scispace - formally typeset
Search or ask a question
JournalISSN: 0930-0708

Mineralogy and Petrology 

Springer Science+Business Media
About: Mineralogy and Petrology is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Mafic & Olivine. It has an ISSN identifier of 0930-0708. Over the lifetime, 1961 publications have been published receiving 43286 citations. The journal is also known as: Mineralogy and petrology (Print).
Topics: Mafic, Olivine, Zircon, Metamorphism, Metasomatism


Papers
More filters
Journal ArticleDOI
Nobuo Morimoto1
TL;DR: The final report on the nomenclature of pyroxenes by the Subcommittee on Pyroxenes established by the Commission on New Minerals and Mineral Names of the International Mineralogical Association as discussed by the authors.
Abstract: This is the final report on the nomenclature of pyroxenes by the Subcommittee on Pyroxenes established by the Commission on New Minerals and Mineral Names of the International Mineralogical Association. The recommendations of the Subcommittee as put forward in this report have been formally accepted by the Commission. Accepted and widely used names have been chemically defined, by combining new and conventional methods, to agree as far as possible with the consensus of present use. Twenty names are formally accepted, among which thirteen are used to represent the end-members of definite chemical compositions. In common binary solid-solution series, species names are given to the two end-members by the “50% rule”. Adjectival modifiers for pyroxene mineral names are defined to indicate unusual amounts of chemical constituents. This report includes a list of 105 previously used pyroxene names that have been formally discarded by the Commission.

1,756 citations

Journal ArticleDOI
TL;DR: In this paper, the age of the Campanian Ignimbrite is estimated to be 39.28 ± 0.11 ka, about 2 ky older than the previous best estimate.
Abstract: The ∼ 150 km3 (DRE) trachytic Campanian Ignimbrite, which is situated north-west of Naples, Italy, is one of the largest eruptions in the Mediterranean region in the last 200 ky. Despite centuries of investigation, the age and eruptive history of the Campanian Ignimbrite is still debated, as is the chronology of other significant volcanic events of the Campanian Plain within the last 200–300 ky. New 40Ar/39Ar geochronology defines the age of the Campanian Ignimbrite at 39.28 ± 0.11 ka, about 2 ky older than the previous best estimate. Based on the distribution of the Campanian Ignimbrite and associated uppermost proximal lithic and polyclastic breccias, we suggest that the Campanian Ignimbrite magma was emitted from fissures activated along neotectonic Apennine faults rather than from ring fractures defining a Campi Flegrei caldera. Significantly, new volcanological, geochronological, and geochemical data distinguish previously unrecognized ignimbrite deposits in the Campanian Plain, accurately dated between 157 and 205 ka. These ages, coupled with a xenocrystic sanidine component > 315 ka, extend the volcanic history of this region by over 200 ky. Recent work also identifies a pyroclastic deposit, dated at 18.0 ka, outside of the topographic Campi Flegrei basin, expanding the spatial distribution of post-Campanian Ignimbrite deposits. These new discoveries emphasize the importance of continued investigation of the ages, distribution, volumes, and eruption dynamics of volcanic events associated with the Campanian Plain. Such information is critical for accurate assessment of the volcanic hazards associated with potentially large-volume explosive eruptions in close proximity to the densely populated Neapolitan region.

665 citations

Journal ArticleDOI
TL;DR: Gunter et al. as discussed by the authors suggested water-rock reactions in deep aquifers in sedimentary basins could sequester injected-CO2-waste from industry, thereby reducing greenhouse gas emissions.
Abstract: In previous work,Gunter et al. (1993), suggested water-rock reactions in deep aquifers in sedimentary basins could sequester injected-CO2-waste from industry, thereby reducing greenhouse gas emissions. Experiments, carried out at 105°C and 90 bars CO2 pressure, to test the validity of this mineral-trapping of CO2 were unsuccessful due to sluggish kinetics of reaction. The most significant change recorded by the reaction products from these experiments was a large increase in alkalinity, which was attributed to very small amounts of water-mineral reaction. A computer model, PATHARC.94, was used to interpret this change in alkalinity and to predict the path and time necessary to reach equilibrium. Substantial trapping of CO2 by formation of siderite, calcite and aqueous bicarbonate ions was predicted to occur in 6 to 40 years.

