSM. The theoretical analysis is conducted for the dissolution of the TiN inclusions observed by CLSM, which shows that the dissolution of the TiN inclusions is related to the size of the inclusions; the larger the size, the greater the dissolution rate. The long-strip TiN inclusion may be formed by the Ostwald ripening of two TiN inclusions. The TiN inclusions smaller than 3 μm in the GCr15 bearing steel may be formed by the dissolved Ti and N generated by the dissolution of TiN.