scispace - formally typeset
Search or ask a question

Showing papers in "Microbiology in 2011"


Journal ArticleDOI
TL;DR: What is currently known about the phylogenetic and physiological diversity of the iron-oxidizing proteobacteria, their significance in the environment (on the global and micro scales), and their increasing importance in biotechnology are described.
Abstract: The 'iron bacteria' are a collection of morphologically and phylogenetically heterogeneous prokaryotes. They include some of the first micro-organisms to be observed and described, and continue to be the subject of a considerable body of fundamental and applied microbiological research. While species of iron-oxidizing bacteria can be found in many different phyla, most are affiliated with the Proteobacteria. The latter can be subdivided into four main physiological groups: (i) acidophilic, aerobic iron oxidizers; (ii) neutrophilic, aerobic iron oxidizers; (iii) neutrophilic, anaerobic (nitrate-dependent) iron oxidizers; and (iv) anaerobic photosynthetic iron oxidizers. Some species (mostly acidophiles) can reduce ferric iron as well as oxidize ferrous iron, depending on prevailing environmental conditions. This review describes what is currently known about the phylogenetic and physiological diversity of the iron-oxidizing proteobacteria, their significance in the environment (on the global and micro scales), and their increasing importance in biotechnology.

470 citations


Journal ArticleDOI
TL;DR: The faecal microbiota of infants after first complementary foods was different to that before weaning commenced, many of the initial influences on microbiota composition were still evident.
Abstract: Although it is well established that early infant feeding has a major influence on the establishment of the gut microbiota, very little is understood about how the introduction of first solid food influences the colonization process. This study aimed to determine the impact of weaning on the faecal microbiota composition of infants from five European countries (Sweden, Scotland, Germany, Italy and Spain) which have different lifestyle characteristics and infant feeding practices. Faecal samples were collected from 605 infants approximately 4 weeks after the introduction of first solid foods and the results were compared with the same infants before weaning (6 weeks of age) to investigate the association with determining factors such as geographical origin, mode of delivery, previous feeding method and age of weaning. Samples were analysed by fluorescence in situ hybridization and flow cytometry using a panel of 10 rRNA targeted group- and species-specific oligonucleotide probes. The genus Bifidobacterium (36.5 % average proportion of total detectable bacteria), Clostridium coccoides group (14 %) and Bacteroides (13.6 %) were predominant after weaning. Similar to pre-weaning, northern European countries were associated with a higher proportion of bifidobacteria in the infant gut microbiota while higher levels of Bacteroides and lactobacilli characterized southern European countries. As before weaning, the initial feeding method influenced the Clostridium leptum group and Clostridium difficile+Clostridium perfringens species, and bifidobacteria still dominated the faeces of initially breast-fed infants. Formula-fed babies presented significantly higher proportions of Bacteroides and the C. coccoides group. The mode of birth influenced changes in the proportions of bacteroides and atopobium. Although there were significant differences in the mean weaning age between countries, this was not related to the populations of bifidobacteria or bacteroides. Thus, although the faecal microbiota of infants after first complementary foods was different to that before weaning commenced, many of the initial influences on microbiota composition were still evident.

304 citations


Journal ArticleDOI
TL;DR: Physiological differences between three anammox bacterial enrichment cultures are compared to provide a better understanding of anamm ox niche specificity in natural and man-made ecosystems.
Abstract: The present study investigated the phylogenetic affiliation and physiological characteristics of bacteria responsible for anaerobic ammonium oxidization (anammox); these bacteria were enriched in an anammox reactor with a nitrogen removal rate of 26.0 kg N m−3 day−1. The anammox bacteria were identified as representing ‘Candidatus Brocadia sinica’ on the basis of phylogenetic analysis of rRNA operon sequences. Physiological characteristics examined were growth rate, kinetics of ammonium oxidation and nitrite reduction, temperature, pH and inhibition of anammox. The maximum specific growth rate (μmax) was 0.0041 h−1, corresponding to a doubling time of 7 days. The half-saturation constants (K s) for ammonium and nitrite of ‘Ca. B. sinica’ were 28±4 and 86±4 µM, respectively, higher than those of ‘Candidatus Brocadia anammoxidans’ and ‘Candidatus Kuenenia stuttgartiensis’. The temperature and pH ranges of anammox activity were 25–45 °C and pH 6.5–8.8, respectively. Anammox activity was inhibited in the presence of nitrite (50 % inhibition at 16 mM), ethanol (91 % at 1 mM) and methanol (86 % at 1 mM). Anammox activities were 80 and 70 % of baseline in the presence of 20 mM phosphorus and 3 % salinity, respectively. The yield of biomass and dissolved organic carbon production in the culture supernatant were 0.062 and 0.005 mol C (mol NH 4 + )−1, respectively. This study compared physiological differences between three anammox bacterial enrichment cultures to provide a better understanding of anammox niche specificity in natural and man-made ecosystems.

287 citations


Journal ArticleDOI
TL;DR: In this article, several flavonoids belonging to the chalcone structural groups were screened for their capacity to reduce the production of QS-controlled factors in the opportunistic pathogen Pseudomonas aeruginosa (strain PAO1).
Abstract: Preliminary screening of the Malagasy plant Combretum albiflorum for compounds attenuating the production of quorum sensing (QS)-controlled virulence factors in bacteria led to the identification of active fractions containing flavonoids. In the present study, several flavonoids belonging to the flavone, flavanone, flavonol and chalcone structural groups were screened for their capacity to reduce the production of QS-controlled factors in the opportunistic pathogen Pseudomonas aeruginosa (strain PAO1). Flavanones (i.e. naringenin, eriodictyol and taxifolin) significantly reduced the production of pyocyanin and elastase in P. aeruginosa without affecting bacterial growth. Consistently, naringenin and taxifolin reduced the expression of several QS-controlled genes (i.e. lasI, lasR, rhlI, rhlR, lasA, lasB, phzA1 and rhlA) in P. aeruginosa PAO1. Naringenin also dramatically reduced the production of the acylhomoserine lactones N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-l-homoserine lactone (C4-HSL), which is driven by the lasI and rhlI gene products, respectively. In addition, using mutant strains deficient for autoinduction (ΔlasI and ΔrhlI) and LasR- and RhlR-based biosensors, it was shown that QS inhibition by naringenin not only is the consequence of a reduced production of autoinduction compounds but also results from a defect in the proper functioning of the RlhR–C4-HSL complex. Widely distributed in the plant kingdom, flavonoids are known for their numerous and determinant roles in plant physiology, plant development and in the success of plant–rhizobia interactions, but, as shown here, some of them also have a role as inhibitors of the virulence of pathogenic bacteria by interfering with QS mechanisms.