409 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of intrinsic and extrinsic defects such as the alkali (or hydrogen)-compensated [AlO4/M+] center and the short-lived blue-green CL centered around 500 µm in the red spectral region.
Abstract: Investigations of natural and synthetic quartz specimens by cathodoluminescence (CL) microscopy and spectroscopy, electron paramagnetic resonance (EPR) and trace-element analysis showed that various luminescence colours and emission bands can be ascribed to different intrinsic and extrinsic defects. The perceived visible luminescence colours in quartz depend on the relative intensities of the dominant emission bands between 380 and 700 nm. Some of the CL emissions of quartz from the UV to the yellow spectral region (175 nm, 290 nm, 340 nm, 420 nm, 450 nm, 580 nm) can be related to intrinsic lattice defects. Extrinsic defects such as the alkali (or hydrogen)-compensated [AlO4/M+] centre have been suggested as being responsible for the transient emission band at 380–390 nm and the short-lived blue-green CL centered around 500 nm. CL emissions between 620 and 650 nm in the red spectral region are attributed to the nonbridging oxygen hole centre (NBOHC) with several precursors. The weak but highly variable CL colours and emission spectra of quartz can be related to genetic conditions of quartz formation. Hence, both luminescence microscopy and spectroscopy can be used widely in various applications in geosciences and techniques. One of the most important fields of application of quartz CL is the ability to reveal internal structures, growth zoning and lattice defects in quartz crystals not discernible by means of other analytical techniques. Other fields of investigations are the modal analysis of rocks, the provenance evaluation of clastic sediments, diagenetic studies, the reconstruction of alteration processes and fluid flow, the detection of radiation damage or investigations of ultra-pure quartz and silica glass in technical applications. Ursachen, spektrale Charakteristika und praktische Anwendungen der Kathodolumineszenz (KL) von Quarz – eine Revision Untersuchungen von naturlichen und synthetischen Quarzproben mittels Kathodolumineszenz (KL) Mikroskopie und -spektroskopie, Elektron Paramagnetischer Resonanz (EPR) und Spurenelementanalysen zeigen verschiedene Lumineszenzfarben und Emissionsbanden, die unterschiedlichen intrinsischen und extrinsischen Defekten zugeordnet werden konnen. Die sichtbaren Lumineszenzfarben von Quarz werden durch unterschiedliche Intensitatsverhaltnisse der dominierenden Emissionsbanden zwischen 380 und 700 nm verursacht. Einige der KL Emissionen vom UV bis zum gelben Spektralbereich (175 nm, 290 nm, 340 nm, 420 nm, 450 nm, 580 nm) stehen im Zusammenhang mit intrinsischen Defekten. Die kurzlebigen Lumineszenzemissionen bei 380–390 nm sowie 500 nm werden mit kompensierten [AlO4/M+]-Zentren in Verbindung gebracht. Die KL-Emissionen im roten Spektralbereich bei 620 bis 650 nm haben ihre Ursache im “nonbridging oxygen hole centre” (NBOHC) mit verschiedenen Vorlauferzentren. Die unterschiedlichen KL-Farben und Emissionsspektren von Quarz konnen oft bestimmten genetischen Bildungsbedingungen zugeordnet werden und ermoglichen deshalb vielfaltige Anwendungen in den Geowissenschaften und in der Technik. Eine der gravierendsten Einsatzmoglichkeiten ist die Sichtbarmachung von Internstrukturen, Wachstumszonierungen und Defekten im Quarz, die mit anderen Analysenmethoden nicht oder nur schwer nachweisbar sind. Weitere wesentliche Untersuchungsschwerpunkte sind die Modalanalyse von Gesteinen, die Eduktanalyse klastischer Sedimente, Diageneseuntersuchungen, die Rekonstruktion von Alterationsprozessen und Fluidmigrationen, der Nachweis von Strahlungsschaden oder die Untersuchung von ultrareinem Quarz und Silikaglas fur technische Anwendungen.

401 citations

Journal ArticleDOI
TL;DR: Normalized REE patterns of aqueous solutions and their precipitates bear information on the physico-chemical environments a fluid experienced during REE mobilization, fluid migration and minerogenesis as mentioned in this paper.
Abstract: Normalized REE patterns of aqueous solutions and their precipitates bear information on the physico-chemical environments a fluid experienced during REE mobilization, fluid migration and minerogenesis. Positive Eu and Yb anomalies indicate REE mobilization by a F−-, OH−- and CO32−-poor fluid in a high-temperature regime, but are only retained by a precipitating mineral if precipitation occurs in a low-temperature environment. Negative Ce anomalies are typical of oxidizing conditions and are unlikely to develop during siderite precipitation. LREE/HREE fractionation is controlled by fluid composition and “mineralogical control”. REE patterns of Ca minerals allow to class the reacting fluids in “normal” (Ca/ligand ≫ 1) and “ligand-enriched” (Ca/ligand ≈ 1), the latter being characteristic for remobilization processes.

346 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202333
202231
202146
202036
201952
2018110