206 citations


Journal ArticleDOI
TL;DR: Transposon mutagenesis was used to identify additional genes required for motility and revealed loci encoding various functions: non-ribosomal synthesis of a putative lipopeptide, a sensor kinase (BfmS), a lytic transglycosylase, O-antigen biosynthesis, an outer membrane porin (OmpA) and de novo purine biosynthesis (PurK).
Abstract: The Gram-negative pathogen Acinetobacter baumannii strain M2 was found to exhibit a robust surface motility on low-percentage (0.2–0.4 %) agar plates. These patterns of motility were dramatically different depending on whether Difco or Eiken agar was used. Motility was observed in many, but not all, clinical and environmental isolates. The use of drop collapse assays to demonstrate surfactant production was unsuccessful, and the role of surfactants in A. baumannii M2 motility remains unclear. Surface motility was impaired by an insertion in pilT, encoding a gene product that is often required for retraction of the type IV pilus. Motility was also dependent on quorum sensing, as a null allele in the abaI autoinducer synthase decreased motility, and the addition of exogenous N-(3-hydroxy)-dodecanoylhomoserine lactone (3-OH C12-HSL) restored motility to the abaI mutant. Transposon mutagenesis was used to identify additional genes required for motility and revealed loci encoding various functions: non-ribosomal synthesis of a putative lipopeptide, a sensor kinase (BfmS), a lytic transglycosylase, O-antigen biosynthesis (RmlB), an outer membrane porin (OmpA) and de novo purine biosynthesis (PurK). Two of the above genes required for motility were highly activated by quorum sensing, and may explain, in part, the requirement for quorum sensing in motility.

188 citations


Journal ArticleDOI
TL;DR: It is demonstrated that only p-rmpA enhanced expression of capsular polysaccharide synthesis (cps) genes and capsule production and indicated that p-RmpA does not promote virulence in mice, indicating that rmpA could be co-inherited together with virulence genes carried by this plasmid.
Abstract: Klebsiella pneumoniae community-acquired pyogenic liver abscess (PLA) is an emerging infectious disease. The rmpA gene (for regulator of mucoid phenotype A) has been reported to be associated with PLA in prevalence studies. NTUH-K2044, a K1 PLA isolate, carries three rmpA/A2 genes: two large-plasmid-carried genes (p-rmpA and p-rmpA2) and one chromosomal gene (c-rmpA). In this study, we re-examined the role of rmpA/A2 in PLA pathogenesis to clarify the relationship of rmpA/A2 and capsular serotype to virulence. Using isogenic gene deletion strains and complemented strains of NTUH-K2044, we demonstrated that only p-rmpA enhanced expression of capsular polysaccharide synthesis (cps) genes and capsule production. Nevertheless, the lethal dose and in vivo competitive index indicated that p-rmpA does not promote virulence in mice. The prevalence of these three rmpA/A2 and capsular types in 206 strains was investigated. This revealed a correlation of rmpA/A2 with six PLA-related capsular types (K1, K2, K5, K54, K57 and KN1). However, the correlation of rmpA/A2 with K1 strains from the West was less obvious than with the strains from Asia (17/22 vs 39/39, P = 0.0019). Among the three rmpA/A2 genes, p-rmpA was the most prevalent. Due to the strong correlation with PLA-related capsular types, p-rmpA could serve as a surrogate marker for PLA. We found an association of p-rmpA with three widely spaced loci in a large plasmid (30/32). Therefore, rmpA could be co-inherited together with virulence genes carried by this plasmid.

182 citations


Journal ArticleDOI
TL;DR: Understanding the contribution of a broadly conserved bacterial genotoxin that blocks progression of the mammalian cell cycle, ultimately causing cell death, should assist with elucidating disease mechanisms for these important pathogens.
Abstract: Cytolethal distending toxin (CDT) is a heterotrimeric AB-type genotoxin produced by several clinically important Gram-negative mucocutaneous bacterial pathogens. Irrespective of the bacterial species of origin, CDT causes characteristic and irreversible cell cycle arrest and apoptosis in a broad range of cultured mammalian cell lineages. The active subunit CdtB has structural homology with the phosphodiesterase family of enzymes including mammalian DNase I, and alone is necessary and sufficient to account for cellular toxicity. Indeed, mammalian cells treated with CDT initiate a DNA damage response similar to that elicited by ionizing radiation-induced DNA double strand breaks resulting in cell cycle arrest and apoptosis. The mechanism of CDT-induced apoptosis remains incompletely understood, but appears to involve both p53-dependent and -independent pathways. While epithelial, endothelial and fibroblast cell lines respond to CDT by undergoing arrest of cell cycle progression resulting in nuclear and cytoplasmic distension that precedes apoptotic cell death, cells of haematopoietic origin display rapid apoptosis following a brief period of cell cycle arrest. In this review, the ecology of pathogens producing CDT, the molecular biology of bacterial CDT and the molecular mechanisms of CDT-induced cytotoxicity are critically appraised. Understanding the contribution of a broadly conserved bacterial genotoxin that blocks progression of the mammalian cell cycle, ultimately causing cell death, should assist with elucidating disease mechanisms for these important pathogens.

163 citations


Journal ArticleDOI
TL;DR: Ass associations demonstrate that different species of Metarhizium associate with specific plant types, including wildflower rhizosphere when co-occurring with M. guizhouense and M. brunneum.
Abstract: Here we tested the hypothesis that species of the soil-inhabiting insect-pathogenic fungus Metarhizium are not randomly distributed in soils but show plant-rhizosphere-specific associations. We isolated Metarhizium from plant roots at two sites in Ontario, Canada, sequenced the 5′ EF-1α gene to discern Metarhizium species, and developed an RFLP test for rapid species identification. Results indicated a non-random association of three Metarhizium species (Metarhizium robertsii, Metarhizium brunneum and Metarhizium guizhouense) with the rhizosphere of certain types of plant species (identified to species and categorized as grasses, wildflowers, shrubs and trees). M. robertsii was the only species that was found associated with grass roots, suggesting a possible exclusion of M. brunneum and M. guizhouense. Supporting this, in vitro experiments showed that M. robertsii conidia germinated significantly better in Panicum virgatum (switchgrass) root exudate than did M. brunneum or M. guizhouense. M. guizhouense and M. brunneum only associated with wildflower rhizosphere when co-occurring with M. robertsii. With the exception of these co-occurrences, M. guizhouense was found to associate exclusively with the rhizosphere of tree species, predominantly Acer saccharum (sugar maple), while M. brunneum was found to associate exclusively with the rhizosphere of shrubs and trees. These associations demonstrate that different species of Metarhizium associate with specific plant types.

141 citations


Journal ArticleDOI
TL;DR: The data support an association between acne and P. acnes strains from the type IA cluster and highlight the role of a widely disseminated clonal genotype in this condition.
Abstract: We have developed a novel multilocus sequence typing (MLST) scheme and database (http://pubmlst.org/pacnes/) for Propionibacterium acnes based on the analysis of seven core housekeeping genes. The scheme, which was validated against previously described antibody, single locus and random amplification of polymorphic DNA typing methods, displayed excellent resolution and differentiated 123 isolates into 37 sequence types (STs). An overall clonal population structure was detected with six eBURST groups representing the major clades I, II and III, along with two singletons. Two highly successful and global clonal lineages, ST6 (type IA) and ST10 (type IB1), representing 64?% of this current MLST isolate collection were identified. The ST6 clone and closely related single locus variants, which comprise a large clonal complex CC6, dominated isolates from patients with acne, and were also significantly associated with ophthalmic infections. Our data therefore support an association between acne and P. acnes strains from the type IA cluster and highlight the role of a widely disseminated clonal genotype in this condition. Characterization of type I cell surface-associated antigens that are not detected in ST10 or strains of type II and III identified two dermatan-sulphate-binding proteins with putative phase/antigenic variation signatures. We propose that the expression of these proteins by type IA organisms contributes to their role in the pathophysiology of acne and helps explain the recurrent nature of the disease. The MLST scheme and database described in this study should provide a valuable platform for future epidemiological and evolutionary studies of P. acnes.

138 citations


Journal ArticleDOI
TL;DR: Direct interactions between FtsW and PBP3 in vivo and in vitro are shown by FRET (Förster resonance energy transfer) and co-immunoprecipitation experiments and it is shown that these proteins are able to form a discrete complex independently of the other cell-division proteins.
Abstract: During the cell cycle of rod-shaped bacteria, two morphogenetic processes can be discriminated: length growth of the cylindrical part of the cell and cell division by formation of two new cell poles. The morphogenetic protein complex responsible for the septation during cell division (the divisome) includes class A and class B penicillin-binding proteins (PBPs). In Escherichia coli, the class B PBP3 is specific for septal peptidoglycan synthesis. It requires the putative lipid II flippase FtsW for its localization at the division site and is necessary for the midcell localization of the class A PBP1B. In this work we show direct interactions between FtsW and PBP3 in vivo and in vitro by FRET (Forster resonance energy transfer) and co-immunoprecipitation experiments. These proteins are able to form a discrete complex independently of the other cell-division proteins. The K2-V42 peptide of PBP3 containing the membrane-spanning sequence is a structural determinant sufficient for interaction with FtsW and for PBP3 dimerization. By using a two-hybrid assay, the class A PBP1B was shown to interact with FtsW. However, it could not be detected in the immunoprecipitated FtsW-PBP3 complex. The periplasmic loop 9/10 of FtsW appeared to be involved in the interaction with both PBP1B and PBP3. It might play an important role in the positioning of these proteins within the divisome.

130 citations


Journal ArticleDOI
TL;DR: The data indicate that the dlt operon is necessary for full resistance of C. difficile to nisin, gallidermin, polymyxin B and vancomycin, and the d-alanylation of teichoic acids provides protection against antimicrobial peptides that may be essential for growth of the bacterium in the host.
Abstract: The dlt operon in Gram-positive bacteria encodes proteins that are necessary for the addition of d-alanine to teichoic acids of the cell wall. The addition of d-alanine to the cell wall results in a net positive charge on the bacterial cell surface and, as a consequence, can decrease the effectiveness of antimicrobials, such as cationic antimicrobial peptides (CAMPs). Although the roles of the dlt genes have been studied for some Gram-positive organisms, the arrangement of these genes in Clostridium difficile and the life cycle of the bacterium in the host are markedly different from those of other pathogens. In the current work, we determined the contribution of the putative C. difficile dlt operon to CAMP resistance. Our data indicate that the dlt operon is necessary for full resistance of C. difficile to nisin, gallidermin, polymyxin B and vancomycin. We propose that the d-alanylation of teichoic acids provides protection against antimicrobial peptides that may be essential for growth of C. difficile in the host.

Journal ArticleDOI
TL;DR: It is shown that both phenotypes are more severely affected by Cu(2+) than Pb(2+), and that the mutant is more sensitive to the former metal than the wild-type, and being the RPS of the mutant that is the most efficient polysaccharide fraction in metal removal.
Abstract: Many cyanobacteria produce extracellular polymeric substances (EPS) mainly of polysaccharidic nature. These EPS can remain associated to the cell surface as sheaths, capsules and/or slimes, or be liberated into the surrounding environment as released polysaccharides (RPS). The ability of EPS-producing cyanobacteria to remove heavy metals from aqueous solutions has been widely reported in the literature, focusing mainly on the biotechnological potential. However, the knowledge of the effects of the metals in the cell's survival/growth is still scarce, particularly when they are simultaneously exposed to more than one metal. This work evaluated the effects of different concentrations of Cu(2+) and/or Pb(2+) in the growth/survival of Gloeothece sp. PCC 6909 and its sheathless mutant Gloeothece sp. CCY 9612. The results obtained clearly showed that both phenotypes are more severely affected by Cu(2+) than Pb(2+), and that the mutant is more sensitive to the former metal than the wild-type. Evident ultrastructural changes were also observed in the wild-type and mutant cells exposed to high levels (10emg l(-1)) of Cu(2+). Moreover, in bi-metal systems, Pb(2+) was preferentially removed compared with Cu(2+), being the RPS of the mutant that is the most efficient polysaccharide fraction in metal removal. In these systems, the simultaneous presence of Cu(2+) and Pb(2+) caused a mutual inhibition in the adsorption of each metal.

Journal ArticleDOI
TL;DR: A comparative genomic analysis was carried out to evaluate the occurrence and role of the classical GlgC-GlgA pathway, the new GlgE pathway and the Rv3032 pathway across bacteria occupying very different ecological niches as mentioned in this paper.
Abstract: Glycogen, a large α-glucan, is a ubiquitous energy storage molecule among bacteria, and its biosynthesis by the classical GlgC-GlgA pathway and its degradation have long been well understood – or so we thought. A second pathway of α-glucan synthesis, the four-step GlgE pathway, was recently discovered in mycobacteria. It requires trehalose as a precursor, and has been genetically validated as a novel anti-tuberculosis drug target. The ability to convert glycogen into trehalose was already known, so the GlgE pathway provides a complementary way of cycling these two metabolites. As well as containing cytosolic storage glycogen, mycobacteria possess an outer capsule containing a glycogen-like α-glucan that is implicated in immune system evasion, so the GlgE pathway might be linked to capsular α-glucan biosynthesis. Another pathway (the Rv3032 pathway) for α-glucan biosynthesis in mycobacteria generates a methylglucose lipopolysaccharide thought to be associated with fatty acid metabolism. A comparative genomic analysis was carried out to evaluate the occurrence and role of the classical pathway, the new GlgE pathway and the Rv3032 pathway across bacteria occupying very different ecological niches. The GlgE pathway is represented in 14 % of sequenced genomes from diverse bacteria (about half as common as the classical pathway), while the Rv3032 pathway is restricted with few exceptions to mycobacteria, and the GlgB branching enzyme, usually presumed to be associated with the classical pathway, correlates more strongly with the new GlgE pathway. The microbiological implications of recent discoveries in the light of the comparative genomic analysis are discussed.

Journal ArticleDOI
TL;DR: This review discusses some important recent progress in these areas for the non-lantibiotic (class II) bacteriocins and discusses some examples of how the current wealth of genome sequences provides an invaluable source in the search for novel class II bacteriOCins.
Abstract: Due to their very potent antimicrobial activity against diverse food-spoiling bacteria and pathogens and their favourable biochemical properties, peptide bacteriocins from Gram-positive bacteria have long been considered promising for applications in food preservation or medical treatment. To take advantage of bacteriocins in different applications, it is crucial to have detailed knowledge on the molecular mechanisms by which these peptides recognize and kill target cells, how producer cells protect themselves from their own bacteriocin (self-immunity) and how target cells may develop resistance. In this review we discuss some important recent progress in these areas for the non-lantibiotic (class II) bacteriocins. We also discuss some examples of how the current wealth of genome sequences provides an invaluable source in the search for novel class II bacteriocins.

Journal ArticleDOI
TL;DR: IMS provides insight into the largely hidden nature of competitive microbial encounters and niche establishment, and provides a paradigm for future antibiotic discovery.
Abstract: Microbial competition exists in the general environment, such as soil or aquatic habitats, upon or within unicellular or multicellular eukaryotic life forms. The molecular actions that govern microbial competition, leading to niche establishment and microbial monopolization, remain undetermined. The emerging technology of imaging mass spectrometry (IMS) enabled the observation that there is directionality in the metabolic output of the organism Bacillus subtilis when co-cultured with Staphylococcus aureus. The directionally released antibiotic alters S. aureus virulence factor production and colonization. Therefore, IMS provides insight into the largely hidden nature of competitive microbial encounters and niche establishment, and provides a paradigm for future antibiotic discovery.

Journal ArticleDOI
TL;DR: Data from a multilocus sequence analysis of 21 strains of Fe(II)-oxidizing acidithiobacilli obtained from public and private collections showed that these strains could be divided into four monophyletic groups, correlated not only with levels of genomic DNA hybridization and phenotypic differences among the strains, but also with the types of rusticyanin and HiPIPs that they harbour.
Abstract: Autotrophic acidophilic iron- and sulfur-oxidizing bacteria of the genus Acidithiobacillus constitute a heterogeneous taxon encompassing a high degree of diversity at the phylogenetic and genetic levels, though currently only two species are recognized (Acidithiobacillus ferrooxidans and Acidithiobacillus ferrivorans). One of the major functional disparities concerns the biochemical mechanisms of iron and sulfur oxidation, with discrepancies reported in the literature concerning the genes and proteins involved in these processes. These include two types of high-potential iron-sulfur proteins (HiPIPs): (i) Iro, which has been described as the iron oxidase; and (ii) Hip, which has been proposed to be involved in the electron transfer between sulfur compounds and oxygen. In addition, two rusticyanins have been described: (i) rusticyanin A, encoded by the rusA gene and belonging to the well-characterized rus operon, which plays a central role in the iron respiratory chain; and (ii) rusticyanin B, a protein to which no function has yet been ascribed. Data from a multilocus sequence analysis of 21 strains of Fe(II)-oxidizing acidithiobacilli obtained from public and private collections using five phylogenetic markers showed that these strains could be divided into four monophyletic groups. These divisions correlated not only with levels of genomic DNA hybridization and phenotypic differences among the strains, but also with the types of rusticyanin and HiPIPs that they harbour. Taken together, the data indicate that Fe(II)-oxidizing acidithiobacilli comprise at least four distinct taxa, all of which are able to oxidize both ferrous iron and sulfur, and suggest that different iron oxidation pathways have evolved in these closely related bacteria.

Journal ArticleDOI
TL;DR: This is, to the authors' knowledge, the first systematic, quantitative analysis of the changes in the wall proteome of C. albicans upon hyphal induction and proposes new wall-protein-derived candidates for vaccine development.
Abstract: The ability of Candida albicans to switch from yeast to hyphal growth is essential for its virulence. The walls and especially the covalently attached wall proteins are involved in the primary host–pathogen interactions. Three hyphal induction methods were compared, based on fetal calf serum, the amino sugar N-acetylglucosamine (GlcNAc) and the mammalian cell culture medium Iscove’s modified Dulbecco’s medium (IMDM). GlcNAc and IMDM were preferred, allowing stable hyphal growth over a prolonged period without significant reversion to yeast growth and with high biomass yields. We employed Fourier transform-MS combined with a 15N-metabolically labelled reference culture as internal standard for relative quantification of changes in the wall proteome upon hyphal induction. A total of 21 wall proteins were quantified. Our induction methods triggered a similar response characterized by (i) a category of wall proteins showing strongly increased incorporation levels (Als3, Hwp2, Hyr1, Plb5 and Sod5), (ii) another category with strongly decreased levels (Rhd3, Sod4 and Ywp1) and (iii) a third one enriched for carbohydrate-active enzymes (including Cht2, Crh11, Mp65, Pga4, Phr1, Phr2 and Utr2) and showing only a limited response. This is, to our knowledge, the first systematic, quantitative analysis of the changes in the wall proteome of C. albicans upon hyphal induction. Finally, we propose new wall-protein-derived candidates for vaccine development.

Journal ArticleDOI
TL;DR: The results may provide a mechanistic basis for many of the studies that have examined the virulence properties of Francisella mutants in FPI genes, namely that the observed phenotypes of the mutants are the result of the disruption of the FPI-encoded T6SS structure.
Abstract: The Francisella pathogenicity island (FPI) encodes proteins thought to compose a type VI secretion system (T6SS) that is required for the intracellular growth of Francisella novicida. In this work we used deletion mutagenesis and genetic complementation to determine that the intracellular growth of F. novicida was dependent on 14 of the 18 genes in the FPI. The products of the iglABCD operon were localized by the biochemical fractionation of F. novicida, and Francisella tularensis LVS. Sucrose gradient separation of water-insoluble material showed that the FPI-encoded proteins IglA, IglB and IglC were found in multiple fractions, especially in a fraction that did not correspond to a known membrane fraction. We interpreted these data to suggest that IglA, IglB and IglC are part of a macromolecular structure. Analysis of published structural data suggested that IglC is an analogue of Hcp, which is thought to form long nano-tubes. Thus the fractionation properties of IglA, IglB and IglC are consistent with the current model of the T6SS apparatus, which supposes that IglA and IglB homologues form an outer tube structure that surrounds an inner tube composed of Hcp (IglC) subunits. Fractionation of F. novicida expressing FLAG-tagged DotU (IcmH homologue) and PdpB (IcmF homologue) showed that these proteins localize to the inner membrane. Deletion of dotU led to the cleavage of PdpB, suggesting an interaction of these two proteins that is consistent with results obtained with other T6SSs. Our results may provide a mechanistic basis for many of the studies that have examined the virulence properties of Francisella mutants in FPI genes, namely that the observed phenotypes of the mutants are the result of the disruption of the FPI-encoded T6SS structure.

Journal ArticleDOI
TL;DR: Using a combination of phylogenetic and meta-analysis of transcriptome datasets it was possible to associate specific subsets of VgrG and Hcp proteins with each Pseudomonas T6SS clade, and it is proposed that these genes may play a role in secretion or alternatively could be new T6S effectors.
Abstract: Bacteria encode multiple protein secretion systems that are crucial for interaction with the environment and with hosts. In recent years, attention has focused on type VI secretion systems (T6SSs), which are specialized transporters widely encoded in Proteobacteria. The myriad of processes associated with these secretion systems could be explained by subclasses of T6SS, each involved in specialized functions. To assess diversity and predict function associated with different T6SSs, comparative genomic analysis of 34 Pseudomonas genomes was performed. This identified 70 T6SSs, with at least one locus in every strain, except for Pseudomonas stutzeri A1501. By comparing 11 core genes of the T6SS, it was possible to identify five main Pseudomonas phylogenetic clusters, with strains typically carrying T6SSs from more than one clade. In addition, most strains encode additional vgrG and hcp genes, which encode extracellular structural components of the secretion apparatus. Using a combination of phylogenetic and meta-analysis of transcriptome datasets it was possible to associate specific subsets of VgrG and Hcp proteins with each Pseudomonas T6SS clade. Moreover, a closer examination of the genomic context of vgrG genes in multiple strains highlights a number of additional genes associated with these regions. It is proposed that these genes may play a role in secretion or alternatively could be new T6S effectors.

Journal ArticleDOI
TL;DR: In this paper, the authors used lipidomics to compare the lipid profiles of C. albicans biofilms and planktonic cells, in early and mature developmental phases, and found that significant differences exist in lipid composition in both developmental phases.
Abstract: Candida albicans-associated bloodstream infections are linked to the ability of this yeast to form biofilms. In this study, we used lipidomics to compare the lipid profiles of C. albicans biofilms and planktonic cells, in early and mature developmental phases. Our results showed that significant differences exist in lipid composition in both developmental phases. Biofilms contained higher levels of phospholipid and sphingolipids than planktonic cells (nmol per g biomass, P<0.05 for all comparisons). In the early phase, levels of lipid in most classes were significantly higher in biofilms compared to planktonic cells (P≤0.05). The ratio of phosphatidylcholine to phosphatidylethanolamine was lower in biofilms compared to planktonic cells in both early (1.17 vs 2.52, P≤0.001) and late (2.34 vs 3.81, P≤0.001) developmental phases. The unsaturation index of phospholipids decreased with time, with this effect being particularly strong for biofilms. Inhibition of the biosynthetic pathway for sphingolipid [mannosyl diinositolphosphoryl ceramide, M(IP)2C] by myriocin or aureobasidin A, and disruption of the gene encoding inositolphosphotransferase (Ipt1p), abrogated the ability of C. albicans to form biofilms. The differences in lipid profiles between biofilms and planktonic Candida cells may have important implications for the biology and antifungal resistance of biofilms.

Journal ArticleDOI
TL;DR: This review gives an overview of the main defensive mechanisms involved in the Salmonella response to the extreme acid conditions of the stomach, and the elevated concentrations of bile salts, osmolytes and commensal bacterial metabolites, and a comparison of the mammalian and avian gastrointestinal tracts.
Abstract: Human salmonellosis infections are usually acquired via the food chain as a result of the ability of Salmonella serovars to colonize and persist within the gastrointestinal tract of their hosts. In addition, after food ingestion and in order to cause foodborne disease in humans, Salmonella must be able to resist several deleterious stress conditions which are part of the host defence against infections. This review gives an overview of the main defensive mechanisms involved in the Salmonella response to the extreme acid conditions of the stomach, and the elevated concentrations of bile salts, osmolytes and commensal bacterial metabolites, and the low oxygen tension conditions of the mammalian and avian gastrointestinal tracts.

Journal ArticleDOI
TL;DR: It is concluded that H. pylori perceives LuxS-produced AI-2 as a chemorepellent via the chemoreceptor TlpB, supporting the model that tlpB functions in a signalling pathway downstream of luxS and upstream of cheA, which is non-responsive to a gradient or uniform distribution of the chemical.
Abstract: Helicobacter pylori moves in response to environmental chemical cues using a chemotaxis two-component signal-transduction system. Autoinducer-2 (AI-2) is a quorum-sensing signal produced by the LuxS protein that accumulates in the bacterial environment in a density-dependent manner. We showed previously that a H. pylori luxS mutant was defective in motility on soft agar plates. Here we report that deletion of the luxS gene resulted in swimming behaviour with a reduced frequency of stops as compared to the wild-type strain. Stopping frequency was restored to wild-type levels by genetic complementation of the luxS mutation or by addition of synthetic 4,5-dihydroxy-2,3-pentanedione (DPD), which cyclizes to form AI-2. Synthetic DPD also increased the frequency of stops in wild-type H. pylori, similar to the behaviour induced by the known chemorepellent HCl. We found that whereas mutants lacking the chemoreceptor genes tlpA, tlpC or tlpD responded to an exogenous source of synthetic DPD, the chemoreceptor mutant tlpB was non-responsive to a gradient or uniform distribution of the chemical. Furthermore, a double mutant lacking both tlpB and luxS exhibited chemotactic behaviour similar to the tlpB single mutant, whereas a double mutant lacking both tlpB and the chemotransduction gene cheA behaved like a nonchemotactic cheA single mutant, supporting the model that tlpB functions in a signalling pathway downstream of luxS and upstream of cheA. We conclude that H. pylori perceives LuxS-produced AI-2 as a chemorepellent via the chemoreceptor TlpB.

Journal ArticleDOI
TL;DR: This is the first report to demonstrate that WetA is essential for trehalose biogenesis in conidia, and suggests a role of AfuWetA in the early phase of fungal growth.
Abstract: The opportunistic human pathogen Aspergillus fumigatus produces a massive number of asexual spores (conidia) as the primary means of dispersal, survival, genome protection and infection of hosts. In this report, we investigate the functions of two developmental regulators, AfuAbaA and AfuWetA, in A. fumigatus. The AfuabaA gene is predicted to encode an ATTS/TEA DNA-binding domain protein and is activated by AfuBrlA during the middle stage of A. fumigatus asexual development (conidiation). The deletion of AfuabaA results in the formation of aberrant conidiophores exhibiting reiterated cylinder-like terminal cells lacking spores. Furthermore, the absence of AfuabaA causes delayed autolysis and cell death, whereas the overexpression of AfuabaA accelerates these processes, indicating an additional role for AfuAbaA. The AfuwetA gene is sequentially activated by AfuAbaA in the late phase of conidiation. The deletion of AfuwetA causes the formation of defective spore walls and a lack of trehalose biogenesis, leading to a rapid loss of spore viability and reduced tolerance to various stresses. This is the first report to demonstrate that WetA is essential for trehalose biogenesis in conidia. Moreover, the absence of AfuwetA causes delayed germ-tube formation and reduced hyphal branching, suggesting a role of AfuWetA in the early phase of fungal growth. A genetic model depicting the regulation of conidiation in A. fumigatus is proposed.

Journal ArticleDOI
TL;DR: Confocal laser scanning microscopy of biofilms produced in static culture demonstrated that the flagellum is also involved in the formation of mushroom-shaped structures and water channels, and in the dispersion ofBiofilms, indicating a regulatory role for DSF in both types of motility.
Abstract: Xanthomonas axonopodis pv. citri (Xac) is the causative agent of citrus canker. This bacterium develops a characteristic biofilm on both biotic and abiotic surfaces. To evaluate the participation of the single flagellum of Xac in biofilm formation, mutants in the fliC (flagellin) and the flgE (hook) genes were generated. Swimming motility, assessed on 0.25 % agar plates, was markedly reduced in fliC and flgE mutants. However, the fliC and flgE mutants exhibited a flagellar-independent surface translocation on 0.5 % agar plates. Mutation of either the rpfF or the rpfC gene, which both encode proteins involved in cell-cell signalling mediated by diffusible signal factor (DSF), led to a reduction in both flagellar-dependent and flagellar-independent surface translocation, indicating a regulatory role for DSF in both types of motility. Confocal laser scanning microscopy of biofilms produced in static culture demonstrated that the flagellum is also involved in the formation of mushroom-shaped structures and water channels, and in the dispersion of biofilms. The presence of the flagellum was required for mature biofilm development on lemon leaf surfaces. The absence of flagellin produced a slight reduction in Xac pathogenicity and this reduction was more severe when the complete flagellum structure was absent.

Journal ArticleDOI
TL;DR: This work provides both the first examination to the authors' knowledge of CRISPR regions within clinical P. aeruginosa isolates and a collection of definedCRISPR-positive and -negative strains for further CRISpr and cas gene studies.
Abstract: Here, we report the characterization of 122 Pseudomonas aeruginosa clinical isolates from three distinct geographical locations: Dartmouth Hitchcock Medical Center in New Hampshire, USA, the Charles T. Campbell Eye Microbiology Lab at the University of Pittsburgh Medical Center, USA, and the Aravind Eye Hospital in Madurai, India. We identified and located clustered regularly interspaced short palindromic repeats (CRISPR) in 45/122 clinical isolates and sequenced these CRISPR, finding that Yersinia subtype CRISPR regions (33 %) were more prevalent than the Escherichia CRISPR region subtype (6 %) in these P. aeruginosa clinical isolates. Further, we observed 132 unique spacers from these 45 CRISPR that are 100 % identical to prophages or sequenced temperate bacteriophage capable of becoming prophages. Most intriguingly, all of these 132 viral spacers matched to temperate bacteriophage/prophages capable of inserting into the host chromosome, but not to extrachromosomally replicating lytic P. aeruginosa bacteriophage. We next assessed the ability of the more prevalent Yersinia subtype CRISPR regions to mediate resistance to bacteriophage infection or lysogeny by deleting the entire CRISPR region from sequenced strain UCBPP-PA14 and six clinical isolates. We found no change in CRISPR-mediated resistance to bacteriophage infection or lysogeny rate even for CRISPR with spacers 100 % identical to a region of the infecting bacteriophage. Lastly, to show these CRISPR and cas genes were expressed and functional, we demonstrated production of small CRISPR RNAs. This work provides both the first examination to our knowledge of CRISPR regions within clinical P. aeruginosa isolates and a collection of defined CRISPR-positive and -negative strains for further CRISPR and cas gene studies.

Journal ArticleDOI
TL;DR: It was observed that the hypervirulent ribotype 027 produces significantly more toxin than the other ribotypes in the exponential and stationary phases of growth, and observations might suggest a changing trend towards increased virulence in the strains currently responsible for CDI.
Abstract: Clostridium difficile is a major cause of nosocomial diarrhoea. The toxins that it produces (TcdA and TcdB) are responsible for the characteristic pathology of C. difficile infection (CDI), while its spores persist in the environment, causing its widespread transmission. Many different strains of C. difficile exist worldwide and the epidemiology of the strains is ever-changing: in Scotland, PCR ribotype 012 was once prevalent, but currently ribotypes 106, 001 and 027 are endemic. This study aimed to identify the differences among these ribotypes with respect to their growth, and toxin and spore production in vitro. It was observed that the hypervirulent ribotype 027 produces significantly more toxin than the other ribotypes in the exponential and stationary phases of growth. Further, the endemic strains produce significantly more toxins and spores than ribotype 012. Of note was the observation that tcdC expression did not decrease into the stationary phase of growth, implying that it may have a modulatory rather than repressive effect on toxin production. Further, the increased expression of tcdE in ribotype 027 suggests its importance in the release of the toxins. It can thus be concluded that several genotypic and phenotypic traits might synergistically contribute to the hypervirulence of ribotype 027. These observations might suggest a changing trend towards increased virulence in the strains currently responsible for CDI.

Journal ArticleDOI
TL;DR: The results suggest that isolimonic acid and ichangin are potent modulators of bacterial cell-cell signalling, and may stem from the modulation of luxO expression.
Abstract: Citrus limonoids are unique secondary metabolites, characterized by a triterpenoid skeleton with a furan ring. Studies have demonstrated beneficial health properties of limonoids. In addition, certain citrus limonoids play a role in plant defence against insect pests. In the present study, five limonoids were purified from sour orange and evaluated for their ability to inhibit cell-cell signalling. The purified limonoids were tested for their ability to interfere with cell-cell signalling and biofilm formation in Vibrio harveyi. Isolimonic acid, deacetylnomilinic acid glucoside and ichangin demonstrated significant inhibition of autoinducer-mediated cell-cell signalling and biofilm formation. Furthermore, isolimonic acid and ichangin treatment resulted in induced expression of the response regulator gene luxO. In addition, luxR promoter activity was not affected by isolimonic acid or ichangin. Therefore, the ability of isolimonic acid and ichangin to interfere with cell-cell signalling and biofilm formation seems to stem from the modulation of luxO expression. The results suggest that isolimonic acid and ichangin are potent modulators of bacterial cell-cell signalling.

Journal ArticleDOI
TL;DR: It is found that NTHi invades the airway epithelium by a distinct mechanism, requiring microtubule assembly, lipid rafts integrity, and activation of phosphatidylinositol 3-kinase (PI3K) signalling, and it is shown that PCho is not responsible for Nthi intracellular location.
Abstract: Nontypable Haemophilus influenzae (NTHi) is a Gram-negative, non-capsulated human bacterial pathogen, a major cause of a repertoire of respiratory infections, and intimately associated with persistent lung bacterial colonization in patients suffering from chronic obstructive pulmonary disease (COPD). Despite its medical relevance, relatively little is known about its mechanisms of pathogenicity. In this study, we found that NTHi invades the airway epithelium by a distinct mechanism, requiring microtubule assembly, lipid rafts integrity, and activation of phosphatidylinositol 3-kinase (PI3K) signalling. We found that the majority of intracellular bacteria are located inside an acidic subcellular compartment, in a metabolically active and non-proliferative state. This NTHi-containing vacuole (NTHi-CV) is endowed with late endosome features, co-localizing with LysoTracker, lamp-1, lamp-2, CD63 and Rab7. The NTHi-CV does not acquire Golgi- or autophagy-related markers. These observations were extended to immortalized and primary human airway epithelial cells. By using NTHi clinical isolates expressing different amounts of phosphocholine (PCho), a major modification of NTHi lipooligosaccharide, on their surfaces, and an isogenic lic1BC mutant strain lacking PCho, we showed that PCho is not responsible for NTHi intracellular location. In sum, this study indicates that NTHi can survive inside airway epithelial cells.

Journal ArticleDOI
TL;DR: It is shown that some generalist strains of M. anisopliae were as good at germinating in RE as T. harzianum, although germination rates of the specialized acridid pathogen Metarhizium acridum and the B. bassiana strains were significantly lower.
Abstract: Metarhizium anisopliae and Beauveria bassiana are ubiquitous insect pathogens and possible plant symbionts, as some strains are endophytic or colonize the rhizosphere. We evaluated 11 strains of M. anisopliae and B. bassiana, and two soil saprophytes (the non-rhizospheric Aspergillus niger and the rhizosphere-competent Trichoderma harzianum) for their ability to germinate in bean root exudates (REs). Our results showed that some generalist strains of M. anisopliae were as good at germinating in RE as T. harzianum, although germination rates of the specialized acridid pathogen Metarhizium acridum and the B. bassiana strains were significantly lower. At RE concentrations of <1 mg ml(-1), M. anisopliae strain ARSEF 2575 showed higher germination rates than T. harzianum. Microarrays showed that strain 2575 upregulated 29 genes over a 12 h period in RE. A similar number of genes (21) were downregulated. Upregulated genes were involved in carbohydrate metabolism, lipid metabolism, cofactors and vitamins, energy metabolism, proteolysis, extracellular matrix/cell wall proteins, transport proteins, DNA synthesis, the sexual cycle and stress response. However, 41.3% of the upregulated genes were hypothetical or orphan sequences, indicating that many previously uncharacterized genes have functions related to saprophytic survival. Genes upregulated in response to RE included the subtilisin Pr1A, which is also involved in pathogenicity to insects. However, the upregulated Mad2 adhesin specifically mediates adhesion to plant surfaces, demonstrating that M. anisopliae has genes for rhizosphere competence that are induced by RE.

Journal ArticleDOI
TL;DR: A characterization of NsaRS is presented and it is revealed that it responds to disruptions in the cell envelope and functions to reprogram gene expression to modify cell envelope architecture, facilitating adaptation and survival.
Abstract: Staphylococcus aureus possesses 16 two-component systems (TCSs), two of which (GraRS and NsaRS) belong to the intramembrane-sensing histidine kinase (IM-HK) family, which is conserved within the firmicutes. NsaRS has recently been documented as being important for nisin resistance in S. aureus. In this study, we present a characterization of NsaRS and reveal that, as with other IM-HK TCSs, it responds to disruptions in the cell envelope. Analysis using a lacZ reporter–gene fusion demonstrated that nsaRS expression is upregulated by a variety of cell-envelope-damaging antibiotics, including phosphomycin, ampicillin, nisin, gramicidin, carbonyl cyanide m-chlorophenylhydrazone and penicillin G. Additionally, we reveal that NsaRS regulates a downstream transporter NsaAB during nisin-induced stress. NsaS mutants also display a 200-fold decreased ability to develop resistance to the cell-wall-targeting antibiotic bacitracin. Microarray analysis reveals that the transcription of 245 genes is altered in an nsaS mutant, with the vast majority being downregulated. Included within this list are genes involved in transport, drug resistance, cell envelope synthesis, transcriptional regulation, amino acid metabolism and virulence. Using inductively coupled plasma-MS we observed a decrease in intracellular divalent metal ions in an nsaS mutant when grown under low abundance conditions. Characterization of cells using electron microscopy reveals that nsaS mutants have alterations in cell envelope structure. Finally, a variety of virulence-related phenotypes are impaired in nsaS mutants, including biofilm formation, resistance to killing by human macrophages and survival in whole human blood. Thus, NsaRS is important in sensing cell damage in S. aureus and functions to reprogram gene expression to modify cell envelope architecture, facilitating adaptation and survival.